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Abstract

In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubic
and quartic functional equations with constants coefficients in the sense of dectic mappings in non-
Archimedean normed spaces.
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1. Introduction and Preliminaries

A classical equation in the theory of functional equations is the following: ”when is it true that a
function which approximately satisfies a functional equation must be close to an exact solution of the
equation?”. If the problem accepts a solution, we say that the equation is stable. The first problem
concerning group homomorphisms was raised by Ulam [32] in 1940. In the next year Hyers [14] gave a
first affirmative answer to the question of Ulam in context of Banach spaces. Subsequently, the result
of Hyers was generalized by Aoki [2] for additive mapping and by Rassias [27] for linear mapping by
considering an unbounded Cauchy difference. The result of Rassias has provided a lot of influence
during the last three decades in the development of generalization of Hyers-Ulam stability concept.
Furthermore, in 1994, Gǎvruţa [11] provided a further generalization of Rassias’ theorem in which
he replaced the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y). The stability problems
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of several functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [1, 9, 10, 15, 28]). In 1897, Hensel [13]
discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis.
The most important examples of non-Archimedean spaces are p-adic numbers. A key property of
p-adic numbers is that they done not satisfy the Archimedean axiom: for all x, y > 0, there exists
an integer n such that x < ny.

Fix a prime number p. For any nonzero rational number x, there exists a unique integer nx
such that x = a

b
pnx , where a and b are integers not divisible by p. Then |x|p := p−nx defines a

non-Archimedean norm on Q. The completion of Q with respect to the metric d(x, y) = |x − y|p
is denoted by Qp, and it is called the p-adic number field. In fact, Qp is the set of all formal series
x =

∑∞
k≥n a

kpk, where |ak| ≤ p − 1 are integers. The addition and multiplication between any two

elements of Qp are defined naturally. The norm |
∑∞

k≥n a
kpk|p = p−nx is a non-Archimedean norm

on Qp and it makes Qp a locally compact field [12, 29]. Note that if p ≥ 3, then |2n|p = 1 for each
integer n.

During the last three decades theory of non-Archimedean spaces has gained the interest of physi-
cists for their research, in particular the problems that emerge in quantum physics, p-adic strings
and superstrings [21]. Although many results in the classical normed space theory have a non-
Archimedean counterpart, their proofs are essentially different and require an entirely new kind of
intuition. One may note that for |n| ≤ 1 in each valuation field, every triangle is isosceles and
there many be no unit vector in a non-Archimedean normed space [21]. These facts show that the
non-Archimedean framework is of special interest. It turned out that non-Archimedean spaces have
many nice applications [12, 29, 30, 33]. In 2007, Moslehian and Rassias [23] proved the generalized
Hyers-Ulam stability of the Cauchy and quadratic functional equation in non-Archimedean normed
spaces.

A valuation is a function |.| from a field K into [0,∞) such that 0 is the unique element having the
0 , |ab| = |a||b|, and the triangle inequality holds, that is, for all a, b ∈ K, we have |a+ b| ≤ |a|+ |b|.
A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are
examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. Let
K be a field. A non-Archimedean absolute value on K is a function |.| : K → R such that , for any
a, b ∈ K, we have, |a| ≥ 0 and equality holds if and only if a = 0,, |ab| = |a||b|, |a+ b| ≤ max{|a|, |b|}
(the strict triangle inequality). Note that |1| = | − 1| = 1 and |n| ≤ 1 for each integer n. We always
assume, in addition, that |.| is non-trivial, i.e., there exists an a0 ∈ K such that |a0| /∈ {0, 1}.

Definition 1.1. Let X be a linear space over a scaler field K with a non-Archimedean nontrivial
valuation |.|. A function ‖.‖ : X → R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:
(N1) ‖x‖ = 0 if and only if x = 0,
(N2) ‖rx‖ = |r|‖x‖,
(N3) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} (the strict triangle inequality (ultrametric) )

for all x, y ∈ X. Then (X, ‖.‖) is called a non-Archimedean space.
It follows from (N3) that

‖xn − xm‖ ≤ max{‖xi+1 − xi‖ : m ≤ i ≤ n− 1} (n > m).

Let {xn} be a sequence in a non-Archimedean normed space X. The sequence {xn} is called a
Cauchy sequence if for any ε > 0, there is a positive integer N such that ‖xn − xm‖ < ε for all
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n,m ≥ N . If every Cauchy sequence in X converges, then the non-Archimedean normed space X is
called a non-Archimedean Banach space. For more detailed definition of non-Archimedean Banach
space, we refer to [30].

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall the a fundamental result in fixed point theory.

Theorem 1.2. (see.[6, 26]) Let (X, d) be a complete generalized metric space and J : X → X be a
strictly contractive mapping with Lipshitz constant L < 1. Then, for each given x ∈ X, either

d(Jnx, Jn+1x) =∞ for all n ≥ 0,

or there exists a natural number n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0 , y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y.

In 1996, Isac and Rassias [16] were the first to provide applications of stability theory of functional
equations for the proof of new fixed-point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been extensively investigated by a number
of authors (see [4, 25]).

Khodaei and Rassias [20] investigated the solution and stability of the n-dimensional additive
functional equations such that in the special case n = 2,

f(ax+ by) + f(ax− by) = 2af(x)

where a, b ∈ Z \ {0} with a 6= ±1,±b.
The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called quadratic functional equation and every solution of quadratic equation (1.1) is said to be a
quadratic function. The function f(x) = x2 satisfies the functional equation (1.1). The Hyers-Ulam
stability problem for the quadratic functional equation was solved by Skof [31] and, independently, by
Cholewa [5]. In Czerwik [3] proved the generalized Hyers-Ulam stability for the functional equation.
Eshaghi Gordji and Khodaei [8] investigated the solution and the Hyers- Ulam stability for the
quadratic functional equation

f(ax+ by) + f(ax− by) = 2a2f(x) + 2b2f(y),

where a, b ∈ Z\{0} with a 6= ±1,±b. Jun and Kim [17] introduced the following functional equation

f(2x+ y) + f(2x− y) = 2(f(x+ y) + f(x− y)) + 12f(x), (1.2)

and established the general solution and the Hyers-Ulam stability for this functional equation. Func-
tional equation (1.2) is called cubic functional equation and every solution of cubic equation (1.2)
is said to be a cubic function. Obviously, the function f(x) = x3 satisfies the functional equation
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(1.2). Jun et al. [18] investigated the solution and the Hyers-Ulam stability for the cubic functional
equation

f(ax+ by) + f(ax− by) = ab2(f(x+ y) + f(x− y)) + 2a(a2 − b2)f(x)

where a, b ∈ Z \ {0} with a 6= ±1,±b.
Lee et al. [22] considered the following functional equation

f(2x+ y) + f(2x− y) = 4(f(x+ y) + f(x− y)) + 24f(x)− 6f(y). (1.3)

and established the general solution and the Hyers-Ulam stability for this functional equation. Func-
tional equation (1.3) is called quartic functional equation and every solution of quartic equation (1.3)
is said to be a quartic function. Obviously, the function f(x) = x4 satisfies the functional equation
(1.3). Kang [19] investigated the solution and the Hyers-Ulam stability for the quartic functional
equation

f(ax+ by) + f(ax− by) = a2b2(f(x+ y) + f(x− y)) + 2a2(a2 − b2)f(x)− 2b2(a2 − b2)f(y)

where a, b ∈ Z \ {0} with a 6= ±1,±b.
Ebadian et al. [7] considered the Hyers-Ulam stability of the system of additive-quartic func-

tional equations and the system of quadratic-cubic functional equations. Recently, Park et al. [24]
considered the Hyers-Ulam stability of the system of additive-quadratic-quartic functional equations.

In this paper, we investigate the Hyers-Ulam stability for the system of additive-quadratic-quartic-
cubic functional equations

f(ax1 + bx2, y, z, w) + f(ax1 − bx2, y, z, w) = 2af(x1, y, z, w),

f(x, ay1 + by2, z, w) + f(x, ay1 − by2, z, w) = 2a2f(x, y1, z, w) + 2b2f(x, y2, z, w),

f(x, y, az1 + bz2, w) + f(x, y, az1 − bz2, w) = a2b2(f(x, y, z1 + z2, w)

+ f(x, y, z1 − z2, w)) + 2a2(a2 − b2)f(x, y, z1, w)− 2b2(a2 − b2)f(x, y, z2, w),

f(x, y, z, aw1 + bw2) + f(x, y, z, aw1 − bw2) = ab2(f(x, y, z, w1 + w2)

+ f(x, y, z, w1 − w2)) + 2a(a2 − b2)f(x, y, z, w1)

(1.4)

where a, b ∈ Z \ {0} with a 6= ±1,±b. Also by a example we show that approximation in non-
Archimedean normed spaces is better than the approximation in (Archimedean) normed spaces.

The function f : R × R × R × R → R given by f(x, y, z, w) = cxy2z4w3 is solution of (1.4).
In particular, putting x = y = z = w, we get a dectic function g : R → R in one variable given
by g(x) := f(x, x, x, x) = cx10. The proof of the following proposition is evident, and we omit the
details.

Proposition 1.3. Let X and Y be real linear spaces. If a mappingf : X×X×X×X → Y satisfies
system (1.4), then f(λx, µy, ηz, γw) = λµ2η4γ3f(x, y, z, w) for all x, y, z, w ∈ X , and all rational
numbers λ, µ, η, γ.
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2. Approximation of dectic mappings

From now on, unless otherwise stated, we will assume that X is a non-Archimedean normed
space and Y is a non-Archimedean Banach space. Utilizing the fixed point alternative, we investigate
the Hyers-Ulam stability problem for the system of functional equations (1.4) in non-Archimedean
Banach spaces.

Theorem 2.1. Let β ∈ {−1, 1} be fixed. Let ψ1, ψ2, ψ3, ψ4 : X × X × X × X × X → [0,∞) be
functions such that

Ψ(x, y, z, w) := |1
2
|max{|a−5β+4|ψ1(a

β−1
2 x, 0, a

β−1
2 y, a

β−1
2 z, a

β−1
2 w),

|a−5β+2|ψ2(a
β+1
2 x, a

β−1
2 y, 0, a

β−1
2 z, a

β−1
2 w),

|a−5β−2|ψ3(a
β+1
2 x, a

β+1
2 y, a

β−1
2 z, 0, a

β−1
2 w),

|a−5β−5|ψ4(a
β+1
2 x, a

β+1
2 y, a

β+1
2 z, a

β−1
2 w, 0)}

(2.1)

for all x, y, z, w ∈ X, and for some 0 < L < 1,

Ψ(aβx, aβy, aβz, aβw) ≤ L|a10β|Ψ(x, y, z, w) (2.2)

and

lim
n→∞
|a−10βn|ψ1(a

βnx1, a
βnx2, a

βny, aβnz, aβnw) = 0,

lim
n→∞
|a−10βn|ψ2(a

βnx, aβny1, a
βny2, a

βnz, aβnw) = 0,

lim
n→∞
|a−10βn|ψ3(a

βnx, aβny, aβnz1, a
βnz2, a

βnw) = 0,

lim
n→∞
|a−10βn|ψ4(a

βnx, aβny, aβnz, aβnw1, a
βnw2) = 0

(2.3)

for all x, y, z, w, x1, x2, y1, y2, z1, z2, w1, w2 ∈ X. If f : X ×X ×X ×X → Y is a mapping such that
f(x, 0, z, w) = f(x, y, 0, w) = 0 for all x, y, z, w ∈ X, and

‖f(ax1 + bx2, y, z, w) + f(ax1 − bx2, y, z, w)− 2af(x1, y, z, w)‖ ≤ ψ1(x1, x2, y, z, w), (2.4)

‖f(x, ay1 + by2, z, w) + f(x, ay1 − by2, z, w)− 2a2f(x, y1, z, w)− 2b2f(x, y2, z, w)‖

≤ ψ2(x, y1, y2, z, w),
(2.5)

‖f(x, y, az1 + bz2, w) + f(x, y, az1 − bz2, w)− a2b2(f(x, y, z1 + z2, w) + f(x, y, z1 − z2, w))

− 2a2(a2 − b2)f(x, y, z1, w) + 2b2(a2 − b2)f(x, y, z2, w)‖

≤ ψ3(x, y, z1, z2, w),

(2.6)
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‖f(x, y, z, aw1 + bw2) + f(x, y, z, aw1 − bw2)− ab2(f(x, y, z, w1 + w2)

+ f(x, y, z, w1 − w2))− 2a(a2 − b2)f(x, y, z, w1)‖

≤ ψ4(x, y, z, w1, w2)

(2.7)

for all x, y, z, w, x1, x2, y1, y2, z1, z2, w1, w2 ∈ X, then there exists a unique dectic mapping D : X ×
X ×X ×X → Y satisfying (1.4) and

‖f(x, y, z, w)−D(x, y, z, w)‖ ≤ 1

1− L
Ψ(x, y, z, w) (2.8)

for all x, y, z, w ∈ X.

Proof . Letting x2 = 0 and replacing x1, y, z, w by 2x, 2y, 2z, 2w in (2.4), we get

‖f(2ax, 2y, 2z, 2w)− af(2x, 2y, 2z, 2w)‖ ≤ |1
2
|ψ1(2x, 0, 2y, 2z, 2w) (2.9)

for all x, y, z, w ∈ X. Letting y2 = 0 and replacing x, y1, z, w by 2ax, 2y, 2z, 2w in (2.5), we get

‖f(2ax, 2ay, 2z, 2w)− a2f(2ax, 2y, 2z, 2w)‖ ≤ |1
2
|ψ2(2ax, 2y, 0, 2z, 2w) (2.10)

for all x, y, z, w ∈ X. Letting and z2 = 0 and replacing x, y, z1, w by 2ax, 2ay, 2z, 2w in (2.6), we get

‖f(2ax, 2ay, 2az, 2w)− a4f(2ax, 2ay, 2z, 2w)‖ ≤ |1
2
|ψ3(2ax, 2ay, 2z, 0, 2w) (2.11)

for all x, y, z, w ∈ X. Letting w2 = 0 and replacing x, y, z, w1 by 2ax, 2ay, 2az, 2w in (2.7), we get

‖f(2ax, 2ay, 2az, 2aw)− a3f(2ax, 2ay, 2az, 2w)‖ ≤ |1
2
|ψ4(2ax, 2ay, 2az, 2w, 0) (2.12)

for all x, y, z, w ∈ X. Combining (2.9), (2.8), (2.11) and (2.12), we lead to

‖f(2ax, 2ay, 2az, 2aw)− a10f(2x, 2y, 2z, 2w)‖

≤ |1
2
|max{|a9|ψ1(2x, 0, 2y, 2z, 2w), |a7|ψ2(2ax, 2y, 0, 2z, 2w),

|a3|ψ3(2ax, 2ay, 2z, 0, 2w), ψ4(2ax, 2ay, 2az, 2w, 0)}

(2.13)

for all x, y, z, w ∈ X. Replacing x, y, z and w by x
2
, y
2
, z
2

and w
2

in (2.13), we have

‖f(ax, ay, az, aw)− a10f(x, y, z, w)‖

≤ |1
2
|max{|a9|ψ1(x, 0, y, z, w), |a7|ψ2(ax, y, 0, z, w),

|a3|ψ3(ax, ay, z, 0, w), ψ4(ax, ay, az, w, 0)}

(2.14)

for all x, y, z, w ∈ X. It follows from (2.14) that

‖ 1
a10
f(ax, ay, az, aw)− f(x, y, z, w)‖

≤ |1
2
|max{|a−1|ψ1(x, 0, y, z, w), |a−3|ψ2(ax, y, 0, z, w),

|a−7|ψ3(ax, ay, z, 0, w), |a−10|ψ4(ax, ay, az, w, 0)}

(2.15)



On approximate dectic mappings in non-Archimedean spaces...5 (2014) No. 2,111-122 117

‖a10f(x
a
, y
a
, z
a
, w
a

)− f(x, y, z, w)‖

≤ |1
2
|max{|a9|ψ1(

x
a
, 0, y

a
, z
a
, w
a

), |a7|ψ2(x,
y
a
, 0, z

a
, w
a

),

|a3|ψ3(x, y,
z
a
, 0, w

a
), ψ4(x, y, z,

w
a
, 0)}

(2.16)

for all x, y, z, w ∈ X. From the (2.15) and (2.16), we have

‖ 1

a10β
f(aβx, aβy, aβz, aβw)− f(x, y, z, w)‖ ≤ Ψ(x, y, z, w) (2.17)

for all x, y, z, w ∈ X.
Consider

Ω := {u|u : X ×X ×X ×X → Y, u(x, 0, z, w) = u(x, y, 0, w) = 0,∀x, y, z, w ∈ X},

and let us introduce a generalized metric on Ω as follows:

d(u, v) = inf{η ∈ R+ : ‖u(x, y, z, w)− v(x, y, z, w)‖ ≤ ηΨ(x, y, z, w),∀x, y, z, w ∈ X},

where, as usual, inf ∅ = +∞. The proof of the fact that (Ω, d) is a complete generalized metric space
can be found in [4]. Now we consider the mapping Λ : Ω→ Ω defined by

Λu(x, y, z, w) := a−10βu(aβx, aβy, aβz, aβw)

for all u ∈ Ω and x, y, z, w ∈ X. Let ε > 0 and f, g ∈ Ω be such that d(f, g) < ε. Hence

‖Λf(x, y, z, w)− Λg(x, y, z, w)‖ = ‖a−10βf(aβx, aβy, aβz, aβw)− a−10βg(aβx, aβy, aβz, aβw)‖

= |a−10β|‖f(aβx, aβy, aβz, aβw)− g(aβx, aβy, aβz, aβw)‖

≤ |a−10β|Ψ(aβx, aβy, aβz, aβw) ≤ LεΨ(x, y, z, w)

(2.18)

for all x, y, z, w ∈ X, that is, if d(f, g) < ε, we have d(Λf,Λg) ≤ Lε . This means that d(Λf,Λg) ≤
Ld(f, g) for all f, g ∈ Ω. This means that, Λ is a strictly contractive self-mapping on Ω with
the Lipschitz constant L. It follows from (2.17) that d(Λf, f) ≤ 1. Due to Theorem 1.2, there
exists a unique mapping D : X × X × X × X → Y such that D is a fixed point of Λ, i.e.,
D(aβx, aβy, aβz, aβw) = a−10βD(x, y, z, w) for all x, y, z, w ∈ X. Also, d(Λnf,D) → 0 as n → ∞
, which implies the equality

lim
n→∞

a−10βnf(aβnx, aβny, aβnz, aβnw) = D(x, y, z, w)

for all x, y, z, w ∈ X. By Theorem 1.2, we have

d(f,D) ≤ 1

1− L
d(f,Λf) ≤ 1

1− L
.

This implies that inequality (2.4).
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On the other hand by (2.3), (2.4), (2.5), (2.6) and (2.7), we have

‖D(ax1 + bx2, y, z, w) +D(ax1 − bx2, y, z, w)− 2aD(x1, y, z, w)‖

= lim
n→∞

|a−10βn|‖f(aβnax1 + aβnbx2, a
βny, aβnz, aβnw)

+ f(aβnax1 − aβnbx2, aβny, aβnz, aβnw)− 2af(aβnx1, a
βny, aβnz, aβnw)‖

≤ lim
n→∞
|a−10βn|ψ1(a

βnx1, a
βnx2, a

βny, aβnz, aβnw) = 0,

(2.19)

‖D(x, ay1 + by2, z, w) +D(x, ay1 − by2, z, w)− 2a2D(x, y1, z, w)− 2b2D(x, y2, z, w)‖

= lim
n→∞

|a−10βn|‖f(aβnx, aβnay1 + aβnby2, a
βnz, aβnw)

+ f(aβnx, aβnay1 − aβnby2, aβnz, aβnw)− 2a2f(aβnx, aβny1, a
βnz, aβnw)

− 2b2f(aβnx, aβny2, a
βnz, aβnw)‖

≤ lim
n→∞
|a−10βn|ψ2(a

βnx, aβny1, a
βny2, a

βnz, aβnw) = 0,

(2.20)

‖D(x, y, az1 + bz2, w) +D(x, y, az1 − bz2, w)− a2b2(D(x, y, z1 + z2, w)

+D(x, y, z1 − z2, w))− 2a2(a2 − b2)D(x, y, z1, w) + 2b2(a2 − b2)D(x, y, z2, w)‖

= lim
n→∞
|a−10βn|‖f(aβnx, aβny, aβnaz1 + aβnbz2, a

βnw)

+ f(aβnx, aβny, aβnaz1 − aβnbz2, aβnw)− a2b2(f(aβnx, aβny, aβnz1 + aβnz2, a
βnw)

+ f(aβnx, aβny, aβnz1 − aβnz2, aβnw))− 2a2(a2 − b2)f(aβnx, aβny, aβnz1, a
βnw)

+ 2b2(a2 − b2)f(aβnx, aβny, aβnz2, a
βnw)‖

≤ lim
n→∞
|a−10βn|ψ3(a

βnx, aβny, aβnz1, a
βnz2, a

βnw) = 0,

(2.21)

and

‖D(x, y, z, aw1 + bw2) +D(x, y, z, aw1 − bw2)− ab2(D(x, y, z, w1 + w2)

+D(x, y, z, w1 − w2))− 2a(a2 − b2)D(x, y, z, w1)‖

= lim
n→∞
|a−10βn|‖f(aβnx, aβny, aβnz, aβnaw1 + aβnbw2)

+ f(aβnx, aβny, aβnz, aβnaw1 − aβnbw2)− ab2(f(aβnx, aβny, aβnz, aβnw1 + aβnw2)

+ f(aβnx, aβny, aβnz, aβnw1 − aβnw2))− 2a(a2 − b2)f(aβnx, aβny, aβnz, aβnw1)‖

≤ lim
n→∞
|a−10βn|ψ4(a

βnx, aβny, aβnz, aβnw1, a
βnw2) = 0

(2.22)
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for all x, y, z, w, x1, x2, y1, y2, z1, z2, w1, w2 ∈ X. It follows from (2.19), (2.20), (2.21) and (2.22)
that D satisfies (1.4), that is, D is dectic mapping. Since D is the unique fixed point of Λ in the set
∆ = {g ∈ Ω : d(f, g) <∞}, D is the unique mapping satisfying (1.4). �

Remark 2.2. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the
fixed point method, one can show that there exists a unique dectic mapping D : X×X×X×X → Y
satisfying (1.4) and

‖f(x, y, z, w)−D(x, y, z, w)‖ ≤ 1

1− L
Ψ̂(x, y, z, w) (2.23)

for all x, y, z, w ∈ X and

Ψ̂(x, y, z, w) := |1
2
|{|a−5β+4|ψ1(a

β−1
2 x, 0, a

β−1
2 y, a

β−1
2 z, a

β−1
2 w)

+|a−5β+2|ψ2(a
β+1
2 x, a

β−1
2 y, 0, a

β−1
2 z, a

β−1
2 w)

+|a−5β−2|ψ3(a
β+1
2 x, a

β+1
2 y, a

β−1
2 z, 0, a

β−1
2 w)

+|a−5β−5|ψ4(a
β+1
2 x, a

β+1
2 y, a

β+1
2 z, a

β−1
2 w, 0)}

(2.24)

for all x, y, z, w ∈ X.

Theorem 2.3. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the
direct method, one can show that there exists a unique dectic mapping D : X × X × X × X → Y
satisfying (1.4) and

‖f(x, y, z, w)−D(x, y, z, w)‖ ≤ |1
2
|
(
|a−1|ψ̂1(x, 0, y, z, w) + |a−3|ψ̂2(x, y, 0, z, w)

+ |a−7|ψ̂3(x, y, z, 0, w) + |a−10|ψ̂4(x, y, z, w, 0)
) (2.25)

for all x, y, z, w ∈ X, where we assume that

ψ̂1(x, 0, y, z, w) :=
∞∑

i= 1−β
2

a−10βiψ1(a
βix, 0, aβiy, aβiz, aβiw) <∞,

ψ̂2(x, y, 0, z, w) :=
∞∑

i= 1−β
2

a−10βiψ2(a
1+βix, aβiy, 0, aβiz, aβiw) <∞,

ψ̂3(x, y, z, 0, w) :=
∞∑

i= 1−β
2

a−10βiψ3(a
1+βix, a1+βiy, aβiz, 0, aβiw) <∞,

ψ̂4(x, y, z, w, 0) :=
∞∑

i= 1−β
2

a−10βiψ4(a
1+βix, a1+βiy, a1+βiz, aβiw, 0) <∞.
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Corollary 2.4. Let β ∈ {−1, 1} be fixed and δ, ρ > 0 be real numbers such that 10β > ρβ, and let
X be a normed space and Y a Banach space. If f : X ×X ×X ×X → Y is a mapping such that
f(x, 0, z, w) = f(x, y, 0, w) = 0 for all x, y, z, w ∈ X, and

‖f(ax1 + bx2, y, z, w) + f(ax1 − bx2, y, z, w)− 2af(x1, y, z, w)‖

≤ δ(‖x1‖ρ + ‖x2‖ρ + ‖y‖ρ + ‖z‖ρ + ‖w‖ρ),

‖f(x, ay1 + by2, z, w) + f(x, ay1 − by2, z, w)− 2a2f(x, y1, z, w)− 2b2f(x, y2, z, w)‖

≤ δ(‖x‖ρ + ‖y1‖ρ + ‖y2‖ρ + ‖z‖ρ + ‖w‖ρ),

‖f(x, y, az1 + bz2, w) + f(x, y, az1 − bz2, w)− a2b2(f(x, y, z1 + z2, w) + f(x, y, z1 − z2, w))

− 2a2(a2 − b2)f(x, y, z1, w) + 2b2(a2 − b2)f(x, y, z2, w)‖

≤ δ(‖x‖ρ + ‖y‖ρ + ‖z1‖ρ + ‖z2‖ρ + ‖w‖ρ),

‖f(x, y, z, aw1 + bw2) + f(x, y, z, aw1 − bw2)− ab2(f(x, y, z, w1 + w2) + f(x, y, z, w1 − w2)),

− 2a(a2 − b2)f(x, y, z, w1)‖ ≤ δ(‖x‖ρ + ‖y‖ρ + ‖z‖ρ + ‖w1‖ρ + ‖w2‖ρ),

for all x, y, z, w, x1, x2, y1, y2, z1, z2, w1, w2 ∈ X, then there exists a unique dectic mapping D : X ×
X ×X ×X → Y satisfying (1.4) and a constant M > 0 such that

‖f(x, y, z, w)−D(x, y, z, w)‖ ≤M(‖x‖ρ + ‖y‖ρ + ‖z‖ρ + ‖w‖ρ)

for all x, y, z, w ∈ X.

Proof . Let ψ1, ψ2, ψ3, ψ4 : X ×X ×X ×X ×X → [0,∞) be defined by

ψ1(x1, x2, y, z, w) := δ(‖x1‖ρ + ‖x2‖ρ + ‖y‖ρ + ‖z‖ρ + ‖w‖ρ),

ψ2(x, y1, y2, z, w) := δ(‖x‖ρ + ‖y1‖ρ + ‖y2‖ρ + ‖z‖ρ + ‖w‖ρ),

ψ3(x, y, z1, z2, w) := δ(‖x‖ρ + ‖y‖ρ + ‖z1‖ρ + ‖z2‖ρ + ‖w‖ρ),

ψ4(x, y, z, w1, w2) := δ(‖x‖ρ + ‖y‖ρ + ‖z‖ρ + ‖w1‖ρ + ‖w2‖ρ)

for all x, y, z, w, x1, x2, y1, y2, z1, z2, w1, w2 ∈ X. Then the corollary is followed from Theorem 2.3,
where

M := δa5(1−β)

2β(a10−|a|ρ) max{(a9 + a7|a|ρ + a3|a|ρ + |a|ρ), (a9 + a7 + a3|a|ρ + |a|ρ),
(a9 + a7 + a3 + |a|ρ), (a9 + a7 + a3 + 1)}.

�
Approximation in non-Archimedean normed spaces is better than the approximation in (Archimedean)

normed spaces. The following example shows that the previous corollary is not valid in non-
Archimedean spaces.
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Example 2.5. Let X = Y = Qp for prime number p > 3 and define f : X × X × X × X → Y
by f(x, y, z, w) = xyzw. Then for δ = 1, ρ = 1 and x, y, z, w, x1, x2, y1, y2, z1, z2, w1, w2 6= 0 with
|x|p < 1, |y|p < 1, |z|p < 1, |w|p < 1, we have

|f(2x1 + x2, y, z, w) + f(2x1 − x2, y, z, w)− 4f(x1, y, z, w)|p

= |0|p = 0 ≤ |x1|p + |x2|p + |y|p + |z|p + |w|p,

|f(x, 2y1 + y2, z, w) + f(x, 2y1 − y2, z, w)− 8f(x, y1, z, w)− 2f(x, y2, z, w)|p

= |xzw|p| − 4y1 − 2y2|p ≤ max{| − 4y1|p, | − 2y2|p}

≤ max{|y1|p, |y2|p} ≤ |x|p + |y1|p + |y2|p + |z|p + |w|p,

|f(x, y, 2z1 + z2, w) + f(x, y, 2z1 − z2, w)− 4(f(x, y, z1 + z2, w) + f(x, y, z1 − z2, w))

− 2a2(a2 − b2)f(x, y, z1, w) + 2b2(a2 − b2)f(x, y, z2, w)|p

= |xyw|p| − 24z1 + 6z2|p ≤ max{| − 24z1|p, |6z2|p}

≤ max{|z1|p, |z2|p} ≤ |x|p + |y|p + |z1|p + |z2|p + |w|p,

and

|f(x, y, z, 2w1 + w2) + f(x, y, z, 2w1 − w2)− 2(f(x, y, z, w1 + w2) + f(x, y, z, w1 − w2))

− 12f(x, y, z, w1)|p = |xyz|p| − 12w1|p ≤ |w1|p

≤ |x|p + |y|p + |z|p + |w1|p + |w2|p.

On the other hand for each natural number n, we have

|2−10β(n+1)f(2β(n+1)x, 2β(n+1)y, 2β(n+1)z, 2β(n+1)w)− 2−10βnf(2βnx, 2βny, 2βnz, 2βnw)|p ≤ |xyzw|p.

Hence, for each x, y, z, w 6= 0, the sequence {2−10βnf(2βnx, 2βny, 2βnz, 2βnw)}is not convergent.

Acknowledgement: The authors would like to thank the referees for their comments and sug-
gestions on the manuscript.
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