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Abstract

In this paper, coupled �xed point results of Bhaskar-Lakshmikantham type [T. Gnana Bhaskar, V.
Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlin-
ear Analysis 65 (2006) 1379-1393] are extend, generalized, unify and improved by using monotone
mappings instead mappings with mixed monotone property. Also, an example is given to support
these improvements.
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1. Introduction and preliminaries

It is well known that the metric �xed point theory is still very actual, important and useful in
all area of Mathematics. It can be applied, for instance in variational inequalities, optimization,
dynamic programing, approximation theory, etc.

The �xed point theorems in partially ordered metric spaces play a major role to prove the existence
and uniqueness of solutions for some di�erential, integral equations or matrix equations ([4], [10]).
One of the most interesting �xed point theorems in ordered metric spaces was investigated by T.
Gnana Bhaskar and V. Lakshmikantham [1] applied their result to the existence and uniqueness
of solution for a periodic boundary value problem. For some questions from linear and nonlinear
di�erential equations as well as matrix equations the reader can see the recent papers of J. Nieto and
R. R. Lopez [4] and Ran and Reurings [10]. Then many authors obtained several interesting results
in ordered metric spaces.
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We start out with listing some notation and preliminaries that we shall need to express our results.
In this paper (X, d,�) denotes a partially ordered metric space where (X,�) is a partially ordered
set and (X, d) is a metric space.

In this paper we do not use mappings with the mixed monotone property as in [1]. Therefore,
similar as in the [2], we introduce:

De�nition 1.1. Let (X,�) be a partially ordered set and let F : X ×X → X. We say that F is a
monotone if F (x, y) is monotone nondecreasing in x and y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y) ,

and
y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2) .

An element (x, y) ∈ X×X is called a coupled �xed point of F if F (x, y) = x, F (y, x) = y. It is clear
that (x, y) is a coupled �xed point of F if and only if (y, x)is a coupled �xed point of F.

De�nition 1.2. [1] Let (X,�) be an ordered set and d be a metric on X. We say that (X, d,�) is
regular if it has the following properties:

(i) if for non-decreasing sequence {xn} holds d (xn, x)→ 0, then xn � x for all n,
(i) if for non-increasing sequence {yn}holds d (xn, x)→ 0 , then yn � y for all n.
The proof of the following Lemma is immediately.

Lemma 1.3. (1) Let (X, d,�) be a partially ordered metric space. If relation v is de�ned on X2 =
X ×X by

Y v V ⇔ x � u ∧ y � v, Y = (x, y) , V = (u, v) ∈ X2,

and d+ : X2 ×X2 → R+ is given by

d+ (Y, V ) = d (x, u) + d (y, v) , Y = (x, y) , V = (u, v) ∈ X2,

then (X2,v, d+) is an ordered metric spaces. The space (X2, d+) is a complete if and only if (X, d)
is a complete. Also, the space (X3, d+,v) is a regular if and only if (X, d,�) is a such.

(2) If F : X ×X → X, then the mapping TF : X ×X → X ×X given by

TF (Y ) = (F (x, y) , F (y, x)) , Y = (x, y) ∈ X2

is non-decreasing with respect to v, that is,

Y v V ⇒ TF (Y ) v TF (V ) .

(3) The mapping F is a continuous if and only if TF is a continuous.
(4) F (X2) is a complete in the metric spaces (X, d) if and only if TF (X2) is a complete in the

space (X2, d+) .
(5) Mapping F : X2 → X has a coupled �xed point if and only if mapping TF has a �xed point

in X2.
Assertions similar to the following lemma were used in the frame of metric spaces in the course

of proofs of several �xed point results in various papers.
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Lemma 1.4. [5] Let (X, d) be a metric space and let {yn} be a sequence in X such that

lim
n→∞

d (yn, yn+1) = 0.

If {yn} is not a Cauchy sequence in (X, d) , then there exist ε > 0 and two sequences {m (k)} and
{n (k)} of positive integers such that m (k) > n (k) > k and the following four sequences tend to ε+

when k →∞ :

d
(
ym(k), yn(k)

)
, d

(
ym(k), yn(k)+1

)
, d

(
ym(k)−1, yn(k)

)
, d

(
ym(k)−1, yn(k)+1

)
.

In [1] Blaskar and Lakshmikantham proved the following theorem and formulated as Theorem
2.1.

Theorem 1.5. Let F : X ×X → X be a continuous mapping having the mixed monotone property
on X. Assume that there exist a k ∈ [0, 1) with

d (F (x, y) , F (u, v)) ≤ k

2
[d (x, u) + d (y, v)] ,∀x ≥ u, y � v. (1.1)

If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0) ,

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x) .

Also, in [1] Blaskar and Lakshmikantham proved the following theorem and formulated as Theorem
2.2.

Theorem 1.6. Let (X,�) be a partially ordered set and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Assume that X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x,∀n;
(ii) if a nonincreasing sequence {yn} → y, then y � yn,∀n.
Let F : X × X → X be a mapping having the mixed monotone property on X. Assume that

there exists a k ∈ [0, 1) with

d (F (x, y) , F (u, v)) ≤ k

2
[d (x, u) + d (y, v)] ,∀x ≥ u, y � v. (1.2)

If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0) ,

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x) .

.
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2. Main results

Our �rst result generalizes Theorem 2.1. from [1].

Theorem 2.1. Let F : X ×X → X be a continuous monotone mapping on X. Assume that there
exist a k ∈ [0, 1) such that

d (F (x, y) , F (u, v)) ≤ k

2
[d (x, u) + d (y, v)] , (2.1)

for all x, y, u, v ∈ X for which x � u and y � v. If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0) ,

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x) .

Proof . Let x0, y0 ∈ X be such that x0 � F (x0, y0) and y0 � F (y0, x0) . Since F : X ×X → X we
can choose x1, y1 ∈ X such that x1 = F (x0, y0) and y1 = F (y0, x0) . Again from F : X ×X → X we
can choose x2, y2 ∈ X such that x2 = F (x1, y1) and y2 = F (y1, x1) . Continuing this process we can
construct sequences {xn} and {yn} in X such that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn)

for all n ≥ 0.
We shall show that

xn � xn+1 and yn � yn+1 (2.2)

for all n ≥ 0.
We will use the mathematical induction. For n = 0, since x0 � F (x0, y0) and y0 � F (y0, x0) ,

and as x1 = F (x0, y0) and y1 = F (y0, x0) , we have that x0 � x1 and y0 � y1. Thus (2.2) holds for
n = 0.

Suppose now that (2.2) holds for some �xed n ≥ 0. Then, since xn � xn+1 and yn � yn+1, and so
F is a monotone, we obtain

xn+1 = F (xn, yn) � F (xn+1, yn) � F (xn+1, yn+1) = xn+2,

and
yn+1 = F (yn, xn) � F (yn+1, xn) � F (yn+1, xn+1) = yn+2,

that is., by mathematical induction follows that (2.2) holds for all n ≥ 0.
Denote,

δn = d (xn, xn+1) + d (yn, yn+1) .

We show that δn → 0, from which it follows that d (xn, xn+1) → 0 and d (yn, yn+1) → 0. Indeed, by
(2.1) since xn−1 � xn and yn−1 � yn we have

δn = d (F (xn−1, yn−1) , F (xn, yn)) + d (F (yn−1, xn−1) , F (yn, xn))

≤ k

2
[d (xn−1, xn) + d (yn−1, yn)] +

k

2
[d (yn−1, yn) + d (xn−1, xn)]

= kδn−1 ≤ k2δn−2 ≤ ... ≤ knδ0 = kn (d (x0, x1) + d (y0, y1))→ 0 (n→∞) .
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Now, we prove that {xn} and {yn} are Cauchy sequences. Suppose, to the contrary, that at least
one of {xn} and {yn} is not a Cauchy sequence. Then (by Lemma 1.5) there exist ε > 0 and two
sequences {m (k)} and {n (k)} of positive integers such that m (k) > n (k) > k and the following
four sequences tend to ε+ when k →∞ :

d+
(
zm(k), zn(k)

)
, d+

(
zm(k), zn(k)+1

)
, d+

(
zm(k)−1, zn(k)

)
, d+

(
zm(k)−1, zn(k)+1

)
, (2.3)

where zn = (xn, yn) is a sequence in (X2, d+) . Putting, (x, y) =
(
xm(k)−1, ym(k)−1

)
and (u, v) =(

xn(k), yn(k)
)
in (2.1) we have

d
(
F
(
xm(k)−1, ym(k)−1

)
, F

(
xn(k), yn(k)

))
≤ k

2

[
d
(
xm(k)−1, xn(k)

)
+ d

(
ym(k)−1, yn(k)

)]
,

i.e.,

d
(
xm(k), xn(k)+1

)
≤ k

2

[
d
(
xm(k)−1, xn(k)

)
+ d

(
ym(k)−1, yn(k)

)]
. (2.4)

Similar, putting (y, x) =
(
ym(k)−1, xm(k)−1

)
and (v, u) =

(
yn(k), xn(k)

)
in (2.1) we obtain

d
(
F
(
ym(k)−1, xm(k)−1

)
, F

(
yn(k), xn(k)

))
≤ k

2

[
d
(
ym(k)−1, yn(k)

)
+ d

(
xm(k)−1, xn(k)

)]
,

i.e.,

d
(
ym(k), yn(k)+1

)
≤ k

2

[
d
(
ym(k)−1, yn(k)

)
+ d

(
xm(k)−1, xn(k)

)]
. (2.5)

Adding (2.4) and (2.5) we get

d
(
xm(k), xn(k)+1

)
+ d

(
ym(k), yn(k)+1

)
≤ k

[
d
(
xm(k)−1, xn(k)

)
+ d

(
ym(k)−1, yn(k)

)]
,

or equivalently,
d+

(
zm(k), zn(k)+1

)
≤ kd+

(
zm(k)−1, zn(k)

)
. (2.6)

Letting k →∞ in (2.6) we obtain that ε ≤ kε < ε, a contradiction. Hence, both sequences {xn} and
{yn} are Cauchy sequences in complete metric space (X, d) .

Since, (X, d) is a complete, there exist x, y ∈ X such that limn→∞ xn = limn→∞ F (xn−1, yn−1) = x
and limn→∞ yn = limn→∞ F (yn−1, xn−1) = y. Further, from the continuity of mapping F we have
that F (x, y) = x and F (y, x) = y. Theorem is proved. �

We note that previous result is still valid for F not necessarily continuous. We have the following
result.

Theorem 2.2. Let (X,�) be a partially ordered set and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Assume that (X, d �) is a regular.

Let F : X×X → X be a monotone mapping on X. Assume that there exists k ∈ [0, 1) such that

d (F (x, y) , F (u, v)) ≤ k

2
[d (x, u) + d (y, v)] ,

for all x, y, u, v ∈ X for which x � u and y � v. If there exist x0, y0 ∈ X such that

x0 � F (x0, y0) and y0 � F (y0, x0) ,
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then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x) .

Proof . Following the proof of Theorem 2.1 we only have to show that x = F (x, y) and y = F (y, x) .
First, we have

d (F (x, y) , x) ≤ d (F (x, y) , F (xn, yn)) + d (xn+1, x) (2.7)

and
d (F (y, x) , y) ≤ d (F (y, x) , F (yn, xn)) + d (yn+1, y) . (2.8)

Since xn → x and yn → y as n→∞ then xn � x and yn � y for all n (because (X, d,�) is a regular)
from (2.7) and (2.8) follows respectively

d (F (x, y) , x) ≤ k

2
[d (x, xn) + d (y, yn)] + d (xn+1, x)→ 0 + 0 = 0

and

d (F (y, x) , y) ≤ k

2
[d (y, yn) + d (x, xn)] + d (yn+1, y)→ 0 + 0 = 0.

Hence, x = F (x, y)and y = F (y, x) , that is F has a couple �xed point (x, y) . �
One can prove that the coupled �xed point is in fact unique, provided that the product space

X ×X endowed with the partial order mentioned earlier has the following property:
Each pair of elements has either a lower bound or an upper bound. It is known that this condition

is equivalent to:
For every (x, y) , (x∗, y∗) ∈ X × X, there exists a (z1, z2) ∈ X × X that is comparable to (x, y)

and (x∗, y∗) .
We now the following result:

Theorem 2.3. Adding previous condition to the hypothesis of Theorem (2.1), we obtain the unique-
ness of the coupled �xed point of F.

Proof . If (x∗, y∗) is another coupled �xed point of F, then we show that

d+ ((x, y) , (x∗, y∗)) = 0,

where

x = F (x, y) = lim
n→∞

F n (x0, y0) = lim
n→∞

F
(
F n−1 (x0, y0) , F

n−1 (y0, x0)
)
= lim

n→∞
xn

and y = F (y, x) = lim
n→∞

F n (y0, x0) = lim
n→∞

F
(
F n−1 (y0, x0) , F

n−1 (x0, y0)
)
= lim

n→∞
yn.

We consider two cases:
(i) If (x, y) is comparable to (x∗, y∗) with respect to the ordering in X × X, then, for every

n = 0, 1, 2, ... (x, y) = (F n (x, y) , F n (y, x)) is comparable to (x∗, y∗) = (F n (x∗, y∗) , F n (y∗, x∗)) .
In this case we have

d+ ((x, y) , (x∗, y∗)) = d (x, x∗) + d (y, y∗)

= d (F n (x, y) , F n (x∗, y∗)) + d (F n (y, x) , F n (y∗, x∗))

≤ kn [d (x, x∗) + d (y, y∗)] = knd+ ((x, y) , (x∗, y∗)) .

This implies that d+ ((x, y) , (x∗, y∗)) = 0.
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(ii) If (x, y) is not comparable to (x∗, y∗) , then there exists an upper bound or lower bound
(u, v) ∈ X × X of (x, y) , (x∗, y∗) . Then, for all n = 0, 1, 2, ... (F n (u, v) , F n (v, u)) is comparable to
(x, y) = (F n (x, y) , F n (y, x)) and (x∗, y∗) = (F n (x∗, y∗) , F n (y∗, x∗)) .

Further, we have

d+ ((x, y) , (x∗, y∗)) = d+ ((F n (x, y) , F n (y, x)) , (F n (x∗, y∗) , F n (y∗, x∗)))

≤ d+ ((F n (x, y) , F n (y, x)) , (F n (u, v) , F n (v, u)))

+d+ ((F n (u, v) , F n (v, u)) , (F n (x∗, y∗) , F n (y∗, x∗)))

≤ kn ([d (x, u) + d (y, v)] + [d (u, x∗) + d (v, y∗)])

= kn [d+ ((x, y) , (u, v)) + d+ ((u, v) , (x∗, y∗))]→ 0 (n→∞) ,

so that d+ ((x, y) , (x∗, y∗)) = 0. �
Assuming that every pair of elements of X have either an upper bound or a lower bound in X,

one can in fact show that even the components of the coupled �xed points are equal. The following
theorem establishes this fact.

Theorem 2.4. In addition to the hypothesis of Theorem 2.1, suppose that every pair of elements
of X has an upper bound or a lower bound in X. Then x = y.

Proof . It is clear that (y, x) is a coupled �xed point of F if and only if (x, y) is coupled �xed point.
Therefore, by previous Theorem we obtain that (x, y) = (y, x) , that is x = y. �

Example 2.5. Let X = R, d (x, y) = |x− y| , x � y if and only if x ≤ y and F : X × X → X,
de�ned by F (x, y) = 2x+y

12
. It is easy to check that all the conditions of Theorems 2.1. and 2.3. are

satis�ed for k ∈ [1
2
, 1) and that (0, 0) is a unique coupled �xed point of F. We note that the function F

has not mixed monotone property, but F is a monotone, that is F (x, y) is monotone nondecreasing
in x and y. Hence coupled �xed point (0, 0) of F cannot be obtained by Theorem 1.6. that is, by
results from [1].

As shown in [1] for the case of the functions with mixed monotone property, such kind of results
can be used to investigate a large class of problems, like periodic boundary value problems (see [1],
section 3). A similar approach for monotone functions instead the functions with mixed monotone
property is also possible and will be done in some other paper.

For similar approach also see [3], [6], [7] and [8].
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