Int. J. Nonlinear Anal. Appl. 5 (2014) No. 2, 111-122

ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

On approximate dectic mappings in non-Archimedean spaces: a fixed point approach

Ali Ebadian*, Rasoul Aghalary, Mohammad Ali Abolfathi

^aDepartment of Mathematics, Urmia University, P.O.Box 165, Urmia, Iran.

(Communicated by M. B. Ghaemi)

Abstract

In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubic and quartic functional equations with constants coefficients in the sense of dectic mappings in non-Archimedean normed spaces.

Keywords: Hyers-Ulam stability; non-Archimedean normed space; dectic functional equation; fixed point method.

2010 MSC: Primary 39B82; Secondary 46S10; 47H10.

1. Introduction and Preliminaries

A classical equation in the theory of functional equations is the following: "when is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?". If the problem accepts a solution, we say that the equation is stable. The first problem concerning group homomorphisms was raised by Ulam [32] in 1940. In the next year Hyers [14] gave a first affirmative answer to the question of Ulam in context of Banach spaces. Subsequently, the result of Hyers was generalized by Aoki [2] for additive mapping and by Rassias [27] for linear mapping by considering an unbounded Cauchy difference. The result of Rassias has provided a lot of influence during the last three decades in the development of generalization of Hyers-Ulam stability concept. Furthermore, in 1994, Găvruţa [11] provided a further generalization of Rassias' theorem in which he replaced the bound $\varepsilon(||x||^p + ||y||^p)$ by a general control function $\varphi(x, y)$. The stability problems

Email addresses: a.ebadian@urmia.ac.ir (Ali Ebadian), r.aghalary@urmia.ac.ir (Rasoul Aghalary), m.abolfathi@urmia.ac.ir (Mohammad Ali Abolfathi)

Received: August 2013 Revised: April 2014

^{*}Corresponding author

of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [1, 9, 10, 15, 28]). In 1897, Hensel [13] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they done not satisfy the Archimedean axiom: for all x, y > 0, there exists an integer n such that x < ny.

Fix a prime number p. For any nonzero rational number x, there exists a unique integer n_x such that $x = \frac{a}{b}p^{n_x}$, where a and b are integers not divisible by p. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on \mathbb{Q} . The completion of \mathbb{Q} with respect to the metric $d(x,y) = |x-y|_p$ is denoted by \mathbb{Q}_p , and it is called the p-adic number field. In fact, \mathbb{Q}_p is the set of all formal series $x = \sum_{k \geq n}^{\infty} a^k p_k$, where $|a_k| \leq p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_p are defined naturally. The norm $|\sum_{k \geq n}^{\infty} a^k p_k|_p = p^{-n_x}$ is a non-Archimedean norm on \mathbb{Q}_p and it makes \mathbb{Q}_p a locally compact field [12, 29]. Note that if $p \geq 3$, then $|2^n|_p = 1$ for each integer n.

During the last three decades theory of non-Archimedean spaces has gained the interest of physicists for their research, in particular the problems that emerge in quantum physics, p-adic strings and superstrings [21]. Although many results in the classical normed space theory have a non-Archimedean counterpart, their proofs are essentially different and require an entirely new kind of intuition. One may note that for $|n| \leq 1$ in each valuation field, every triangle is isosceles and there many be no unit vector in a non-Archimedean normed space [21]. These facts show that the non-Archimedean framework is of special interest. It turned out that non-Archimedean spaces have many nice applications [12, 29, 30, 33]. In 2007, Moslehian and Rassias [23] proved the generalized Hyers-Ulam stability of the Cauchy and quadratic functional equation in non-Archimedean normed spaces.

A valuation is a function |.| from a field $\mathbb K$ into $[0,\infty)$ such that 0 is the unique element having the 0, |ab|=|a||b|, and the triangle inequality holds, that is, for all $a,b\in\mathbb K$, we have $|a+b|\leq |a|+|b|$. A field $\mathbb K$ is called a valued field if $\mathbb K$ carries a valuation. The usual absolute values of $\mathbb R$ and $\mathbb C$ are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a function $|.|: \mathbb{K} \to \mathbb{R}$ such that , for any $a, b \in \mathbb{K}$, we have, $|a| \geq 0$ and equality holds if and only if a = 0, |ab| = |a||b|, $|a+b| \leq max\{|a|, |b|\}$ (the strict triangle inequality). Note that |1| = |-1| = 1 and $|n| \leq 1$ for each integer n. We always assume, in addition, that |.| is non-trivial, i.e., there exists an $a_0 \in \mathbb{K}$ such that $|a_0| \notin \{0, 1\}$.

Definition 1.1. Let X be a linear space over a scaler field \mathbb{K} with a non-Archimedean nontrivial valuation $\|\cdot\|$. A function $\|\cdot\|$: $X \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

```
(N1) \|x\| = 0 \text{ if and only if } x = 0,
```

(N2) ||rx|| = |r|||x||,

(N3) $||x + y|| \le max\{||x||, ||y||\}$ (the strict triangle inequality (ultrametric))

for all $x, y \in X$. Then (X, ||.||) is called a non-Archimedean space. It follows from (N3) that

$$||x_n - x_m|| \le \max\{||x_{i+1} - x_i|| : m \le i \le n - 1\} \quad (n > m).$$

Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. The sequence $\{x_n\}$ is called a Cauchy sequence if for any $\varepsilon > 0$, there is a positive integer N such that $\|x_n - x_m\| < \varepsilon$ for all

 $n, m \ge N$. If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space. For more detailed definition of non-Archimedean Banach space, we refer to [30].

Let X be a set. A function $d: X \times X \to [0, \infty]$ is called a generalized metric on X if d satisfies

- (1) d(x,y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x) for all $x, y \in X$;
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

We recall the a fundamental result in fixed point theory.

Theorem 1.2. (see. [6, 26]) Let (X, d) be a complete generalized metric space and $J: X \to X$ be a strictly contractive mapping with Lipshitz constant L < 1. Then, for each given $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty$$
 for all $n \ge 0$,

or there exists a natural number n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{y \in X : d(J^{n_0}, y) < \infty\};$
- (4) $d(y, y^*) \le \frac{1}{1-L}d(y, Jy) \text{ for all } y \in Y.$

In 1996, Isac and Rassias [16] were the first to provide applications of stability theory of functional equations for the proof of new fixed-point theorems with applications. By using fixed point methods, the stability problems of several functional equations have been extensively investigated by a number of authors (see [4, 25]).

Khodaei and Rassias [20] investigated the solution and stability of the n-dimensional additive functional equations such that in the special case n = 2,

$$f(ax + by) + f(ax - by) = 2af(x)$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$.

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

is called quadratic functional equation and every solution of quadratic equation (1.1) is said to be a quadratic function. The function $f(x) = x^2$ satisfies the functional equation (1.1). The Hyers-Ulam stability problem for the quadratic functional equation was solved by Skof [31] and, independently, by Cholewa [5]. In Czerwik [3] proved the generalized Hyers-Ulam stability for the functional equation. Eshaghi Gordji and Khodaei [8] investigated the solution and the Hyers- Ulam stability for the quadratic functional equation

$$f(ax + by) + f(ax - by) = 2a^2 f(x) + 2b^2 f(y),$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$. Jun and Kim [17] introduced the following functional equation

$$f(2x+y) + f(2x-y) = 2(f(x+y) + f(x-y)) + 12f(x),$$
(1.2)

and established the general solution and the Hyers-Ulam stability for this functional equation. Functional equation (1.2) is called cubic functional equation and every solution of cubic equation (1.2) is said to be a cubic function. Obviously, the function $f(x) = x^3$ satisfies the functional equation

(1.2). Jun et al. [18] investigated the solution and the Hyers-Ulam stability for the cubic functional equation

$$f(ax + by) + f(ax - by) = ab^{2}(f(x + y) + f(x - y)) + 2a(a^{2} - b^{2})f(x)$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$.

Lee et al. [22] considered the following functional equation

$$f(2x+y) + f(2x-y) = 4(f(x+y) + f(x-y)) + 24f(x) - 6f(y).$$
(1.3)

and established the general solution and the Hyers-Ulam stability for this functional equation. Functional equation (1.3) is called quartic functional equation and every solution of quartic equation (1.3) is said to be a quartic function. Obviously, the function $f(x) = x^4$ satisfies the functional equation (1.3). Kang [19] investigated the solution and the Hyers-Ulam stability for the quartic functional equation

$$f(ax + by) + f(ax - by) = a^2b^2(f(x + y) + f(x - y)) + 2a^2(a^2 - b^2)f(x) - 2b^2(a^2 - b^2)f(y)$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$.

Ebadian et al. [7] considered the Hyers-Ulam stability of the system of additive-quartic functional equations and the system of quadratic-cubic functional equations. Recently, Park et al. [24] considered the Hyers-Ulam stability of the system of additive-quadratic-quartic functional equations.

In this paper, we investigate the Hyers-Ulam stability for the system of additive-quadratic-quartic-cubic functional equations

$$\begin{cases}
f(ax_1 + bx_2, y, z, w) + f(ax_1 - bx_2, y, z, w) = 2af(x_1, y, z, w), \\
f(x, ay_1 + by_2, z, w) + f(x, ay_1 - by_2, z, w) = 2a^2 f(x, y_1, z, w) + 2b^2 f(x, y_2, z, w), \\
f(x, y, az_1 + bz_2, w) + f(x, y, az_1 - bz_2, w) = a^2 b^2 (f(x, y, z_1 + z_2, w) + f(x, y, z_1 - z_2, w)) + 2a^2 (a^2 - b^2) f(x, y, z_1, w) - 2b^2 (a^2 - b^2) f(x, y, z_2, w), \\
f(x, y, z, aw_1 + bw_2) + f(x, y, z, aw_1 - bw_2) = ab^2 (f(x, y, z, w_1 + w_2) + f(x, y, z, w_1 - w_2)) + 2a(a^2 - b^2) f(x, y, z, w_1)
\end{cases} (1.4)$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$. Also by a example we show that approximation in non-Archimedean normed spaces is better than the approximation in (Archimedean) normed spaces.

The function $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $f(x, y, z, w) = cxy^2z^4w^3$ is solution of (1.4). In particular, putting x = y = z = w, we get a dectic function $g: \mathbb{R} \to \mathbb{R}$ in one variable given by $g(x) := f(x, x, x, x) = cx^{10}$. The proof of the following proposition is evident, and we omit the details.

Proposition 1.3. Let X and Y be real linear spaces. If a mapping $f: X \times X \times X \times X \to Y$ satisfies system (1.4), then $f(\lambda x, \mu y, \eta z, \gamma w) = \lambda \mu^2 \eta^4 \gamma^3 f(x, y, z, w)$ for all $x, y, z, w \in X$, and all rational numbers $\lambda, \mu, \eta, \gamma$.

2. Approximation of dectic mappings

From now on, unless otherwise stated, we will assume that X is a non-Archimedean normed space and Y is a non-Archimedean Banach space. Utilizing the fixed point alternative, we investigate the Hyers-Ulam stability problem for the system of functional equations (1.4) in non-Archimedean Banach spaces.

Theorem 2.1. Let $\beta \in \{-1,1\}$ be fixed. Let $\psi_1, \psi_2, \psi_3, \psi_4 : X \times X \times X \times X \times X \to [0,\infty)$ be functions such that

$$\begin{split} \Psi(x,y,z,w) := & |\frac{1}{2}| \max\{|a^{-5\beta+4}| \psi_1(a^{\frac{\beta-1}{2}}x,0,a^{\frac{\beta-1}{2}}y,a^{\frac{\beta-1}{2}}z,a^{\frac{\beta-1}{2}}w), \\ & |a^{-5\beta+2}| \psi_2(a^{\frac{\beta+1}{2}}x,a^{\frac{\beta-1}{2}}y,0,a^{\frac{\beta-1}{2}}z,a^{\frac{\beta-1}{2}}w), \\ & |a^{-5\beta-2}| \psi_3(a^{\frac{\beta+1}{2}}x,a^{\frac{\beta+1}{2}}y,a^{\frac{\beta-1}{2}}z,0,a^{\frac{\beta-1}{2}}w), \\ & |a^{-5\beta-5}| \psi_4(a^{\frac{\beta+1}{2}}x,a^{\frac{\beta+1}{2}}y,a^{\frac{\beta+1}{2}}z,a^{\frac{\beta-1}{2}}w,0)\} \end{split}$$

for all $x, y, z, w \in X$, and for some 0 < L < 1,

$$\Psi(a^{\beta}x, a^{\beta}y, a^{\beta}z, a^{\beta}w) \le L|a^{10\beta}|\Psi(x, y, z, w) \tag{2.2}$$

and

$$\lim_{n \to \infty} |a^{-10\beta n}| \psi_1(a^{\beta n} x_1, a^{\beta n} x_2, a^{\beta n} y, a^{\beta n} z, a^{\beta n} w) = 0,$$

$$\lim_{n \to \infty} |a^{-10\beta n}| \psi_2(a^{\beta n} x, a^{\beta n} y_1, a^{\beta n} y_2, a^{\beta n} z, a^{\beta n} w) = 0,$$

$$\lim_{n \to \infty} |a^{-10\beta n}| \psi_3(a^{\beta n} x, a^{\beta n} y, a^{\beta n} z_1, a^{\beta n} z_2, a^{\beta n} w) = 0,$$
(2.3)

$$\lim_{n \to \infty} |a^{-10\beta n}| \psi_4(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_1, a^{\beta n}w_2) = 0$$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$. If $f: X \times X \times X \times X \to Y$ is a mapping such that f(x, 0, z, w) = f(x, y, 0, w) = 0 for all $x, y, z, w \in X$, and

$$||f(ax_1 + bx_2, y, z, w) + f(ax_1 - bx_2, y, z, w) - 2af(x_1, y, z, w)|| \le \psi_1(x_1, x_2, y, z, w),$$
(2.4)

$$||f(x, ay_1 + by_2, z, w) + f(x, ay_1 - by_2, z, w) - 2a^2 f(x, y_1, z, w) - 2b^2 f(x, y_2, z, w)||$$

$$< \psi_2(x, y_1, y_2, z, w),$$
(2.5)

$$||f(x, y, az_1 + bz_2, w) + f(x, y, az_1 - bz_2, w) - a^2b^2(f(x, y, z_1 + z_2, w) + f(x, y, z_1 - z_2, w)) - 2a^2(a^2 - b^2)f(x, y, z_1, w) + 2b^2(a^2 - b^2)f(x, y, z_2, w)||$$

$$< \psi_3(x, y, z_1, z_2, w),$$
(2.6)

$$||f(x, y, z, aw_1 + bw_2) + f(x, y, z, aw_1 - bw_2) - ab^2(f(x, y, z, w_1 + w_2) + f(x, y, z, w_1 - w_2)) - 2a(a^2 - b^2)f(x, y, z, w_1)||$$

$$< \psi_4(x, y, z, w_1, w_2)$$
(2.7)

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$, then there exists a unique dectic mapping $D: X \times X \times X \times X \to Y$ satisfying (1.4) and

$$||f(x, y, z, w) - D(x, y, z, w)|| \le \frac{1}{1 - L} \Psi(x, y, z, w)$$
(2.8)

for all $x, y, z, w \in X$.

Proof. Letting $x_2 = 0$ and replacing x_1, y, z, w by 2x, 2y, 2z, 2w in (2.4), we get

$$||f(2ax, 2y, 2z, 2w) - af(2x, 2y, 2z, 2w)|| \le \left|\frac{1}{2}|\psi_1(2x, 0, 2y, 2z, 2w)\right|$$
(2.9)

for all $x, y, z, w \in X$. Letting $y_2 = 0$ and replacing x, y_1, z, w by 2ax, 2y, 2z, 2w in (2.5), we get

$$||f(2ax, 2ay, 2z, 2w) - a^2 f(2ax, 2y, 2z, 2w)|| \le \left|\frac{1}{2}\right| \psi_2(2ax, 2y, 0, 2z, 2w)$$
(2.10)

for all $x, y, z, w \in X$. Letting and $z_2 = 0$ and replacing x, y, z_1, w by 2ax, 2ay, 2z, 2w in (2.6), we get

$$||f(2ax, 2ay, 2az, 2w) - a^4 f(2ax, 2ay, 2z, 2w)|| \le |\frac{1}{2}|\psi_3(2ax, 2ay, 2z, 0, 2w)|$$
(2.11)

for all $x, y, z, w \in X$. Letting $w_2 = 0$ and replacing x, y, z, w_1 by 2ax, 2ay, 2az, 2w in (2.7), we get

$$||f(2ax, 2ay, 2az, 2aw) - a^3 f(2ax, 2ay, 2az, 2w)|| \le \left|\frac{1}{2}\right| \psi_4(2ax, 2ay, 2az, 2w, 0)$$
(2.12)

for all $x, y, z, w \in X$. Combining (2.9), (2.8), (2.11) and (2.12), we lead to

$$||f(2ax, 2ay, 2az, 2aw) - a^{10}f(2x, 2y, 2z, 2w)||$$

$$\leq \left|\frac{1}{2}\right| \max\{\left|a^{9}\right| \psi_{1}(2x, 0, 2y, 2z, 2w), \left|a^{7}\right| \psi_{2}(2ax, 2y, 0, 2z, 2w), \tag{2.13}$$

$$|a^3|\psi_3(2ax,2ay,2z,0,2w),\psi_4(2ax,2ay,2az,2w,0)\}$$

for all $x, y, z, w \in X$. Replacing x, y, z and w by $\frac{x}{2}, \frac{y}{2}, \frac{z}{2}$ and $\frac{w}{2}$ in (2.13), we have

$$\|f(ax,ay,az,aw)-a^{10}f(x,y,z,w)\|$$

$$\leq |\frac{1}{2}| \max\{|a^9|\psi_1(x,0,y,z,w), |a^7|\psi_2(ax,y,0,z,w),$$
(2.14)

$$|a^3|\psi_3(ax, ay, z, 0, w), \psi_4(ax, ay, az, w, 0)$$

for all $x, y, z, w \in X$. It follows from (2.14) that

$$\|\frac{1}{a^{10}}f(ax, ay, az, aw) - f(x, y, z, w)\|$$

$$\leq \left|\frac{1}{2}\right| \max\{\left|a^{-1}\right| \psi_1(x, 0, y, z, w), \left|a^{-3}\right| \psi_2(ax, y, 0, z, w),\tag{2.15}$$

$$|a^{-7}|\psi_3(ax,ay,z,0,w), |a^{-10}|\psi_4(ax,ay,az,w,0)\}$$

$$\|a^{10}f(\frac{x}{a},\frac{y}{a},\frac{z}{a},\frac{w}{a})-f(x,y,z,w)\|$$

$$\leq |\frac{1}{2}| \max\{|a^9|\psi_1(\frac{x}{a},0,\frac{y}{a},\frac{z}{a},\frac{w}{a}), |a^7|\psi_2(x,\frac{y}{a},0,\frac{z}{a},\frac{w}{a}),$$
(2.16)

$$|a^3|\psi_3(x,y,\frac{z}{a},0,\frac{w}{a}),\psi_4(x,y,z,\frac{w}{a},0)\}$$

for all $x, y, z, w \in X$. From the (2.15) and (2.16), we have

$$\|\frac{1}{a^{10\beta}}f(a^{\beta}x, a^{\beta}y, a^{\beta}z, a^{\beta}w) - f(x, y, z, w)\| \le \Psi(x, y, z, w)$$
(2.17)

for all $x, y, z, w \in X$.

Consider

$$\Omega := \{u | u : X \times X \times X \times X \to Y, \quad u(x, 0, z, w) = u(x, y, 0, w) = 0, \forall x, y, z, w \in X\},\$$

and let us introduce a generalized metric on Ω as follows:

$$d(u,v) = \inf\{\eta \in \mathbb{R}^+ : \|u(x,y,z,w) - v(x,y,z,w)\| \le \eta \Psi(x,y,z,w), \forall x,y,z,w \in X\},\$$

where, as usual, inf $\emptyset = +\infty$. The proof of the fact that (Ω, d) is a complete generalized metric space can be found in [4]. Now we consider the mapping $\Lambda : \Omega \to \Omega$ defined by

$$\Lambda u(x, y, z, w) := a^{-10\beta} u(a^{\beta} x, a^{\beta} y, a^{\beta} z, a^{\beta} w)$$

for all $u \in \Omega$ and $x, y, z, w \in X$. Let $\varepsilon > 0$ and $f, g \in \Omega$ be such that $d(f, g) < \varepsilon$. Hence

$$\begin{split} \|\Lambda f(x,y,z,w) - \Lambda g(x,y,z,w)\| &= \|a^{-10\beta} f(a^{\beta}x,a^{\beta}y,a^{\beta}z,a^{\beta}w) - a^{-10\beta} g(a^{\beta}x,a^{\beta}y,a^{\beta}z,a^{\beta}w)\| \\ &= |a^{-10\beta}| \|f(a^{\beta}x,a^{\beta}y,a^{\beta}z,a^{\beta}w) - g(a^{\beta}x,a^{\beta}y,a^{\beta}z,a^{\beta}w)\| \\ &\leq |a^{-10\beta}| \Psi(a^{\beta}x,a^{\beta}y,a^{\beta}z,a^{\beta}w) \leq L \varepsilon \Psi(x,y,z,w) \end{split}$$
 (2.18)

for all $x,y,z,w\in X$, that is, if $d(f,g)<\varepsilon$, we have $d(\Lambda f,\Lambda g)\leq L\varepsilon$. This means that $d(\Lambda f,\Lambda g)\leq Ld(f,g)$ for all $f,g\in\Omega$. This means that, Λ is a strictly contractive self-mapping on Ω with the Lipschitz constant L. It follows from (2.17) that $d(\Lambda f,f)\leq 1$. Due to Theorem 1.2, there exists a unique mapping $D:X\times X\times X\times X\to Y$ such that D is a fixed point of Λ , i.e., $D(a^{\beta}x,a^{\beta}y,a^{\beta}z,a^{\beta}w)=a^{-10\beta}D(x,y,z,w)$ for all $x,y,z,w\in X$. Also, $d(\Lambda^n f,D)\to 0$ as $n\to\infty$, which implies the equality

$$\lim_{n \to \infty} a^{-10\beta n} f(a^{\beta n} x, a^{\beta n} y, a^{\beta n} z, a^{\beta n} w) = D(x, y, z, w)$$

for all $x, y, z, w \in X$. By Theorem 1.2, we have

$$d(f, D) \le \frac{1}{1 - L} d(f, \Lambda f) \le \frac{1}{1 - L}.$$

This implies that inequality (2.4).

On the other hand by (2.3), (2.4), (2.5), (2.6) and (2.7), we have

$$\begin{split} &\|D(ax_1+bx_2,y,z,w)+D(ax_1-bx_2,y,z,w)-2aD(x_1,y,z,w)\|\\ &=\lim_{n\to\infty}|a^{-10\beta n}|\|f(a^{\beta n}ax_1+a^{\beta n}bx_2,a^{\beta n}y,a^{\beta n}z,a^{\beta n}w)\\ &+f(a^{\beta n}ax_1-a^{\beta n}bx_2,a^{\beta n}y,a^{\beta n}z,a^{\beta n}w)-2af(a^{\beta n}x_1,a^{\beta n}y,a^{\beta n}z,a^{\beta n}w)\|\\ &\leq\lim_{n\to\infty}|a^{-10\beta n}|\psi_1(a^{\beta n}x_1,a^{\beta n}x_2,a^{\beta n}y,a^{\beta n}z,a^{\beta n}w)=0,\\ &\|D(x,ay_1+by_2,z,w)+D(x,ay_1-by_2,z,w)-2a^2D(x,y_1,z,w)-2b^2D(x,y_2,z,w)\|\\ &=\lim_{n\to\infty}|a^{-10\beta n}|\|f(a^{\beta n}x,a^{\beta n}ay_1+a^{\beta n}by_2,a^{\beta n}z,a^{\beta n}w)\\ &+f(a^{\beta n}x,a^{\beta n}ay_1-a^{\beta n}by_2,a^{\beta n}z,a^{\beta n}w)-2a^2f(a^{\beta n}x,a^{\beta n}y_1,a^{\beta n}z,a^{\beta n}w)\\ &+f(a^{\beta n}x,a^{\beta n}y_2,a^{\beta n}z,a^{\beta n}w)\|\\ &\leq\lim_{n\to\infty}|a^{-10\beta n}|\psi_2(a^{\beta n}x,a^{\beta n}y_1,a^{\beta n}y_2,a^{\beta n}z,a^{\beta n}w)=0,\\ &\|D(x,y,az_1+bz_2,w)+D(x,y,az_1-bz_2,w)-a^2b^2(D(x,y,z_1+z_2,w)\\ &+D(x,y,z_1-z_2,w))-2a^2(a^2-b^2)D(x,y,z_1,w)+2b^2(a^2-b^2)D(x,y,z_2,w)\|\\ &=\lim_{n\to\infty}|a^{-10\beta n}|\|f(a^{\beta n}x,a^{\beta n}y,a^{\beta n}az_1+a^{\beta n}bz_2,a^{\beta n}w)\\ &+f(a^{\beta n}x,a^{\beta n}y,a^{\beta n}az_1-a^{\beta n}bz_2,a^{\beta n}w)-a^2b^2(f(a^{\beta n}x,a^{\beta n}y,a^{\beta n}z_1+a^{\beta n}z_2,a^{\beta n}w)\\ &+f(a^{\beta n}x,a^{\beta n}y,a^{\beta n}z_1-a^{\beta n}z_2,a^{\beta n}w))-2a^2(a^2-b^2)f(a^{\beta n}x,a^{\beta n}y,a^{\beta n}z_1,a^{\beta n}w)\\ &+2b^2(a^2-b^2)f(a^{\beta n}x,a^{\beta n}y,a^{\beta n}z_1,a^{\beta n}z_2,a^{\beta n}w)\|\\ &\leq\lim_{n\to\infty}|a^{-10\beta n}|\psi_3(a^{\beta n}x,a^{\beta n}y,a^{\beta n}z_1,a^{\beta n}z_2,a^{\beta n}w)=0, \end{split}$$

and

$$||D(x, y, z, aw_{1} + bw_{2}) + D(x, y, z, aw_{1} - bw_{2}) - ab^{2}(D(x, y, z, w_{1} + w_{2})) + D(x, y, z, w_{1} - w_{2})) - 2a(a^{2} - b^{2})D(x, y, z, w_{1})||$$

$$= \lim_{n \to \infty} |a^{-10\beta n}| ||f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}aw_{1} + a^{\beta n}bw_{2})$$

$$+ f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}aw_{1} - a^{\beta n}bw_{2}) - ab^{2}(f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_{1} + a^{\beta n}w_{2})$$

$$+ f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_{1} - a^{\beta n}w_{2})) - 2a(a^{2} - b^{2})f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_{1})||$$

$$\leq \lim_{n \to \infty} |a^{-10\beta n}|\psi_{4}(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_{1}, a^{\beta n}w_{2}) = 0$$

$$(2.22)$$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$. It follows from (2.19), (2.20), (2.21) and (2.22) that D satisfies (1.4), that is, D is dectic mapping. Since D is the unique fixed point of Λ in the set $\Delta = \{g \in \Omega : d(f,g) < \infty\}$, D is the unique mapping satisfying (1.4). \square

Remark 2.2. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the fixed point method, one can show that there exists a unique dectic mapping $D: X \times X \times X \times X \to Y$ satisfying (1.4) and

$$||f(x, y, z, w) - D(x, y, z, w)|| \le \frac{1}{1 - L} \widehat{\Psi}(x, y, z, w)$$
(2.23)

for all $x, y, z, w \in X$ and

$$\widehat{\Psi}(x,y,z,w) := |\frac{1}{2}|\{|a^{-5\beta+4}|\psi_{1}(a^{\frac{\beta-1}{2}}x,0,a^{\frac{\beta-1}{2}}y,a^{\frac{\beta-1}{2}}z,a^{\frac{\beta-1}{2}}w)
+|a^{-5\beta+2}|\psi_{2}(a^{\frac{\beta+1}{2}}x,a^{\frac{\beta-1}{2}}y,0,a^{\frac{\beta-1}{2}}z,a^{\frac{\beta-1}{2}}w)
+|a^{-5\beta-2}|\psi_{3}(a^{\frac{\beta+1}{2}}x,a^{\frac{\beta+1}{2}}y,a^{\frac{\beta-1}{2}}z,0,a^{\frac{\beta-1}{2}}w)
+|a^{-5\beta-5}|\psi_{4}(a^{\frac{\beta+1}{2}}x,a^{\frac{\beta+1}{2}}y,a^{\frac{\beta+1}{2}}z,a^{\frac{\beta-1}{2}}w,0)\}$$
(2.24)

for all $x, y, z, w \in X$.

Theorem 2.3. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the direct method, one can show that there exists a unique dectic mapping $D: X \times X \times X \times X \to Y$ satisfying (1.4) and

$$||f(x,y,z,w) - D(x,y,z,w)|| \le |\frac{1}{2}| \Big(|a^{-1}|\widehat{\psi}_1(x,0,y,z,w) + |a^{-3}|\widehat{\psi}_2(x,y,0,z,w) + |a^{-3}|\widehat{\psi}_2(x,y,0,z,w) + |a^{-7}|\widehat{\psi}_3(x,y,z,0,w) + |a^{-10}|\widehat{\psi}_4(x,y,z,w,0) \Big)$$
(2.25)

for all $x, y, z, w \in X$, where we assume that

$$\widehat{\psi}_1(x,0,y,z,w) := \sum_{i=\frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_1(a^{\beta i}x,0,a^{\beta i}y,a^{\beta i}z,a^{\beta i}w) < \infty,$$

$$\widehat{\psi}_2(x, y, 0, z, w) := \sum_{i = \frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_2(a^{1+\beta i}x, a^{\beta i}y, 0, a^{\beta i}z, a^{\beta i}w) < \infty,$$

$$\widehat{\psi}_3(x, y, z, 0, w) := \sum_{i = \frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_3(a^{1+\beta i}x, a^{1+\beta i}y, a^{\beta i}z, 0, a^{\beta i}w) < \infty,$$

$$\widehat{\psi}_4(x,y,z,w,0) := \sum_{i=\frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_4(a^{1+\beta i}x,a^{1+\beta i}y,a^{1+\beta i}z,a^{\beta i}w,0) < \infty.$$

Corollary 2.4. Let $\beta \in \{-1,1\}$ be fixed and $\delta, \rho > 0$ be real numbers such that $10\beta > \rho\beta$, and let X be a normed space and Y a Banach space. If $f: X \times X \times X \times X \to Y$ is a mapping such that f(x,0,z,w) = f(x,y,0,w) = 0 for all $x,y,z,w \in X$, and

$$\begin{cases} \|f(ax_1 + bx_2, y, z, w) + f(ax_1 - bx_2, y, z, w) - 2af(x_1, y, z, w)\| \\ \leq \delta(\|x_1\|^{\rho} + \|x_2\|^{\rho} + \|y\|^{\rho} + \|z\|^{\rho} + \|w\|^{\rho}), \\ \|f(x, ay_1 + by_2, z, w) + f(x, ay_1 - by_2, z, w) - 2a^2f(x, y_1, z, w) - 2b^2f(x, y_2, z, w)\| \\ \leq \delta(\|x\|^{\rho} + \|y_1\|^{\rho} + \|y_2\|^{\rho} + \|z\|^{\rho} + \|w\|^{\rho}), \\ \|f(x, y, az_1 + bz_2, w) + f(x, y, az_1 - bz_2, w) - a^2b^2(f(x, y, z_1 + z_2, w) + f(x, y, z_1 - z_2, w)) \\ - 2a^2(a^2 - b^2)f(x, y, z_1, w) + 2b^2(a^2 - b^2)f(x, y, z_2, w)\| \\ \leq \delta(\|x\|^{\rho} + \|y\|^{\rho} + \|z_1\|^{\rho} + \|z_2\|^{\rho} + \|w\|^{\rho}), \\ \|f(x, y, z, aw_1 + bw_2) + f(x, y, z, aw_1 - bw_2) - ab^2(f(x, y, z, w_1 + w_2) + f(x, y, z, w_1 - w_2)), \\ - 2a(a^2 - b^2)f(x, y, z, w_1)\| \leq \delta(\|x\|^{\rho} + \|y\|^{\rho} + \|z\|^{\rho} + \|w_1\|^{\rho} + \|w_2\|^{\rho}), \end{cases}$$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$, then there exists a unique dectic mapping $D: X \times X \times X \times X \to Y$ satisfying (1.4) and a constant M > 0 such that

$$||f(x, y, z, w) - D(x, y, z, w)|| \le M(||x||^{\rho} + ||y||^{\rho} + ||z||^{\rho} + ||w||^{\rho})$$

for all $x, y, z, w \in X$.

Proof. Let $\psi_1, \psi_2, \psi_3, \psi_4: X \times X \times X \times X \times X \to [0, \infty)$ be defined by

$$\psi_1(x_1, x_2, y, z, w) := \delta(\|x_1\|^{\rho} + \|x_2\|^{\rho} + \|y\|^{\rho} + \|z\|^{\rho} + \|w\|^{\rho}),$$

$$\psi_2(x, y_1, y_2, z, w) := \delta(\|x\|^{\rho} + \|y_1\|^{\rho} + \|y_2\|^{\rho} + \|z\|^{\rho} + \|w\|^{\rho}),$$

$$\psi_3(x, y, z_1, z_2, w) := \delta(\|x\|^{\rho} + \|y\|^{\rho} + \|z_1\|^{\rho} + \|z_2\|^{\rho} + \|w\|^{\rho}),$$

$$\psi_4(x, y, z, w_1, w_2) := \delta(\|x\|^{\rho} + \|y\|^{\rho} + \|z\|^{\rho} + \|w_1\|^{\rho} + \|w_2\|^{\rho}),$$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$. Then the corollary is followed from Theorem 2.3, where

$$\begin{split} M := \tfrac{\delta a^{5(1-\beta)}}{2\beta(a^{10}-|a|^\rho)} \max \{ (a^9 + a^7|a|^\rho + a^3|a|^\rho + |a|^\rho), (a^9 + a^7 + a^3|a|^\rho + |a|^\rho), \\ (a^9 + a^7 + a^3 + |a|^\rho), (a^9 + a^7 + a^3 + 1) \}. \end{split}$$

П

Approximation in non-Archimedean normed spaces is better than the approximation in (Archimedean) normed spaces. The following example shows that the previous corollary is not valid in non-Archimedean spaces.

Example 2.5. Let $X = Y = \mathbb{Q}_p$ for prime number p > 3 and define $f : X \times X \times X \times X \to Y$ by f(x, y, z, w) = xyzw. Then for $\delta = 1$, $\rho = 1$ and $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \neq 0$ with $|x|_p < 1$, $|y|_p < 1$, $|z|_p < 1$, $|w|_p < 1$, we have

$$\begin{split} |f(2x_1+x_2,y,z,w)+f(2x_1-x_2,y,z,w)-4f(x_1,y,z,w)|_p\\ &=|0|_p=0\leq |x_1|_p+|x_2|_p+|y|_p+|z|_p+|w|_p,\\ |f(x,2y_1+y_2,z,w)+f(x,2y_1-y_2,z,w)-8f(x,y_1,z,w)-2f(x,y_2,z,w)|_p\\ &=|xzw|_p|-4y_1-2y_2|_p\leq \max\{|-4y_1|_p,|-2y_2|_p\}\\ &\leq \max\{|y_1|_p,|y_2|_p\}\leq |x|_p+|y_1|_p+|y_2|_p+|z|_p+|w|_p,\\ |f(x,y,2z_1+z_2,w)+f(x,y,2z_1-z_2,w)-4(f(x,y,z_1+z_2,w)+f(x,y,z_1-z_2,w))\\ &-2a^2(a^2-b^2)f(x,y,z_1,w)+2b^2(a^2-b^2)f(x,y,z_2,w)|_p\\ &=|xyw|_p|-24z_1+6z_2|_p\leq \max\{|-24z_1|_p,|6z_2|_p\}\\ &\leq \max\{|z_1|_p,|z_2|_p\}\leq |x|_p+|y|_p+|z_1|_p+|z_2|_p+|w|_p, \end{split}$$

and

$$|f(x,y,z,2w_1+w_2) + f(x,y,z,2w_1-w_2) - 2(f(x,y,z,w_1+w_2) + f(x,y,z,w_1-w_2))$$

$$-12f(x,y,z,w_1)|_p = |xyz|_p| - 12w_1|_p \le |w_1|_p$$

$$\le |x|_p + |y|_p + |z|_p + |w_1|_p + |w_2|_p.$$

On the other hand for each natural number n, we have

$$|2^{-10\beta(n+1)}f(2^{\beta(n+1)}x,2^{\beta(n+1)}y,2^{\beta(n+1)}z,2^{\beta(n+1)}w) - 2^{-10\beta n}f(2^{\beta n}x,2^{\beta n}y,2^{\beta n}z,2^{\beta n}w)|_p \le |xyzw|_p$$
.
Hence, for each $x,y,z,w \ne 0$, the sequence $\{2^{-10\beta n}f(2^{\beta n}x,2^{\beta n}y,2^{\beta n}z,2^{\beta n}w)\}$ is not convergent.

Acknowledgement: The authors would like to thank the referees for their comments and suggestions on the manuscript.

References

- [1] M. A. Abolfathi, A. Ebadian and R. Aghalary, Stability of mixed additive-quadratic Jensen type functional equation in non-Archimedean ℓ -fuzzy normed spaces, Annali Dell 'Universita 'Di Ferrara, 2013 16 pages (2013), doi: 10.1007/s11565-013-0182-z.
- [2] T. Aoki, On the stability of linear transformation in Banach spaces, J. Math. Soc. Japan., 2 (1950) 64–66.
- [3] S. Czerwik, On the stability the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg., 62 (1992) 59–64.
- [4] L. Cădriu and V. Radu, On the stability of the Cuachy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004) 43–52.
- [5] P. W. Cholewa, Remarks on the stability of functional equations, Aequ. Math., 27 (1984) 76–86.
- [6] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968) 305–309.

- [7] A. Ebadian, A. Najati and M. Eshaghi Gordji, On approximate additive-quartic and quadratic-cubic functional equations in two variables on Abelian groups, Results Math, 58 (2010) 39–53.
- [8] M. Eshaghi Gordji, R. Khodabakhsh, S. Jung and H. Khodaei, *AQCQ-functional equation in non-Archimedean normed spaces*, Abstr. Appl. Anal., 2010, Article ID 741942, (2010).
- [9] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of a mixed type cubic and quartic functional equation in random normed space, J. Inequal. Appl., 2009, Article ID 527462, (2009).
- [10] M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghari, *Stability of an additive-cubic-quartic functional equation*, Adv. Differ. Equ., 2009, Article ID 395693, (2009).
- [11] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of the approximately additive mappings, J. Math. Anal. Appl., 184 (1994) 431–436.
- [12] F. Q. Gouvêa, p-Adic Numbers, An Introduction, Universitext, Springer-Verlag, Berlin, 1997.
- [13] K. Hensel, Über eine neue Begundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6 (1897) 83–88.
- [14] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222–224.
- [15] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equation in Several Variables, Birkhäuse, Basel, 1998.
- [16] G. Isac, Th. M. Rassias, Stability of ψ -additive mappings: applications to nonlinear analysis, Internat. J. Math. Sci., 19 (1996) 219–228.
- [17] K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of cubic functional equation, J. Math. Anal. Appl., 274 (2002) 867–878.
- [18] K. Jun, H. Kim and I. Chang, On the stability of Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., 7 (2005) 21–73.
- [19] D. Kang, On the stability of gneralized quadratic mappings in quasi β -normed space, J. Inequal. Appl., 2010, Article ID 198098 (2010).
- [20] H. Khodaei and T. M. Rassias, Appiroximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010) 22-41.
- [21] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Math. Appl., vol. 427, Kluwer Academic publisher Dordrecht, 1997.
- [22] S. Im. S. Lee and I. Hawng, Quartic functional equation, J. Math. Anal. Appl., 307 (2005) 387–394.
- [23] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean sapaces, Appl. Anal. Discrete Math., 1 (2007) 325–334.
- [24] C. Park, M. B. Ghaemi, H. Majani, M. Eshaghi Gordji and A. Najati, Fixed points and approximately heptic mappings in non-Archimedean normed spaces, Adv. Differ. Equ., 2013 doi: 10.1186/1687-1847-2013-209 10 page (2013).
- [25] C. Park, Fixed points and Hyers-Ulam stability of Cauchy-Jensen functional equations in Banach algebras, Fixed point Theory and Applications, 2007, Article ID 50175 (2007).
- [26] V. Radu, The fixed point alternative and the stability of functional equations, Fixed point Theory, 4 no1 (2003) 91–96.
- [27] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297–300.
- [28] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (1) (2000) 23–130.
- [29] A. M. Robert, A Course in p-Adic Analysis, Grad. Texts in Math., vol 198, Springer-Verlag, New York, 2000.
- [30] N. Shilkret, Non-Archimedian Banach algebras, Ph. D. thesis, Polytechnic University, 1968.
- [31] F. Skof, Properiet à locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano., 53 (1983) 113–129.
- [32] S. M. Ulam, Problem in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
- [33] V. S. Valdimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and mathematical Physics, Vol. 1 of Series on Soviet and East Eurpean Mathematics. Word Scientific, River Edge, NJ, USA, 1994.