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1. Introduction 

Many industrial processes involve the transfer of heat 

by means of a flowing fluid in either the laminar or 

turbulent regime as well as flowing or stagnant boiling 

fluids. The processes cover a large range of temperatures 

and pressures. Many of these applications would benefit 

from a decrease in the thermal resistance of the heat 

transfer fluids. This situation would lead to smaller heat 

transfer systems with lower capital cost and improved 

energy efficiencies. An innovative technique, which uses a 

mixture of nanoparticles and a base fluid, was first 

introduced by Choi [1] to develop advanced heat transfer 

fluids with substantially higher conductivities. The 

resulting mixture of the base fluid and nanoparticles 

having unique physical and chemical properties is referred 

to as a nanofluid. Flow and heat in a nanofluid over a 

stretching/shrinking sheet have become a hot topic and 

have attracted the interest of many researchers recently. 

The interest in this field has been stimulated due to its 

applications in industrial processes such as in power 

generation, chemical processes, and heating or cooling 

processes. The solid nanoparticles have been suspended 

into the base fluid which has poor heat transfer properties 

in order to increase its thermal conductivity. Choi et al. [2] 

reported that the thermal conductivity of the base fluids 

increases up to approximately two times with the addition 

of a small amount (less than 1% by volume fraction) of 

nanoparticles to the base fluids. A good literature on 

convective flow and applications of nanofluids were done 

in the books by Das et al. [3], and Nield and Bejan [4], and 

in the review papers by Buongiorno [5-7], Kakaç and 
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Pramuanjaroenkij [8], Wong and Leon [9], Saidur et al. 

[10], Wen et al. [11], Mahian et al. [12], and many others. 

The flow induced by a moving boundary is important in 

the study of extrusion processes and is a subject of 

considerable interest in the contemporary literature (Fang 

et al. [13]). For example, materials which are 

manufactured by extrusion processes as well as heat-

treated materials travelling between a feed roll and a wind-

up roll or on conveyor-belts possess the characteristics of 

stretching/shrinking surfaces. Polymer sheets and 

filaments are also manufactured by continuous extrusion 

from a die to a windup roller which is located a finite 

distance away (Sparrow and Abraham [14]). For both 

impermeable and permeable shrinking sheets, multiple 

solutions were discovered (Liao and Pop [15]). Most of 

these solutions are based on the boundary layer 

assumption and therefore do not constitute exact solutions 

of the Navier–Stokes equations (Wang [16]). The 

influence of thermal radiation on boundary layer flow over 

a shrinking sheet in a nanofluid has been studied by Zaimi 

et al. [17]. The partial differential equations are 

transformed to the ODE and are solved by shooting 

alongside with sixth order of Runge-Kutta integration 

technique. It is observed that radiation has dominant effect 

on the heat transfer and the mass transfer rates. In general, 

suction tends to increase the skin friction and heat transfer 

coefficients, whereas injection acts in the opposite 

manner. Bachok et al. [18, 19] have studied the boundary 

layer flow over a stretching/shrinking surface in a 

nanofluid. Finally, we mention the paper by Ibrahim et al. 

[20] on the MHD stagnation point flow and heat transfer 

due to nanofluid towards a stretching sheet. 

In this study, five different types of nanoparticles, 

Silver Ag, Copper Cu, Copper Oxide CuO, Titania 
2TiO  

and Alumina 2 3Al O  were considered in the boundary layer 

flow over a permeable continuous moving surface with 

suction and injection. The governing boundary layer 

equations have been transformed to a two-point boundary 

value problem using similarity variables. These have been 

numerically solved using fourth order Runge–Kutta 

method with shooting technique. The effects of governing 

parameters on fluid velocity, temperature, and particle 

concentration have been discussed. 

2. Mathematical formulation 

Consider a steady flow of a nanofluid in the region 

0y   past a moving semi-infinite permeable flat plate,  as 

shown in Fig. 1, where x  and y  are the Cartesian 

coordinates measured along the plate and are normal to it, 

respectively. It is assumed that the plate moves into or out 

of the origin at the uniform speed U , where U  is the 

constant velocity of the external (inviscid) flow and  is 

the constant moving parameter. 0   corresponds to the 

downstream movement of the plate from the origin and 

0   corresponds to the plate moving into the origin 

(opposing flow). It is also assumed that the mass flux 

velocity is ( )wv x , where ( ) 0wv x   corresponds to the 

suction and ( ) 0wv x   corresponds to the injection or 

withdrawal of the fluid, respectively. Further, we assume 

that the uniform temperature and the uniform nanofluid 

volume fraction at the surface of the plate are wT  and 

,wC while the uniform temperature and the uniform 

nanofluid volume fraction far from the surface of the plate 

are T  and C , respectively (see Kuznetsov and Nield 

[21]). Under these assumptions, the basic nanofluid 

conservation equations are (Buongiorno [5-7] and Tivari 

and Das [22]):  
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boundary conditions of these equations are: 
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(6) 

 

 

here, u and v are the velocity components along the x

and y axes, respectively, T is temperature of the nanofluid, 
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C  is the nanoparticle volume fraction, p  is the pressure, 

f  is the density of the nanofluid, BD  is the Brownian 

diffusion coefficient and TD  is the thermophoretic 

diffusion coefficient, ( ) /( )p fC C   , where ( ) fC  is 

the heat capacity of the fluid and ( ) pC  is the effective 

heat capacity of the nanoparticle material, respectively. 

n f is the effective thermal diffusivity of the nanofluid,

nf is its effective viscosity of the nanofluid, and n f is 

its effective density of the nanofluid, which are given by  

(Khanafer  et al. [23] or Oztop and Abu-Nada [24]): 

f nf
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 (7) 

where f  is the dynamic viscosity of the base fluid being 

proposed by Brinkman [25], n fk  is the thermal 

conductivity of the nanofluid, fk  and sk  are the  thermal  

conductivities of the base fluid and of the solid particles, 

respectively. ( )p nfC is the heat capacitance of the  

nanofluid. Strictly, expressions (7) are restricted to 

spherical (or near spherical) nanoparticles with other 

expressions being required for other shapes of 

nanoparticles. 

We define now the following boundary layer variables  
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where L  is the characteristic length of the plate and 

Re / fU L   is the Reynolds number. Substituting Eq. 

(9) for Eqs. (1) to (5) and using the boundary layer 

approximation in which Re 1 , we obtain the following 

dimensionless boundary layer equations for the problem 

under consideration: 
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with the new boundary conditions as follows: 

, ( ), 1, 1 at 0

1, 0, 0 as

w wu u v v x h y

u h y

 



     

   
 (13) 

We look for a similarity solution to Eqs. (9-12) along 

with the boundary conditions (13) of the following form 

(see Weidman et al. [26]): 
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where  is the stream function which is defined in the 

usual form as /u y   and /v x   . Thus, we 

have: 

'( ), (1 / 2 ( ) '( )u f v x f f          (15) 

where primes denote differentiation with respect to  . In 

order that Eqs. (9-12) have similarity solutions; it is 

necessary that ( )wv x has the following form: 

0( ) (1 / 2 )wv x x f   (16) 

where 0f  is the constant mass flux parameter with 0 0f   

for suction and 0 0f   for injection, respectively. 

Substituting variables (14) for Eqs. (9) to (12), we obtain 

the following ordinary (similarity) differential equations: 
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here Pr is the Prandtl number, Le  is the Lewis number, 

Nb  is the Bronian parameter, and Nt  is the 

thermophoresis parameter, which are defined as: 
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, , ,

( )

f f B w

f B f

T w

f

D C C
Pr Le Nb

D

D T T
Nt

T

  

 












  




 (21) 

The quantities of practical interest in this study are 

the skin friction coefficient fC , the local Nusselt number 

xNu , and the local Sherwood number xSh , which are 

defined as: 
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where w , qw, and qm are the surface shear stress, the 

surface heat flux, and the surface mass flux would be: 
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 Using variables (8) and (14), we obtain: 
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where Re /x fU x   is the local Reynolds number. 

It is worth mentioning to this end that for 0  (pure 

viscous fluid), Eq. (17) with the corresponding boundary 

conditions (20) for ( )f   reduces to Eq. (4a) with the 

boundary conditions (4b,c,d) from the paper by Wedman 

et al. [26]. 

3. Results and discussion 

     Numerical solutions to the nonlinear ordinary 

differential equations (17-19) with the boundary 

conditions (20) were obtained using the fifth–order 

Runge–Kutta [27] with the shooting technique. We find  

 

Figure 1. Physical model and coordinate system:  a) flat 

plate moving out of the origin; b) flat plate moving into 

the origin 

the missing slopes ''(0)f  and '(0) , for some values of 

the governing parameters, namely, the nanoparticle 

volume fraction  , the moving parameter  , and the 

suction/injection parameter 0f  using the Maple and 

Matlab softwares. Five types of nanoparticles were 

considered, namely, Ag, Cu, CuO, 2TiO , and 2 3Al O . 

Following Oztop and Abu-Nada [24], the value of the 

Prandtl number Pr  is taken as 6.2 (for water) and the 

values of the volume fraction parameter   is from 0 to 

0.2 ( 0 0.2  0) in which 0   corresponds to the pure 

(Newtonian) fluid. It is worth mentioning that we have 

used data related to thermophysical properties of the fluid 

and nanoparticles as listed in table 1 to compute each case 

of the nanofluid. The numerical results are summarized in 

Table 2 and Figs. 2 to 16. 

Figs. (2) to (7) show the variation of ''(0)f  (skin-

friction coefficient) with respect to   for Ag, Cu, CuO, 

2TiO , and 2 3Al O - water nanofluids and different values 

of 0f  when 0.3, 0.1, 1, 0.1Nb Nt Le Pr    , and 

0.1  . It is seen that the solution is unique when 0  . 

There are two solutions (upper and lower branches) when 

0c   (opposite flow), and no solution when 

0c   , where c  is the critical value of   for which 
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the solution exists. The values of ''(0)f  are positive when 

1  ,  and they become negative when the value of 

exceeds 1, for all values of the suction/injection parameter 

0f . Physically, the positive value of ''(0)f  means that the 

fluid exerts a drag force on the plate, and the negative 

value means the opposite. The zero value of ''(0)f when 

1   does not mean separation, but it corresponds to the 

equal velocity of the plate and the free stream. A 

comparison of the obtained values c  for several values 

of 0f  with those reported by Weidman et al. [26]  is given 

in Table 2. It is seen that the results are in a very good 

agreement so that we are confident that the present results 

are accurate. 

Fig. (8) shows the variation of the reduced skin-friction 

coefficient ''(0)f  with respect to   for Ag, 

2Cu, CuO, TiO , and 2 3Al O -water nanoparticles when 

0.1,Nb 0.3, Nt 0.1, Le 1, Pr    0 0f  , and 0.1  . 

The skin-friction ''(0)f  increases when the nonoparticles 

have the order of 2 2 3Ag Cu CuO TiO Al O    . As it 

is clear from Fig. (7), the difference between two 

nonoparticles 2TiO  and 2 3Al O  is so less compared to 

other particles. 

Figs. (9) and (10) show the variation of '(0)  with 

respect to   for Ag- water  and 2 3Al O - water nanofluids 

and different values of the 0f  when   

0.1,Nb 0.3, Nt 0.1, Le 1, Pr    0 0f  ,and 0.1  . 

It is seen that the solution is unique when 0  , while 

dual solutions are found to exist when 0   ̧ i.e. when 

the plate and the free stream move in the opposite 

directions. The values of (0)- h'  are positive for all values 

(positive or negative) of   and for all values of the 

suction/injection parameter 0f . 

The variation of ''(0)f  and '(0)  with respect to   

for Ag and 2 3Al O - water nanoparticles and different 

values of nanoparticle volume fraction  ( 0 and 0.2  ) 

when 0.1Nb 0.3, Nt 0.0, Le 1, Pr    , and 0 0f   

(impermeable plate) has been shown in Figs. (11) to (14). 

The values of ''(0)f are positive when 1  , and they 

become negative when the value of  exceeds 1, for both 

values of the parameter   considered. The values of 

'(0)  are positive for all values of  and for both values 

of nanoparticle volume fraction  . The values of ''(0)f  

and '(0)  increase when the variable  increases from 0  

Figure 2. Variation of the reduced skin-friction coefficient 

''(0)f  with   for 0   and different values of 0f  when 

Nt = 0.1, Nb=0.3, Le=1, and Pr=6.2. 
 

 
Figure 3. Variation of the reduced skin-friction coefficient 

''(0)f  with  for Ag-water nanofluid and different values 

of 0f  when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and 0.1  . 

 

to 0.2. The variation of c for different values of   (

0,  0.2  ) is very fiddling. 

    Figs. (2) to (14) also show that for a particular value of 

0f , the solution exists up to the certain critical value of 

0c   for 0  . Beyond this value, the boundary layer 

approximations break down, and thus the numerical 
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Figure 4. Variation of the reduced skin-friction coefficient 

''(0)f  with  for Cu-water nanofluid and different values 

of 0f  when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and 0.1  . 

 

 

Figure 5. Variation of the reduced skin-friction coefficient 
''(0)f  with  for CuO-water nanofluid and different 

values of 0f  when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and 

0.1  . 

 
solution cannot be obtained. The boundary layer separates 

from the surface at 0c   . Based on our 

computations, the critical values of c are presented in 

Table (2), which show that for all nanoparticles 

considered, the values of c increase as 0f  increases.  

 

Figure 6. Variation of the reduced skin-friction coefficient 

''(0)f  with  for 2TiO -water nanofluid and different 

values of 0f  when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and 

0.1  . 

 

Figure 7. Variation of the reduced skin-friction coefficient 

''(0)f  with  for 2 3Al O -water nanofluid and different 

values of 0f  when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and 

0.1  . 

hence, suction delays the boundary layer separation, while 

injection accelerates it. 
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Figure 8. Variation of the reduced skin-friction coefficient 

''(0)f with   for 2 2 3Ag, Cu, CuO, TiO ,Al O -water 

nanofluid when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and 
0.1  . 

 

Figure 9. Variation of '(0)  with   for Ag -water 

nanofluid when Nt= 0.1, Nb=0.3, Le=1, Pr=6.2, and 
0.1  . 

 

        Finally, Figs. (15) and (16) present the velocity

'( )f   and the temperature ( )   profiles for Ag, Cu, 

CuO, 2TiO , and 2 3Al O - water nanofluids when

 

Figure 10. Variation of '(0)  with  for 2 3Al O -water 

nanofluid when Nt=0.1, Nb=0.3, Le=1, Pr=6.2, and
0.1  . 

 

 

Figure 11. Variation of the reduced skin-friction 
coefficient ''(0)f  with   for Ag -water nanofluid and 

different values of   when Nt=0.1, Nb=0.3, Le=1, 

Pr=6.2, and 0 0f  . 

 

0.1,Nb 0.3, Nt 0.1, Le 1, Pr    0 0f  , 0.1  , and 

0.3   . It can be seen that all these profiles 

asymptoticaly satisfied all asymptotically the far field  
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Figure 12. Variation of the reduced skin-friction 

coefficient ''(0)f  with   for 2 3Al O -water nanofluid and 

different values of   when Nt= 0.1, Nb=0.3, Le=1, Pr= 

6.2, and 0 0f  . 

 

 

Figure 13. Variation of '(0)  with  for Ag -water 

nanofluid and different values of   when Nt=0.1, Nb=0.3, 

Le=1, Pr=6.2, and 0 0f  . 

 
boundary conditions equation (19). In these figures the 

solid lines and the dash lines are for the upper and lower 

branch solutions, respectively.  

 

 
Figure 14. Variation of '(0)  with  for  2 3Al O -water 

nanofluid and different values of   when Nt=0.1, Nb=0.3, 

Le=1, Pr=6.2, and 0 0f  . 

 

 
Figure 15. Velocity profile for 2 2 3Ag, Cu, CuO, TiO ,Al O

- water nanofluids when Nt=0.1, Nb=0.3, Le=1, Pr=6.2,

0.1  , 0.1   , and 0 0f  . 

 
These velocity and temperature profiles support the 

existence of dual nature of solutions presented in Figs. (2)  

up to (9). The velocity profiles for the upper and lower 

branch solutions when 0.3    in Fig. (15) show that the 

velocity gradient at the surface is positive, which produces 

positive value of the skin friction coefficient. The 

temperature gradient at the surface as shown in Figs. (14) 

and (15) is in agreement with the curves shown in Figs. (2) 

up to (9). 
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4. Conclusion 

This paper have been theoretically the existence of dual 

similarity solutions in boundary layer flow over a moving 

surface immersed in a nanofluid with suction and injection 

effects have been theoretically studied. The governing 

boundary layer equations were solved numerically using 

the fifth–order Runge–Kutta method with shooting 

 
Figure 16. Temperature profiles for 2 2 3Ag, Cu, CuO, TiO ,Al O - water nanofluids when Nt=0.1, Nb=0.3, Le=1, 

Pr=6.2, 0.1  , 0.1   , and 0 0f  . 

 
 

Table 1.Thermophysical properties of fluid and nanoparticles (Oztop and Abu-Nada [22]) 

Physical properties Fluid phase (water) Ag Cu  CuO 2 3Al O  
2TiO  

( )pC J/kg K  4179 235 385 531.8 765 686.2 

3(kg/m )  997.1 10500 8933 6320 3970 4250 

(W /mK)k  0.613 429 400 76.5 40 8.9538 

 
 

Table 2. Comparison of the values of c  for various 0f  when 0  (pure fluid) 

0f  c  c  

Weidman et al. [24 ] Present 

-0.50 -0.1035 -0.1035 

-0.25 -0.2125 -0.2181 

0.00 -0.3541 -0.3541 

0.25 -0.5224 -0.5227 

0.50 -0.7200 -0.7202 
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technique using the Matlab 12a software. Discussion were 

carried out for the effects of nanoparticle volume fraction 

 ,  suction/injection parameter 0f , and the moving 

parameter   on the skin friction coefficient ''(0)f  and 

the local Nusselt number '(0) . It was found that dual 

solutions exist when the plate and the free stream move in 

the opposite directions. It was also shown that introducing 

the suction increases the range of  for which the solution 

exists, and in consequence delays the boundary layer 

separation, while it was found that the injection acts in the 

opposite manner. 
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Nomenclature 

pc  Specific heat capacity  

fC  skin friction coefficient 

f  dimensionless stream function 

k  thermal conductivity  

xNu  local Nusselt number 

Pr  Prandtl number 

wq  surface heat flux 

xRe  local Reynolds number 

wT  plate temperature 

T  fluid temperature 

T  ambient temperature 

,u v  velocity components along the  and 
directions, respectively 

wU  plate velocity 

U  free stream velocity 
,u v  

 
Components of velocity 

,x y  Cartesian coordinates along and 
normal to the surface, respectively 

Greek letters 

  Thermal diffusivity 

  nanoparticle volume fraction 
  Dynamic viscosity 

  Kinematics viscosity 

  Density  

  Dimensionless temperature 
  velocity ratio parameter 

w  surface shear stress 
  stream function 


 similarity variable 
Subscript 
s solid 
f Fluid 
nf nanofluid 
  ambient condition 
w  condition at the surface of the plate 
Superscript 

'  
differentiation with respect to   
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