
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,736 |
تعداد دریافت فایل اصل مقاله | 7,656,160 |
آنتن میکرواستریپ جهتدار با استفاده از رولایه سطوح انتخابگر فرکانسی در محفظه تشدید فبری پرو | ||
مدل سازی در مهندسی | ||
مقاله 2، دوره 13، شماره 42، مهر 1394، صفحه 17-25 اصل مقاله (1.16 M) | ||
شناسه دیجیتال (DOI): 10.22075/jme.2017.1712 | ||
نویسندگان | ||
زهرا موسوی راضی؛ پژمان رضائی* ؛ نیلوفر بهادری | ||
دانشگاه سمنان | ||
تاریخ دریافت: 09 بهمن 1395، تاریخ بازنگری: 25 شهریور 1396، تاریخ پذیرش: 09 بهمن 1395 | ||
چکیده | ||
در سالهای اخیر ساختارهای محفظه تشدید فبری پروت برای افزایش جهتدهی در آنتنها مورد توجه قرار گرفته است. محفظه تشدید، از یک صفحه زمین به عنوان بازتابنده کامل و یک صفحه رولایه به عنوان بازتاب کننده ناقص تشکیل شده است. در این مقاله از سلول واحدهای فرامواد به عنوان صفحه بازتاب کننده ناقص و از آنتن میکرواستریپ به عنوان آنتن تشعشع کننده اصلی در محفظه تشدید فبری پروت بهره گرفته شده است. همچنین تاثیر استفاده از فرامواد در رولایه آنتن فبری پروت بر روی پارامترهای تشعشعی آنتن به صورت استفاده از چند رولایه مختلف در محفظه تشدید فبری پروت بررسی شده است. در نهایت به عنوان یک طرح جدید با کارایی تشعشعی بهتر آرایهای از سلول واحدهای امگا برای رولایه پیشنهاد و طراحی شده است. سپس کارایی آنتن تشعشع کننده با این رولایه با رولایهای از سلول واحدهای پچ و حلقههای شکافدار تشدیدی مقایسه شده است. شبیهسازیها با نرم افزار CST-Microwave Studio انجام شده و با استفاده از نرم افزار Ansoft HFSS صحت نتایج حاصل بررسی و تایید شده است. | ||
کلیدواژهها | ||
آنتن میکرواستریپ؛ جهتدهی؛ محفظه تشدید فبری پروت؛ صفحه بازتابکننده ناقص؛ سلول واحد؛ فرامواد و حلقههای شکافدار تشدیدی | ||
عنوان مقاله [English] | ||
Directional Microstrip Antenna by using Metamaterial Superstrate in Fabry-Perot Cavity | ||
نویسندگان [English] | ||
Zahra Mousavi Razi؛ Pejman Rezaei؛ Niloofar Bahadori | ||
چکیده [English] | ||
Recently Fabry-Perot (FP) resonator structures for enhancing directivity have found wide use in antenna design. FP Resonator antenna generally consists of primary radiator backed with a metal ground plane and a partially reflective surface (PRS). In this paper metamaterial unit cells is utilized as PRS in FP cavity for increasing microstrip antenna directivity. As a novel design an array of Omega unit cells is proposed and designed. FP antenna performance with Omega cover and superstrate of patch and SRR is simulated and compared. For validation of purposes, the antenna is designed and simulated through using of two different 3D full-wave electromagnetic simulation tools CST Microwave Studio and Ansoftâs High Frequency Structure Simulator (HFSS). | ||
کلیدواژهها [English] | ||
Microstrip Antenna, Fabry Perot Resonant Cavity, Partially Reflective Surface and Metamaterial Unit Cell | ||
مراجع | ||
[1] G. V. Trentini, “Partially reflecting sheet array,” IEEE Trans. Antennas Propag., vol. 4, pp. 666–671, 1956. [2] N. G. Alexopoulos and D. R. Jackson, “Fundamental superstrate effectson printed circuit antennas,” IEEE Trans. Antennas Propag., vol. 32, pp. 807-816, Aug. 1984. [3] K. Iizuka, “Elements of photonics,” John Wiley & Sons, New York, vol. 1, 2002. [4] D. R. Jackson and N. G. Alexopoulos, “Gain enhancement method for printed circuit antennas,” IEEE Trans. Antennas Propag., vol. 33, pp. 976-987, Sep. 1985. [5] Z. C. Ge, W. X. Zhang, Z. G. Liu and Y. Y. Gu, “Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover,” Microwave Opt. Tech. Lett. vol. 48, no. 7, pp. 1272-1274, 2006. [6] T. Akalin, J. Danglot, O. Vanbesien and D. Lippens, “A highly directive dipole antenna embedded in a Fabry-Perot type cavity,” IEEE Microwave Wireless Comp. Lett., vol. 12, no. 2, pp. 48-50. 2002. [7] Y. Sun, Z. N. Chen, Y. Zhang, H. Chen, and T. S. P. See. “Subwavelength substrate-integrated Fabry-Perot cavity antennas using artificial magnetic conductor,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 30-35, 2012. [8] A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimized partially reflective surfaces,” IEEE Proc-Microw. Antennas Propag., vol. 148, no. 6, pp. 345-350, Dec. 2001. [9] P. Deo, A. Mehta, D. Mirshekar-Syahkal and H. Nakano, “An HIS-Based spiral antenna for pattern reconfigurable applications,” IEEE Antennas and Wireless Propag. Lett., vol. 8, pp. 196-199, 2009. [10] L. O. Goldstone and A. A. Oliner, “Leakywave antennas I: Rectangular waveguides,” IRE Trans. Antennas Propag., vol. 7, pp. 307-319, Oct. 1959. [11] A. Ghasemi, S. N. Burokur, A. Dhouibi and A. de Lustrac, “High beam steering in Fabry–Pérot leaky-wave antennas,” IEEE Antennas Wireless Propag. Lett., vol. 12, 2013. [12] A. Pirhadi, M. Hakkak, F. Keshmiri and R. Karimzadeh Baee, “Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor,” IEEE Trans. Antenna Propag., vol. 55, no. 6, June 2007. [13] K. Mahdjoubi, T. H. Vu, A. C.Tarot and S.Collardey, “An overview of the design and properties of EBG antennas”, EUCAP 2010, Barcelona, Spain, pp. 12-16, April 2010. [14] M. M. Fakharian, P. Rezaei, “Numerical analysis of mushroom-like and uniplanar EBG structures utilizing spin sprayed Ni (–Zn)–Co ferrite films for planar antenna,” European Journal of Scientific Research, vol. 73, no. 1, pp. 41-51, 2012. [15] V. G. Veselago. “The electromagnetcis of substance with simultaeously negative values of ε, μ,” Sov. Phys. Usp, vol. 10, pp. 509-514, 1968. [16] N. Engheta, and R.W. Ziolkowski “Metamaterials physiscs and engineering exporations,” IEEE press, 2006. [17] I. Arghand Lafmajani and P.Rezaei, “Miniaturized Rectangular Patch Antenna Loaded with Spiral/Wires Metamaterial,” European Journal of Scientific Research, vol. 65, no. 1, pp. 121-130, 2011. [18] F. Yang and Y. Rahmat-Samii, “Electromagnetic band gap structures in antenna engineering,” Cambridge University Press, 2008. [19] A.R. Vaidya, R.K. Gupta, S. K. Mishra, and J. Mukherjee, “High-Gain low side lobe level fabry perot cavity antenna with feed patch array,” Progress In Electromagnetics Research C, vol. 28, pp. 223-238, 2012. [20] Z. Mousavi Razi, P. Rezaei and M. E. Zaman, “Improving the bandwidth of high gain Fabry-Perot antenna using EBG substrate,” International Journal of Natural and Engineering Sciences, vol.7, no. 2, pp. 85-88, 2013. [21] I. Arghand Lafmajani and P. Rezaei, “A novel frequency-selective metamaterial to improve helix antenna,” Journal of Zhejiang University Science C, vol. 13, no. 4, pp. 365-375, April 2012. [22] D. B. Brito, A. G. d'Assunção, R. H. C. Maniçoba and X. Begaud, “Metamaterial inspired Fabry-Perot antenna with cascaded frequency selective surfaces,” Microwave Opt. Technol. Lett., vol. 55, no. 5, pp. 981-985, 2013. [23] Z. Mousavi Razi, P. Rezaei and N. Bahadori, “Directivity Improvement of Microstrip Antenna with S Metamaterial Unit Cell as Fabry-Perot Cavity Superstrate,” 2nd Asian Symposium on Electromagnetics and Photonics Engineering, pp. 127-128, Iran, August 2013. [24] L. Long, L. Shuo and C. H. Liang, “Metamaterial based fabry perot resonator for ultra-low profile high gain antenna,” Microwave Opt. Technol. Lett., vol. 54, no. 11, pp. 2620-2623, Nov. 2012. [25] Y. Sun, Z. N. Chen, Y. Zhang, H. Chen and T. S. P. See, “Subwavelength substrate-integrated Fabry-Pérot cavity antennas using artificial magnetic conductor,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 30-35, 2012. [26] Z. Mousavi Razi and P. Rezaei, “Design of Fabry Perot antenna and compensating bandwidth with defected ground structure,” IEEE AP-S Int.Symposium on Antennas and Propagation, 2013. [27] Z. Mousavi Razi, N. Bahadori and P. Rezaei, “Implementation of SRR array as Fabry-Perot and uniplanar compact EBG,” IEEE AP-S Int. Symposium on Antennas and Propagation, 2013. [28] W. Guo, L. He, B. Li, T. Teng, and X.-W. Sun, “A wideband and dual-resonant terahertz metamaterial using a modified SRR structure,” Progress In Electromagnetics Research, vol. 134, pp. 289-299, 2013. [29] R. K. Gupta and J. Mukherjee, “Effect of superstrate material on a high gain antenna using array of parasitic patches,” Microwave Opt. Tech. Lett., vol. 52, pp. 82-88. 2010. [30] A. Vaidya, R. K. Gupta, J. Mukherjee and S.K. Mishra, “Low cost, efficient, high gain and wideband microstrip antenna fed yagi array in fabry perot cavity,” Progress In Electromagnetics Research symposium, pp. 1841-1845, April 2012. [31] J.R. Jamesn and P.S. Hall, “Handbook of microstrip antennas,” Peter Peregrinus Ltd., London, vol.1, 1989. [32] M. M. I. Saadoun and N. Engheta, “A reciprocal phase shifter using a novel pseudochiral or medium,” Microwave Opt. Tech. Lett., vol. 5, pp. 184-188, Apr. 1992. [33] Z. C. Ge, , W. X. Zhang, Z. G. Liu, “Broadbandand high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover, ” Microw. Opt. Tech. Lett., vol. 7, pp. 1272-1274, 2006. [34] I. Arghand Lafmajani, Z. Mousavi Razi and P. Rezaei, “Multifaceted frequency-selective split ring resonators (SRR),” IEEE AP-S Int. Symposium on Antennas and Propagation, July 2012. [35] Z. Mousavi Razi, N. Bahadori and P. Rezaei, “A Comparative Study on the Directivity Enhancement of the Patch, SRR and Omega Unit Cells as Fabry-Perot Superstrate,” The 2nd Asian Symp. on Electromagn. & Photon. Eng., pp. 147-148, Iran, August 2013. [36] J. B. Pendry, A. J. Holden, D.J. Robbins, and W.J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys.: Condens. Matter, vol. 10, pp. 4785-4809, 1998.
| ||
آمار تعداد مشاهده مقاله: 1,188 تعداد دریافت فایل اصل مقاله: 825 |