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Abstract

The conditions under which, multilinear forms (the symmetric case and the non symmetric case),
can be written as a product of linear forms, are considered. Also we generalize a result due to S.
Kurepa for 2n-functionals in a group G.
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1. Introduction and preliminaries

We define polynomials in infinite dimension spaces using multilinear mappings. Let E and F be
two vector spaces on K, where K = R or C. We shall call the mapping L : En → F n-linear form if
the mapping xi 7→ L(x1, . . . , xi, . . . , xn), i = 1, 2, . . . , n, is linear. Also we shall call the L : En → F
symmetric if

L(x1, x2, . . . , xn) = L(xσ(1), xσ(2), . . . , xσ(n)) ,

∀ (x1, x2, . . . , xn) ∈ En and every permutation of the first n natural numbers. If L : En → F is a
n-linear form we put:

S (L) (x1, x2, . . . , xn) :=
1

n!

∑
σ∈Sn

L
(
xσ(1), xσ(2), . . . , xσ(n)

)
where Sn is the set of all permutations of the first n natural numbers. Obviously S(L) : En → F is
a symmetric n-linear form. We put

L̂ (x) := L (x, x, . . . , x) ∀ x ∈ E
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and we define the mapping P : E → F as a homogeneous polynomial of n-degree if there exists an
n-linear form L : En → F such that P = L̂ , i.e.

P (x) = L̂ (x) = L (x, x, . . . , x) .

Generaly there is no a bijection between the n-linear forms and the homogeneous polynomials of
n-degree. Though there exists a bijection between the symmetric n-linear forms and the homogeneous
polynomials of n-degree.

The proof of this claim is based on the following Lemma where we use the polarization formulas.

Lemma 1.1. If L : En → F is a symmetric n-linear form and P : E → F a homogeneous polynomial
of n-degree with P = L̂, then:

L(x1, x2, . . . , xn) =
1

2nn!

∑
εi=±1

ε1ε2 · · · εnP

(
n∑
k=1

εkxk

)
,

where the sum is over all ε1, ε2, . . . , εn ∈ {−1, 1}. If we use the Rademacher functions instead of εi
the last formula takes the form:

L(x1, x2, . . . , xn) =
1

n!

1∫
0

r1(t)r2(t) · · · rn(t)P

(
n∑
k=1

rk(t)xk

)
dt

where rk(t) = sgn sin 2kπt is the k-Rademacher function for 1 ≤ k ≤ n.

2. The symmetric case

Lemma 2.1. Let V be a vector space and F : V m → K, K = C or R, a symmetric m-linear form,
F 6≡ 0. If for some x0 ∈ V , with F̂ (x0) 6= 0, we have

F (xm−10 , x)m = F̂ (x0)
m−1 · F̂ (x) , x ∈ V , (2.1)

then

F (x1, . . . , xm) =
1

F̂ (x0)m−1
· F (xm−10 , x1) · · ·F (xm−10 , xm) , x1, . . . , xm ∈ V .

Proof . Since F 6≡ 0, from the polarization formula there exits x0 such that F̂ (x0) 6= 0.
If rn is the nth Rademacher function, using Eq.(2.1) we obtain:

1∫
0

r1(t) · · · rm(t) ·

[
F

(
xm−10 ,

m∑
k=1

rk(t)xk

)]m
dt

=

1∫
0

r1(t) · · · rm(t) · F̂ (x0)
m−1F̂

(
m∑
k=1

rk(t)xk

)
dt

= m!F̂ (x0)
m−1 · F (x1, . . . , xm) .
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Thus

m!F̂ (x0)
m−1 · F (x1, . . . , xm)

=

1∫
0

r1(t) · · · rm(t) ·
[
F (xm−10 , r1(t)x1 + · · ·+ rm(t)xm)

]m
dt

=

1∫
0

r1(t) · · · rm(t) ·
[
r1(t)F (xm−10 , x1) + · · ·+ rm(t)F (xm−10 , xm)

]m
dt

=

1∫
0

r1(t) · · · rm(t)
∑

n1+...+nm=m

m!

n1! · · ·nm!
r1(t)

n1 · · · rm(t)nm · F (xm−10 , x1)
n1 · · ·F (xm−10 , xm)nmdt

= m!F (xm−10 , x1) · · ·F (xm−10 , xm) ,

hence

F̂ (x0)
m−1 · F (x1, . . . , xm) = F (xm−10 , x1) · · ·F (xm−10 , xm) .

�

Proposition 2.2. Let V be a vector space and let F : V m → K be a symmetric m-linear form,
F 6≡ 0. Then

F (xm−10 , x)m = F̂ (x0)
m−1 · F̂ (x) , x ∈ V , (2.2)

for some x0 ∈ V , with F̂ (x0) 6= 0, if and only if

F (x1, . . . , xm) = c · L(x1) · · ·L(xm), x1, . . . , xm ∈ V , (2.3)

for some constant c 6= 0, where L : V → K is a linear form.

Proof . It is clear that Eq. (2.3) implies Eq.(2.2). We assume now that Eq.(2.2) holds true. Then,
from the previous Lemma, we get:

F (x1, . . . , xm) =
1

F̂ (x0)m−1
· F (xm−10 , x1) · · ·F (xm−10 , xm) .

Thus

F (x1, . . . , xm) = c · L(x1) · · ·L(xm), c =
1

F̂ (x0)m−1
.

and L : V → K is a linear map which is defined as:

L(x) = F (xm−10 , x) .

�
Equivalenthy, the above Proposition can be stated as.
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Corollary 2.3. Let F̂ : V → K be a homogeneous polynomial of degree m, F̂ 6≡ 0, where V is a
vector space and let F : V m → K be the symmetric m-linear form which corresponds to the polynomial
F̂ . Then

F̂ (x) = c · L(x)m, x ∈ V ,

for some constant c 6= 0, where L : V → K is a linear form, if and only if

F (xm−10 , x)m = F̂ (x0)
m−1 · F̂ (x) , x ∈ V ,

for some x0 ∈ V , with F̂ (x0) 6= 0.

In the case, where the vector space V is of finite dimension, say V = Kn, it is known that the
m-homogeneous polynomial F̂ : Kn → K can be written in the form

F̂ (x) =
N∑
j=1

αjLj(x)m ,

where N = (m + 1)n−1, αj ∈ K and Lj : Kn → K are linear forms, j = 1, . . . , N . For a relatively
easy proof of this known result we refer to work (see [3]). Hence, in the case of vector spaces of finite
dimension, the previous result gives us the sufficent and necessary condition that an m-homogeneous
polynomial can be written as an mth power of a linear form.

In the case of Hermitian forms we have an analogous result.

Proposition 2.4. Let V be a complex vector space and let F : V × V → C be a Hermitian form,
F 6≡ 0. Then

|F (x0, x)|2 = F̂ (x0) · F̂ (x) , x ∈ V , (2.4)

for some x0 ∈ V , with F̂ (x0) 6= 0, if and only if

F (x, y) = c · L(x) · L(y) (2.5)

for some constant c 6= 0, where L : V → C is a linear form.
Proof . It is clear that Eq.(2.5) implies Eq.(2.4).We suppose that Eq.(2.4) is true. We have

1
(2π)2

2π∫
0

2π∫
0

e−iϑ1 · eiϑ2
∣∣F (x0, xe

iϑ1 + yeiϑ2)
∣∣2 dϑ1dϑ2

= 1
(2π)2

2π∫
0

2π∫
0

e−iϑ1 · eiϑ2 · F
(
x0, xe

iϑ1 + yeiϑ2
)
· F
(
xeiϑ1 + yeiϑ2 , x0

)
dϑ1dϑ2

= F (x, x0) · F (x0, y) .

Thus

F (x, x0) · F (x0, y) = 1
(2π)2

∫ 2π

0

∫ 2π

0

e−iϑ1 · eiϑ2 · F̂
(
x0) · F̂ (xeiϑ1 + yeiϑ2

)
dϑ1dϑ2

= F̂ (x0)
(2π)2

·
∫ 2π

0

∫ 2π

0

e−iϑ1 · eiϑ2 · F
(
xeiϑ1 + yeiϑ2 , xeiϑ1 + yeiϑ2

)
dϑ1dϑ2

= F̂ (x0) · F (x, y) .
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So we have proved that

F (x, y) = c · L(x) · L(y) ,

where c = 1

F̂ (x0)
and L(x) = F (x, x0) is a linear form. �

We consider now the case where (G,+) is a group, K is a field and F : Gm → K is a symmetric
m-additive map. Since

F (x1, . . . , x+ y, . . . , xm) = F (x1, . . . , x, . . . , xm) + F (x1, . . . , y, . . . , xm) ,

we have

F (x1, . . . , 0, . . . , xm) = 0 and F (x1, . . . ,−x, . . . , xm) = −F (x1, . . . , x, . . . , xm) ,

We note also that if F̂ (x0) = F (x0, . . . , x0) 6= 0, F̂ (x0) ∈ K, then F̂ (x0)
n 6= 0 for every n ∈ N.

If we denote by charK the characteristic number of the field K, by repeating the proofs of Lemma
and Proposition 2.2, we obtain:

Proposition 2.5. For m ∈ N, let G be a group and K a field with charK = 0 or charK > m. A
map F : Gm → K, F 6≡ 0, is symmetric m-additive and satisfies

F (xm−10 , x)m = F̂ (x0)
m−1 · F̂ (x) (2.6)

for some x0 ∈ G, with F̂ (x0) 6= 0, if an only if there exits a constant c ∈ K − {0} and an additive
map A : G→ K, such that

F (x1, . . . , xm) = c · A(x1) · · ·A(xm) . (2.7)

Remark 2.6. We notice that:

1. Proposition 2.5 is Theorem 1 in (see [1]) and it is due to Ebanks. Let us mention that Ebanks
proved Theorem 1 with the less powerfull condition that G is a groupoid. Though his proof is
much more complicated than the proof of Proposition 2.5. Also the hypothesis

F (x1, . . . , xm)m = F̂ (x1) · · · F̂ (xm), x1, . . . , xm ∈ G ,

it is used in the proof of Theorem 1 in (see [1]), which is more powerfull than the hypothesis
Eq.(2.6) of Proposition 2.5.

2. In addition Ebanks (page 183 in (see [1])) gives an application for ”quartic functionals” which
really is a generalization of a result due to S. Kurepa.
We say that a mapping q : G→ K is a quartic functional, if q satisfies the following functional
equation:

q(x1 + x2 + x3 + x4) + q(x1 − x2 + x3 + x4) + q(x1 + x2 − x3 + x4)+
q(x1 + x2 + x3 − x4) + q(x1 − x2 − x3 + x4) + q(x1 − x2 + x3 − x4)+
q(x1 + x2 − x3 − x4) + q(x1 − x2 − x3 − x4)

= 8 · q(x1) + 8 · q(x2) + 8 · q(x3) + 8 · q(x4) , x1, x2, x3, x4 ∈ G .
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If charK = 0 or charK > 4, we define F : G4 → K as follows:

23 · 4!F (x1, x2, x3, x4) = q(x1 + x2 + x3 + x4)− q(x1 − x2 + x3 + x4)−
q(x1 + x2 − x3 + x4)− q(x1 + x2 + x3 − x4)+
q(x1 − x2 − x3 + x4) + q(x1 − x2 + x3 − x4)+
q(x1 + x2 − x3 − x4)− q(x1 − x2 − x3 − x4) .

It can be easily checked that F is 4-additional, symmetric and that satisfies the relation

F̂ (x) = F (x, x, x, x) = q(x) .

Therefore we have:

Corollary 2.7. Let G be a group, K is a field with charK = 0 or charK > 4 and q : G → K is a
quartic functional. Then there exits an additive map A : G→ K and a constant c 6= 0 for which

q(x) = c · A(x)4, x ∈ G ,
if and only if q satisfies the relation

[q(x1 + x2 + x3 + x4)− q(x1 − x2 + x3 + x4)− q(x1 + x2 − x3 + x4)−
q(x1 + x2 + x3 − x4) + q(x1 − x2 − x3 + x4) + q(x1 − x2 + x3 − x4)+
q(x1 + x2 − x3 − x4)− q(x1 − x2 − x3 − x4)]4
= (23 · 4!)4q(x1)q(x2)q(x3)q(x4) ,

(2.8)

where x1, x2, x3, x4 ∈ G.

Remark 2.8. Similarly we define a 2n-functional q : G→ K. Thus, we can generalize a S. Kurepa’s
result for 2n-functionals in a group G.

3. The non symmetric case

If V is a vector space, which condition is sufficient and necessary so that a twolinear form
F : V 2 → K, K = C or R, can be written as a product of linear forms? i.e. under which condition
F can be written as

F (x, y) = L1(x)L2(y) ,

where L1, L2 : V → K are linear functionals?
A nondegenerate twolinear functional F : V 2 → K can not be written in the form

F (x, y) = L1(x)L2(y) ,

where L1, L2 : V → K are linear functionals, see Theorem 8 in work (see [2]). We recall that F
is nondegenerate if F (x, y) = 0 for every y ∈ V implies that x = 0. On the contrary we have the
following result.

Proposition 3.1. Let V a vector space on K, K = C or R. A mapping F : V 2 → K is twolinear
and satisfies

F (x, y) · F (y, x) = F̂ (x) · F̂ (y) , x, y ∈ V , (3.1)

if and only if there exits linear forms L1, L2 : V → K such that

F (x, y) = L1(x) · L2(y) , x, y ∈ V . (3.2)

The proof of Proposition 3.1 is similar to that of Theorem 2 in Ebanks’s work (see [1]). Note
that Ebanks’s Theorem 2 is more general than Proposition 3.1.

(Some simpler proof for Proposition 3.1, than the one given in Theorem 2 (see [1]), could probably
help us to prove an analogous result for n-linear forms, n > 2).
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