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Abstract

In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubic
and quartic functional equations with constants coefficients in the sense of dectic mappings in non-
Archimedean normed spaces.
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1. Introduction and Preliminaries

A classical equation in the theory of functional equations is the following: ”when is it true that a
function which approximately satisfies a functional equation must be close to an exact solution of the
equation?”. If the problem accepts a solution, we say that the equation is stable. The first problem
concerning group homomorphisms was raised by Ulam [32] in 1940. In the next year Hyers [14] gave a
first affirmative answer to the question of Ulam in context of Banach spaces. Subsequently, the result
of Hyers was generalized by Aoki [2] for additive mapping and by Rassias [27] for linear mapping by
considering an unbounded Cauchy difference. The result of Rassias has provided a lot of influence
during the last three decades in the development of generalization of Hyers-Ulam stability concept.
Furthermore, in 1994, Gavruta [I1] provided a further generalization of Rassias’ theorem in which
he replaced the bound e(||z||? 4 ||y||”) by a general control function ¢(z,y). The stability problems
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of several functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning this problem (see [I}, [0 10, 15, 28]). In 1897, Hensel [13]
discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis.
The most important examples of non-Archimedean spaces are p-adic numbers. A key property of
p-adic numbers is that they done not satisfy the Archimedean axiom: for all z,y > 0, there exists
an integer n such that x < ny.

Fix a prime number p. For any nonzero rational number x, there exists a unique integer n,
such that z = ¢p", where a and b are integers not divisible by p. Then |z|, := p™"* defines a
non-Archimedean norm on Q. The completion of @ with respect to the metric d(z,y) = | — y|,
is denoted by Q,, and it is called the p-adic number field. In fact, QQ, is the set of all formal series
=22, a¥pg, where |ag| < p — 1 are integers. The addition and multiplication between any two

—Ng

elements of Q, are defined naturally. The norm | ;2 a"pgl, = p~™ is a non-Archimedean norm
on Q, and it makes Q, a locally compact field [12, 29]. Note that if p > 3, then |2"|, = 1 for each
integer n.

During the last three decades theory of non-Archimedean spaces has gained the interest of physi-
cists for their research, in particular the problems that emerge in quantum physics, p-adic strings
and superstrings [21]. Although many results in the classical normed space theory have a non-
Archimedean counterpart, their proofs are essentially different and require an entirely new kind of
intuition. One may note that for |n| < 1 in each valuation field, every triangle is isosceles and
there many be no unit vector in a non-Archimedean normed space [2I]. These facts show that the
non-Archimedean framework is of special interest. It turned out that non-Archimedean spaces have
many nice applications [12], 29, B30), 33]. In 2007, Moslehian and Rassias [23] proved the generalized
Hyers-Ulam stability of the Cauchy and quadratic functional equation in non-Archimedean normed
spaces.

A valuation is a function |.| from a field K into [0, c0) such that 0 is the unique element having the
0, |ab|] = |al||b|, and the triangle inequality holds, that is, for all a,b € K, we have |a + b| < |a| + |b].
A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are
examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. Let

K be a field. A non-Archimedean absolute value on K is a function |.| : K — R such that , for any
a,b € K, we have, |a| > 0 and equality holds if and only if a = 0,, |ab| = |a||b], |a +b| < max{|al, |b|}
(the strict triangle inequality). Note that |1] = | — 1] =1 and |n| < 1 for each integer n. We always

assume, in addition, that |.| is non-trivial, i.e., there exists an ag € K such that |ag| ¢ {0, 1}.

Definition 1.1. Let X be a linear space over a scaler field K with a non-Archimedean nontrivial
valuation |.|. A function ||.|| + X — R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:

(N1) ||z]| =0 if and only if v = 0,

(N2) |[re|l = |r|ll=]l,

(N3) ||z + y|| < max{||z]|, ||lyll} (the strict triangle inequality (ultrametric) )

for all z,y € X. Then (X, ||.||) is called a non-Archimedean space.
It follows from (N3) that

| — || < max{||zis1 —z|| :m<i<n—-1} (n>m).

Let {x,} be a sequence in a non-Archimedean normed space X. The sequence {z,} is called a
Cauchy sequence if for any ¢ > 0, there is a positive integer N such that ||z, — z,,|| < € for all
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n,m > N. If every Cauchy sequence in X converges, then the non-Archimedean normed space X is
called a non-Archimedean Banach space. For more detailed definition of non-Archimedean Banach
space, we refer to [30].

Let X be aset. A function d : X x X — [0, 00] is called a generalized metric on X if d satisfies
(1) d(z,y) = 0 if and only if z = y;
(2) d(z,y) = d(y,x) for all x,y € X;
(3) d(z,z) < d(z,y) +d(y, z) for all z,y,z € X.

We recall the a fundamental result in fixed point theory.

Theorem 1.2. (see.[6, [26]) Let (X,d) be a complete generalized metric space and J : X — X be a
strictly contractive mapping with Lipshitz constant L < 1. Then, for each given x € X, either

d(J"z, J"'z) =00 forall n >0,

or there exists a natural number ng such that

(1) d(J"z, J" 1 x) < oo for all n > ny;

(2) the sequence {J"x} converges to a fixed point y* of J;

(3) y* is the unique fized point of J in the set Y = {y € X : d(J™,y) < co};
(4) d(y,y*) < y2zd(y, Jy) for ally € Y.

In 1996, Isac and Rassias [16] were the first to provide applications of stability theory of functional
equations for the proof of new fixed-point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been extensively investigated by a number
of authors (see [4, 25]).

Khodaei and Rassias [20] investigated the solution and stability of the n-dimensional additive
functional equations such that in the special case n = 2,

flax +by) + flax — by) = 2af(z)

where a,b € Z \ {0} with a # £1, £b.
The functional equation

fl@+y) + flx—y) =2f(x) +2f(y) (1.1)

is called quadratic functional equation and every solution of quadratic equation ({1.1)) is said to be a
quadratic function. The function f(x) = x? satisfies the functional equation . The Hyers-Ulam
stability problem for the quadratic functional equation was solved by Skof [31] and, independently, by
Cholewa [5]. In Czerwik [3] proved the generalized Hyers-Ulam stability for the functional equation.
Eshaghi Gordji and Khodaei [§] investigated the solution and the Hyers- Ulam stability for the
quadratic functional equation

flax +by) + flax — by) = 2a*f(x) + 20° f (y),
where a,b € Z\ {0} with a # £1, £b. Jun and Kim [I7] introduced the following functional equation
fQRr+y)+ 2 —y) =2(f(x +y) + flz —y)) + 12f(2), (1.2)

and established the general solution and the Hyers-Ulam stability for this functional equation. Func-
tional equation (|1.2)) is called cubic functional equation and every solution of cubic equation (1.2
is said to be a cubic function. Obviously, the function f(x) = z® satisfies the functional equation
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(1.2). Jun et al. [18)] investigated the solution and the Hyers-Ulam stability for the cubic functional
equation

flaz + by) + flax —by) = ab®(f(z +y) + f(z — y)) + 2a(a® — V) f(x)

where a,b € Z \ {0} with a # +1, £b.
Lee et al. [22] considered the following functional equation

fRr+y)+ f2r—y) =4(f(z +y) + f(z —y)) +24f(x) — 6f(y). (1.3)

and established the general solution and the Hyers-Ulam stability for this functional equation. Func-
tional equation is called quartic functional equation and every solution of quartic equation
is said to be a quartic function. Obviously, the function f(z) = z* satisfies the functional equation
. Kang [19] investigated the solution and the Hyers-Ulam stability for the quartic functional
equation

flaz +by) + flax — by) = a®b*(f(x +y) + f(z —y)) + 2a°(a® — 0*) f(z) — 20*(a® — b*) f(y)

where a,b € Z \ {0} with a # £1, +b.

Ebadian et al. [7] considered the Hyers-Ulam stability of the system of additive-quartic func-
tional equations and the system of quadratic-cubic functional equations. Recently, Park et al. [24]
considered the Hyers-Ulam stability of the system of additive-quadratic-quartic functional equations.

In this paper, we investigate the Hyers-Ulam stability for the system of additive-quadratic-quartic-
cubic functional equations

( flaxy + bxe,y, 2,w) + flaxy — bxy,y, 2, w) = 2af(x1,y, 2, W),
f(x,ayy + bys, z,w) + f(z, ay; — bys, 2,w) = 2a*f(x,y1, 2, w) + 20° f (2,92, 2, w),
f(x,y,az1 + bzo,w) + f(z,y,az; — bzo, w) = a®b*(f(x,y, 21 + 22, W)
+ f(zy, 21 — z0,w)) +20°(a® = 0°) f(2,y, 21, w) — 20%(a® — 0%) f (2, y, 20, w),

(1.4)

f(x,y,z,awl + bU)Q) + f(x,y, Z,awy — bw2) = abz(f(x7y, Z, Wy + w2)

\ —i—f(x,y,z,wl—wg))+2&(a2—b2)f(x,y,z,w1)

where a,b € Z \ {0} with a # +1,+b. Also by a example we show that approximation in non-

Archimedean normed spaces is better than the approximation in (Archimedean) normed spaces.
The function f : R x R x R x R — R given by f(z,y,z,w) = cry?z*w?® is solution of (L.4).

In particular, putting * = y = 2z = w, we get a dectic function g : R — R in one variable given

by g(z) := f(x,z,2,2) = cx'®. The proof of the following proposition is evident, and we omit the

details.

Proposition 1.3. Let X and Y be real linear spaces. If a mappingf : X x X x X x X — Y satisfies

system (1.4), then f(A\z,uy, nz,yw) = MPn*v* f(z,y,z,w) for all x,y,z,w € X , and all rational
numbers \, p,n,y.
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2. Approximation of dectic mappings

From now on, unless otherwise stated, we will assume that X is a non-Archimedean normed
space and Y is a non-Archimedean Banach space. Utilizing the fixed point alternative, we investigate
the Hyers-Ulam stability problem for the system of functional equations in non-Archimedean
Banach spaces.

Theorem 2.1. Let § € {—1,1} be fized. Let 11,19,13,04 : X Xx X X X X X x X — [0,00) be
functions such that

U(w,y, z,w) = |3 max{|a™ gy (a5 2,0,a"F y, a5 2,077 w),
|a_56+2|¢2(a%x,a%y,0,a%z,a%w),
(2.1)
|CL o 2|¢3(CL#CL’, a%ya (I%Z, Oa a’%lw)v
a3 (a"F 20T y,aF 2,07 w,0)}
or all x,y,z,w € X, and for some 0 < L < 1,
f Y %,
U(a’z,a’y, a’z, d’w) < Lo (z,y, 2, w) (2.2)
and
lim |a %" ¢y (@21, 0P 2o, 0Py, 0P 2, 0PMw) = 0,
n—o0
lim |a =% 4py (0", 0Py, 0Py, 0P 2, aPw) = 0,
n—oo
(2.3)

lim |a ™% 4hg (a2, 0"y, a7 21, a2y, aPMw) = 0,
n—o0

r}irgo|a_106”|¢4(a5”x, a’y, a2, a""wy, aPMwy) = 0

for all x,y, z,w, x1, 9, Y1, Yo, 21, 20, W1, we € X. If f: X X X x X x X =Y is a mapping such that
f(z,0,z,w) = f(x,y,0,w) =0 for all x,y,z,w € X, and

||f(al'1 + beaiU,Z»w) + f(axl - bx%ya va) - 2af($17i% z,w)H S ¢1($17$2,yyz,w), (24)
Hf(‘raayl + by%Z?w) + f(ZL’,CLyl - by27Z7w> - 2a2f(x,y1,z,w) - 2b2f(l’,y2, Z,U))H
(2.5)
S @/)2(%91,,@27277”)7
Hf('rvyaazl + bZQ,w) + f($,y,a21 - szaw) - a2b2<f($7y721 + ZQaw) + f(ajay?Zl - ZQ,W))
—2a*(a® = b*) f(z,y, z1,w) + 2b%(a* — b?) f(z, y, 29, w)|| (2.6)

S ¢3(xay7217 ZQ,lU),
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||f(x,y, Z, awy + bw2> + f(xu Yy, z,awy — bw?) - abQ(f(J,’,:% Z, W1 + w?)
+ f(xa Y, z,wy — w?)) - 2@(&2 - b2)f(x7ya Z, wl)” (27)

S ¢4(Iayvz7w17w2)

for all x,y, z,w, x1, T2, Y1, Y2, 21, 22, W1, ws € X, then there exists a unique dectic mapping D : X X
X x X x X =Y satisfying and

1
Hf(a:,y,z,w)—D(x,y,z,w)H < E\I!(x7yazaw) (28)

forall z,y, z,w € X.
Proof . Letting x5 = 0 and replacing z1,y, z, w by 2z, 2y, 2z, 2w in (2.4), we get

| f(2ax, 2y, 22, 2w) — af(2z, 2y, 2z, 2w)|| < |%|1/11(2x,0, 2y,2z,2w) (2.9)
for all z,y, z,w € X. Letting y, = 0 and replacing x, y1, z, w by 2az, 2y, 2z, 2w in (2.5)), we get

| f(2az, 2ay, 22, 2w) — a*f(2ax, 2y, 2z, 2w)|| < |%|¢2(2a:v, 2y, 0,2z, 2w) (2.10)
for all z,y, z,w € X. Letting and zy = 0 and replacing z,y, z1, w by 2azx, 2ay, 2z, 2w in , we get

| f(2az, 2ay, 2az, 2w) — a* f(2ax, 2ay, 22, 2w)|| < |%|¢3(2aaj, 2ay,22,0,2w) (2.11)
for all z,y, z,w € X. Letting wo = 0 and replacing x,y, z, w; by 2ax, 2ay, 2az, 2w in , we get

1
| f(2azx, 2ay, 2az, 2aw) — a® f(2ax, 2ay, 2az, 2w)|| < \§\w4(2ax, 2ay,2az, 2w, 0) (2.12)

for all z,y, z,w € X. Combining (2.9), (2.8), (2.11]) and (2.12)), we lead to
| f(2azx, 2ay, 2az, 2aw) — a'® f(2z, 2y, 22, 2w)||

< |%]mam{\a9|w1(2x,0,2y,22,2w), la™|ws(2ax, 2y, 0,22, 2w), (2.13)
\a®|v3(2ax, 2ay, 22,0, 2w), V¥4 (2ax, 2ay, 2az, 2w, 0) }

z
2

for all z,y, z,w € X. Replacing ,y,z and w by 7, %, 5 and ¢ in (2.13), we have
||f<a$, ay,az, CLU}) - alOf(x7 Yy, z, U))H
< |%|max{|a9|@/)1($,O,y,z,w), la™| e (az, y, 0, 2, w), (2.14)
’CLSWB(GJC, ay, z, 07 'lU), w4(ax7 ay,az,w, O)}
for all z,y, z,w € X. It follows from (2.14]) that
||a+0 (CLZ‘, ay, az, aw) - f(ma Y, 2, ’LU)H

S |%|ma${|ail|¢l(l’7 07 Y, <, 'U]), |(173|1/}2<(L’E, Y, 07 2, w)? (215)

’CL_7‘¢3(CLZL‘, ay, =, 07 "LU), ’CL—10|¢4(@$, ay,az,w, 0)}
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a5 (G 55 %) = Sy 0|

< [Ymaa{|a®1 (2,0, 2, 2, 2), |a|s (2, 1,0, 2, 2), (2.16)

’a‘3|¢3<xay7 5707 %)71/14(%%27 %70)}

for all z,y, z,w € X. From the (2.15) and (2.16)), we have

1
55 (aPz,a’y, a2, aPw) — f(x,y, z,w)|| < U(z,y, 2, w) (2.17)
a

for all z,y, z,w € X.
Consider

Q={ulu: X x X xXxX =Y, w0,z w)=u(ry0w)=0Vryzwe X},
and let us introduce a generalized metric on €2 as follows:
d(u,v) = inf{n € R" : [lu(z,y, z,w) — v(z,y, 2, 0)|| < n¥(z,y,2,w),Y2,y, 2,w € X},

where, as usual, inf () = +00. The proof of the fact that (€2, d) is a complete generalized metric space
can be found in [4]. Now we consider the mapping A : Q — Q defined by

Au(z,y, z,w) == a Pu(a’z, a’y, 0’2, a’w)
for all u € Q and z,y,z,w € X. Let ¢ > 0 and f, g € Q be such that d(f, g) < ¢. Hence
IAF(@, 2, w) — Ag(zy, 2,w)| = la='9 f(aP, 0Py, a2, aPw) — a=Pg(aP, Py, a2, aPuw) |
= 0199 f(aP, aPy, aPz, aPw) — glaP, Py, Pz aPw)| (2.18)

< |a 1% (aPx, Py, a2, aPw) < LeV(z,y, z, w)
for all z,y,z,w € X, that is, if d(f,g) < €, we have d(Af, Ag) < Le . This means that d(Af, Ag) <
Ld(f,g) for all f,g € €. This means that, A is a strictly contractive self-mapping on  with
the Lipschitz constant L. It follows from that d(Af,f) < 1. Due to Theorem 1.2, there
exists a unique mapping D : X x X x X x X — Y such that D is a fixed point of A, i.e.,
D(a’x,a’y,a’z, dPw) = a P D(x,y, z,w) for all z,y,z,w € X. Also, d(A"f, D) — 0 as n — oo
, which implies the equality

nlljr;(} a %" f (0P iz aPy, 0Pz, aPMw) = D(z,y, 2, w)

for all z,y, z,w € X. By Theorem 1.2, we have

1 1
d(f,D) < 77 d(F.A) < 7=

This implies that inequality (2.4)).
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On the other hand by (12.3)), (2.4)), (2.5), (2.6) and (2.7)), we have

|D(axy + bza,y, z,w) + D(ax; — bxa,y, 2z, w) — 2aD(z1,y, z,w)||
= lim |a '9°"|||f(a”"az, + a”"bas, a”™y, " 2, 0P w)
n—o0
+ f(a’Maxy — a’"bay, aPMy, a2z, aPrw) — 2af (aPay, aPMy, Pz, aPrw)||
< lim |a 71" |y (a2, 0P ay, 0Py, a7 2, aPMw) = 0,
n—oo
||D(JI, ay: + by27 2 w) + D<x7 ayi — by27 2 w) - 2a2D<Iay17 Z7w) - 2b2D(‘7;7 Y2, %, w)”
= lim |a7'%%"|||f(a” 2, " ay, + a®"bys, a”" 2, 0P w)
n—oo
+ f(a’™x, d’may; — aPMbys, aPMz, aPMw) — 2a? f(aPMx, aPMyy, a2, aPrw)
— 202 f(aPmx, aPMyy, 0Pz, aPw) ||
< lim a7 oy (0P, aPyy, P ys, 0P 2, aPMw) = 0,
n—oo
| D(z,y,az + bzo, w) + D(x,y, az; — bz, w) — a*b*(D(x,y, 21 + 29, w)
+ D(x,y, 21 — z2,w)) — 2a%(a® — b*)D(z,y, 21, w) + 2b*(a® — b?)D(x,y, 20, w)||
= lim |a™%"||| f(a""z, a"™y, a""az, + a”"bzy, M w)
n—oo
+ f(a®™x, a’my, aPraz, — aPMbzy, aPMw) — a?b3(f (6w, 0Py, aPr 2 + aPrzy, dPw)
+ f(a’mx, aPmy, aPrzy — aP 2y, aPMw)) — 2a%(a® — b2) f(aPra, Py, aPrzy, )
+ 202 (a® — b2) f(aPmx, Py, a2y, aPw) ||
< lim |a™ 1" o5 (0P, Py, 0P 21, 0P 2, aPMw) = 0,
n—oo

and
| D(z,y, 2, aw; + bwy) + D(x,y, 2, aw; — bwy) — ab*(D(z,y, z, w; + ws)

+ D(z,y,2,w; — wsy)) — 2a(a® — b*)D(x,y, z,wy)||
= lim |a”'%%"||| f(a""x, a™y, a2, a""aw, + a®"bw,)
n—r00
+ f(aPx, aPry, aPrz, aPraw, — aPbwsy) — ab®(f (aPhx, aPy, a2, aPrMwy + aPrwy)
+ f(a’™x, aPmy, aPmz, aPMwy — aPMws)) — 2a(a® — V) f(aPMa, Py, oMz, aPrw)||

< lim |a7'" oy (0P x, Py, 0P 2, 0P wy, aPMwy) = 0
n—oo

(2.19)

(2.20)

(2.21)

(2.22)
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for all z,y, z,w, x1, 2, Y1, Yo, 21, 22, w1, we € X. It follows from (2.19)), (2.20), (2.21) and (2.22))
that D satisfies (|1.4), that is, D is dectic mapping. Since D is the unique fixed point of A in the set

A={geQ:d(f,g) <}, D is the unique mapping satisfying ((1.4]). O

Remark 2.2. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the
fixed point method, one can show that there exists a unique dectic mapping D : X x X x X x X =Y

satisfying and

1 ~
Hf(xayaz>w) - D(xawa?w)H < E\P(x,y,z,w) (223)
forall x,y,z,w € X and
U(w,y,2w) = [L{]a= 4y (0" 2, 0,0 y, a"F 2,0 T )

+|a_5ﬁ+2|¢2(aﬂ%x’a%y’07aTz7aTw
(2.24)
—58—2 B+1 B+1 B=1 B=1
+|CL |1/)3(a2-’f>a2%a? Z,O,CLQ 'lU)

a5y (a5, a

forall z,y, z,w € X.

Theorem 2.3. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the
direct method, one can show that there exists a unique dectic mapping D : X x X x X x X — Y

satisfying and

£,y 2,0) = D(e,y, 2 w)| < 3] (la 1,09, 2 w) + |a~* |z, 5,0, 2, w)
(2.25)
+ a7 sy, 2,0,w) + la (g, 2, w,0))

for all x,y, z,w € X, where we assume that

o0

@/Z):(ZE, Oa Y, =, U)) = Z a_IO/Biqujl (aﬁixa 07 aﬁiyv aﬁizv aﬂlw) < 00,
L8
00
,lvz}2 (Ia Y, 07 2, U)) = Z a—10ﬁ1¢2(a1+ﬁzx’ am.% Oa aﬁlza aﬁlw) < o0,
1-8

-~

Mg

(o]
Ya(z,y, 2, w,0) = Z a %%, (a' TP, 0Py, o' TPz 0P, 0) < oo
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Corollary 2.4. Let f € {—1,1} be fized and §,p > 0 be real numbers such that 105 > pf3, and let
X be a normed space and Y a Banach space. If f : X x X x X x X — Y s a mapping such that
f(z,0,z,w) = f(x,y,0,w) =0 for all x,y,z,w € X, and

(|| f(axy + bxa,y, z,w) + flaxy — bxa,y, z,w) — 2af(x1,y, 2z, w)||
< O(llzall” + Nlz2ll1? + (lyll” + [z + [lw]]*),
| f(x,ays + bys, z,w) + f(z, ay; — bys, 2, w) — 24 f(x,y1, 2, w) — 20° f (2, Yo, 2, )|
< O(l2l? + llyall? + Nyl + (12117 + [lwl]*),
I f(x,y,az1 + bze,w) + f(x,y,az; — bzo, w) — a®V*(f(x,y, 21 + 22, w) + f(2,y,21 — 29, W))
—2a*(a® = b?) f(2,y, 21, w) + 20%(a® — b°) f (=, y, 22, 0)|
< OUlzl? + llylle + lzall? + llz2ll” + llw]l?),
If(x,y, 2, awy + bwy) + f(x,y, 2, aw — bwy) — ab?(f(z,y, 2, w1 +ws) + f(x,y, 2, wy — ws)),
—2a(a® = 0?) f(@,y, z,wi) | < 5([|l2[1” + [[yl1? + [|2[|” + llwi ]| + [[wa]|?),

\

for all x,y, z,w, x1, T2, Y1, Y2, 21, 22, W1, ws € X, then there exists a unique dectic mapping D : X X
X x X x X =Y satisfying and a constant M > 0 such that

1f(z,y,z,w) = D(x,y, z,w)|| < M(||lz]” + l[yl|” + l|2]]” + [lw]”)
forall z,y, z,w € X.

Proof . Let ¢, th, 15,201 : X x X x X x X x X — [0, 00) be defined by
Uiz, 22,y z,w) = 6([|z1[|” + [lz2ll” + [[yll” + [|2]1° + wl]]?),
Vo(@, Y1, Y2, 2, w) := O(|2]|P + lya[|* + [[g2ll? + [|2[|7 + [lw]]?),
V3(x, y, 21, 22,w) 1= O(|[z]|? + [[yll” + [z ]]” + [|22]1” + [[w]]?),
Ya(x, y, 2, wi,wa) o= 6(([z|” + [[yl|” + [|2017 + lwe]|? + [Jw2]|”)

for all x,y, z,w, x1, T2, y1, Y2, 21, 22, w1, wy € X. Then the corollary is followed from Theorem 2.3,
where

M = % max{(a’ + a’|a|’ + a®lal? + |a|’), (a” 4+ a” + a®|a|’ + |a]?),
(a®+a" + a3+ |al?), (@® + a” +a® + 1)}

O
Approximation in non-Archimedean normed spaces is better than the approximation in (Archimedean)
normed spaces. The following example shows that the previous corollary is not valid in non-

Archimedean spaces.



On approximate dectic mappings in non-Archimedean spaces...5 (2014) No. 2,111-122 121

Example 2.5. Let X =Y = Q, for prime number p > 3 and define f : X x X x X x X = Y
by f(x,y,z,w) = zyzw. Then for 6 =1, p = 1 and z,y, z,w, 21, T2, Y1, Y2, 21, 22, W1, Wo # 0 with
lz|, < 1, lyl, <1, |z], <1, |w|, <1, we have

|f (221 + 22,y, 2,w) + (201 — @2,y, 2, w) — 4f (21,y, 2, W),
=0, = 0 < [zl + |22y + |ylp + [2]p + W]y,
|f (@, 291 + Y2, 2,w) + f (2,291 — Yo, 2, w) — 8f (2,41, 2, w) — 2f (2, Yo, 2, W),
= |zzwlp| = 4y1 — 2|y < max{| — dyifp, | — 242, }
< max{|yilp, [y2lp} < |2lp + [y1lp + lv2lp + |2[p + |wlp,
|f(z,y, 221 + 20, 0) + [(2,y,221 — 22,w) — A(f(2, 4, 21 + 22,w) + f(2,y,21 — 22, W)
—2a*(a* = V*) f(z,y, z1,w) + 2b*(a® — b*) f (2, y, 22, w)],
= |zyw|,| — 2421 + 622|, < max{| — 242|,, |622|,}

< maX{|21|pv |Z2|p} < |x|p + |y|p + |Z1|p + |Z2|p + |w|p’
and

|f($;y7272w1 + wQ) + f(xaywzu 2'(1]1 - w2> - 2(f(5573/7 Z, W + w?) + f(x7y727w1 - w2))
—12f(z,y, z,w1)|p = |J7?Jz|p| — 12w, ], < |w1|p

<zl + [ylp + 2] + w1y + [walp.
On the other hand for each natural number n, we have
|2_105(”+1)f(2'8(”+1)x, 25(n+1)y, 25(”+1)Z7 2B(n+1)w) _ 2—10an(26nx7 QBny7 251127 25”w)|p < |xyzw|p.
Hence, for each x,y,z,w # 0, the sequence {27109 f(2Png 2Pny 26n 7 28y }is not convergent.

Acknowledgement: The authors would like to thank the referees for their comments and sug-
gestions on the manuscript.
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