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Abstract

In this paper, we introduce a concept of a generalized c-distance in ordered cone b-metric spaces
and, by using the concept, we prove some fixed point theorems in ordered cone b-metric spaces.
Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang
[Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point theorems on generalized distance in
ordered cone metric spaces, J. Computers and Mathematics with Application. 61 (2011), 1254-1260].
Furthermore, we give some examples and an application to support our main results.
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1. Introduction

Since the concept of a cone b-metric was introduced by N. Hussain and M. H. Shah [13], many fixed
point theorems, which generalize some relative theorems on cone metric spaces (see [12]–[15]) and
b-metric spaces (see [4]–[8]), have been proved for mappings on normal or non-normal cone b-metric
spaces by some authors (see [11, 1] and the references contained therein). In this paper, we consider
a new concept of a generalized c-distance in cone b-metric spaces, which is a generalization of c-
distance of paper [7], prove theorems for some contractive type mappings in a cone b-metric space
by using the generalized c-distance and give an application on the existence of solution of an integral
equation.

We need the following definitions and results, consistent with [12].
Let E be a real Banach space and let P be a subset of E, intP denotes the interior of P . The

subset P is called a cone if and only if
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(i) P is closed, nonempty and P 6= {θ},

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ,

(iii) x ∈ P and −x ∈ P ⇒ x = θ.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if
y − x ∈ P . We shall write x < y if x ≤ y and x 6= y, while x � y will stand for y − x ∈ intP . A
cone P is called normal if there is a number N > 0 such that for all x, y ∈ P ,

θ ≤ x ≤ y implies ‖ x ‖≤ N ‖ y ‖ .

The least positive number satisfying the above inequality is called the normal constant of P .

Definition 1.1. ([12]) Let X be a nonempty set. Suppose that the mapping d : X × X → E
satisfies:

(i) θ < d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2. ([13]) Let X be a nonempty set and let s ≥ 1 a given real number. A mapping
d : X ×X → E is said to be a cone b-metric if and only if for all x, y, z ∈ X the following conditions
are satisfied:

(i) θ < d(x, y) with x 6= y and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a cone b-metric space.

Definition 1.3. ([13]) Let (X, d) be a cone b-metric space. Then we say that {xn} is:

(i) a Cauchy sequence if for every c ∈ E with c � 0, there is N ∈ N such that for all n,m >
N, d(xn, xm)� c;

(ii) a convergent sequence if for every c ∈ E with c � 0, there is N ∈ N such that for all
m > N, d(xm, x)� c for some fixed x in X.

A cone b-metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Remark 1.4. (i) If E is a real Banach space with a cone P and α ≤ λα, where α ∈ P and
0 < λ < 1, then α = θ.

(ii) If c ∈ intP , an → θ, as n→∞. Then there exists a positive integer N such that an � c for all
n ≥ N .
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Definition 1.5. ([7]) Let (X, d) be a cone metric space, then a function q : X ×X → E is called
a c−distance on X if the following conditions are satisfied:

(q1) θ ≤ q(x, y) for all x, y ∈ X;

(q2) q(x, y) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;

(q3) for each x ∈ X and n ≥ 1, if q(x, yn) ≤ u for some u = ux ∈ P, then q(x, y) ≤ u whenever {yn}
is a sequence in X converging to a point y ∈ X;

(q4) for all c ∈ E with θ � c, there exists e ∈ E with 0� e such that q(z, x)� e and q(z, y)� e
imply d(x, y)� c.

Definition 1.6. ([7]) A pair (f, g) of self-mappings on a partially ordered set, (X,v) is said to be
weakly increasing if fx v gfx and gx v fgx holds for all x ∈ X.

2. Main results

Definition 2.1. Let (X, d) be a cone metric space, then a function q : X × X → E is called a
c−distance on X if the following conditions are satisfied:

(q1) θ ≤ q(x, y) for all x, y ∈ X;

(q2) q(x, y) ≤ s(q(x, y) + q(y, z)) for all x, y, z ∈ X;

(q3) for each x ∈ X and n ≥ 1, if q(x, yn) ≤ u for some u = ux ∈ P, then q(x, y) ≤ su whenever
{yn} is a sequence in X converging to a point y ∈ X;

(q4) for all c ∈ E with θ � c, there exists e ∈ E with 0� e such that q(z, x)� e and q(z, y)� e
imply d(x, y)� c.

We introduce the concept of generalized c-distance on a cone b-metric space (X, d), which is a
generalization of c-distance of Yeol Je Cho,Reza Saadati and Shenghua Wang [7]. Now, we give
some examples of the generalized c-distance, as follows, which is a c-distance, and generalizes the
c-distance.

Example 2.2. Let (X, d) be a cone b-metric space, let s ≥ 1 and P be a normal cone. Put q(x, y) =
1
s
d(u, y) for all x, y ∈ X, where u ∈ X is a fixed point, then q is a generalized c-distance.

Proof . we prove q is a generalized c-distance on X.

(q1) since d(u, y) ≥ θ , we have 1
s
d(u, y) = q(x, y) ≥ θ;

(q2) since d(u, z) ≤ sd(u, y) + sd(u, z), i.e., sq(x, z) ≤ s2q(x, y) + s2q(y, z), i.e., q(x, z) ≤ sq(x, y) +
sq(y, z);

(q3) is obvious;

(q4) d(x, y) ≤ sd(x, u) + sd(u, y) = sd(u, x) + sd(u, y) = s2q(z, x) + s2q(z, y).

�
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Remark 2.3. (1) q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X.

(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Example 2.4. Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞) and define a mapping
d : X ×X → E by

d(x, y) = |x− y|s, s = {1, 2}

for all x, y ∈ X. Then (X, d) is a cone b-metric space. Define a mapping q : X × X → E by
q(x, y) = ys for all x, y ∈ X. Then q is a generalized c-distance. In fact (q1) and (q3) are immediate.
From

zs = q(x, z) ≤ sq(x, y) + sq(y, z) = sys + szs,

it follows that (q2) holds. From d(x, y) = |x − y|s ≤ xs + ys = q(z, x) + q(z, y), it follows that (q4)
holds. Hence q is a generalized c-distance.

Example 2.5. Let
E = C1

R[0, 1]

with
‖x‖ = ‖x‖∞ + ‖x′‖∞

and
P = {x ∈ E : x(t) ≥ 0

on [0, 1]} (this cone is not normal). Let X = [0,∞) and define a mapping d : X ×X → E by

d(x, y) = |x− y|sϕ, s = {1, 2}

for all x, y ∈ X, where ϕ : [0, 1] → R such that ϕ(t) = et. Then (X, d) is a cone b-metric space.
Define a mapping q : X ×X → E by q(x, y) = (x + y)sϕ for all x, y ∈ X. Then q is a generalized
c-distance. In fact, (q1) and (q3) are immediate. From

(x+ z)sϕ = q(x, z) ≤ s(x+ y)sϕ+ s(y + z)sϕ = sq(x, y) + sq(y, z),

it follows that (q2) holds. From

d(x, y) = |x− y|sϕ ≤ s(x− z)sϕ+ s(y − z)sϕ ≤ s(x+ z)sϕ+ s(y + z)sϕ = sq(z, x) + sq(z, y),

it follows that (q4) holds.

Theorem 2.6. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone b-
metric space. Let q be a generalized c-distance on X and f : X → X be a nondecreasing mapping
with respect to v. Suppose that the following three assertions hold:

(i) there exist a, b > 0 with sa+ sb < 1 such that

q(fx, fy) ≤ aq(x, y) + bq(x, fx),

for all x, y ∈ X with x v y.

(ii) there exists x0 ∈ X such that x0 v fx0.

(iii) if (xn) is nondecreasing with respect to v, and converges to x, we have xn v x as n→∞.
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Then f has a fixed point x′ ∈ X. If v = fv, then q(v, v) = θ.

Proof . If fx0 = x0, then the proof is finished. Suppose that fx0 6= x0. Since x0 v fx0 and f is
nondecreasing with respect to v, we obtain by induction,

x0 v fx0 = x1 v f 2x0 = x2 v · · · v fnx0 = xn v fn+1x0 = xn+1 v · · · .

Since

q(xn, xn+1) = q(fxn−1, fxn) 6 aq(xn−1, xn) + bq(xn−1, fxn−1)
= (a+ b)q(xn−1, xn),

we have q(xn, xn+1) ≤ hq(xn−1, xn) ≤ · · · ≤ hnq(x0, x1), where h = a+ b, for all n ≥ 1.
Let m > n. Then we have

q(xn, xm) ≤ sq(xn, xn+1) + sq(xn+1, xm)
≤ sq(xn, xn+1) + (s2q(xn+1, xn+2) + s2q(xn+2, xm))
≤ sq(xn, xn+1) + s2q(xn+1, xn+2) + · · ·+ sm−nq(xm−1, xm)
≤ shnq(x0, x1) + s2hn+1q(x0, x1) + · · ·+ sm−nhm−1q(x0, x1)

= shn(1−(sh)m−n)
1−sh q(x0, x1)

≤ shn

1−shq(x0, x1),

where 0 < sh = sa + sb < 1, so 0 < h = a + b < 1, we show that {xn} is a Cauchy sequence in X.
In fact, let c ∈ E with θ � c be give, since { shn

1−shq(x0, x1)} converges to θ, from Remark 1.4, then

there exists a positive integer N such that shn

1−shq(x0, x1)� c. for all n ≥ N, hence choose e = c, then
there exists a positive integer N for all n ≥ N, such that

q(xn, xn+1)� e, q(xn, xm)� e,

for any m > n > N and hence
d(xn+1, xm)� c.

Since X is complete, there exists a point x′ ∈ X such that xn → x′ as n→∞.

q(xn−1, xm) ≤ sq(xn−1, xn) + sq(xn, xm)

≤ shn−1q(x0, x1) + s2hn

1−shq(x0, x1),

where 0 < h = a+ b < 1 for all m > n > 1, from (q3), it follows that

q(xn−1, x
′) ≤ s2hn−1q(x0, x1) +

s3hn

1− sh
q(x0, x1),

q(xn, fx
′) = q(fxn−1, fx

′) ≤ aq(xn−1, x
′) + bq(xn−1, xn).

For any c ∈ E with θ � c, there exists a positive integer n0 such that q(xn, fx
′)� c, for all n ≥ n0

and q(xn, x
′)� c as n→∞, by (q4) with e = c, it follows that d(fx′, x′)� c as n→∞, this shows

that fx′ = x′.
Suppose that v = fv. Then we have

q(v, v) = q(fv, fv) ≤ aq(v, v) + bq(v, fv) = (a+ b)q(v, v),

since a+ b < 1, we have q(v, v) = θ. This completes the proof. �
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Theorem 2.7. Let (X,v) be a partially ordered set and suppose that (X, d) be complete cone b-
metric space. Let q be a generalized c-distance on X and f : X → X, g : X → X. be two weakly
increasing mappings with respect to v. Suppose that there exist a, b > 0 with sa+ sb < 1 such that:

(i)
q(fx, gy) ≤ aq(x, y) + bq(x, fx)

and
q(gx, fy) ≤ aq(x, y) + bq(x, gx)

for all comparable x, y ∈ X.

(ii) if (xn) is nondecreasing with respect to v, and converges to x, we have xn v x as n→∞.

Then f and g have a common fixed point x′ ∈ X. If v = fv = gv, then q(v, v) = θ.

Proof . Let x0 be an arbitrary point in X and define a sequence {xn} in X as follow:

x2n+1 = fx2n, x2n+2 = gx2n+1

for all n ≥ 0. Since f and g are weakly increasing, We have x1 = fx0 v gfx0 = gx1 = x2 and
x2 = gx1 v fgx1 = fx2 = x3. Continuing this process, we have

x1 v x2 v · · · v xn v xn+1 v · · · ,

that is, xn is nondecreasing. we have

q(x2n+1, x2n+2) = q(fx2n, gx2n+1)
≤ aq(x2n, x2n+1) + bq(x2n, fx2n)
= aq(x2n, x2n+1) + bq(x2n, x2n+1)
= (a+ b)q(x2n, x2n+1),

which implies that
q(x2n+1, x2n+2) ≤ hq(x2n, x2n+1),

where h = a+ b < 1. Similarly, it can be shown that

q(x2n+2, x2n+3) ≤ hq(x2n+1, x2n+2).

Therefore, we have
q(xn, xn+1) ≤ hq(xn−1, xn) ≤ · · · ≤ hnq(x0, x1).

Let m > n , as in the proof of Theorem 2.6, we have

q(xn, xm) ≤ shn

1− sh
q(x0, x1),

so {xn} is a Cauchy sequence in X. Since X is complete, there exists a point x′ ∈ X ,such that
xn → x′ as n→∞.
We have

q(x2n+1, xm) ≤ sq(x2n+1, x2n+2) + sq(x2n+2, xm)

≤ sh2n+1q(x0, x1) + s2h2n+2

1−sh q(x0, x1),
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for all m > n > 1, where 0 < h = a+ b < 1.
From (q3), it follows that

q(x2n+1, x
′) ≤ s2h2n+1q(x0, x1) +

s3h2n+2

1− sh
q(x0, x1).

Since
q(x2n+2, fx

′) = q(gx2n+1, fx
′)

≤ aq(x2n+1, x
′) + bq(x2n+1, gx2n+1)

= aq(x2n+1, x
′) + bq(x2n+1, x2n+2),

for any c ∈ E with θ � c, there exists a positive integer n0 such that q(x2n+2, fx
′) � c, for all

n ≥ n0.
Since

q(x2n+1, fx
′) ≤ sq(x2n+1, x2n+2) + sq(x2n+2, fx

′),

we have q(x2n+1, fx
′)� c, as n→∞

and
q(xn, fx

′)� c as n→∞, q(xn, x
′)� c as n→∞.

By (q4) with e = c, it follows that d(fx′, x′)� c, as n→∞.
This shows that fx′ = x′.

Since
q(x2n, xm) ≤ sq(x2n, x2n+1) + sq(x2n+1, xm)

≤ sh2nq(x0, x1) + s2h2n+1

1−sh q(x0, x1), ,

for all m > n > 1, where 0 < h = a+ b < 1.
From (q3), it follows that

q(x2n, x
′) ≤ s2h2nq(x0, x1) +

s3h2n+1

1− sh
q(x0, x1).

Since
q(x2n+1, gx

′) = q(fx2n, gx
′) ≤ aq(x2n, x

′) + bq(x2n, fx2n)
= aq(x2n, x

′) + bq(x2n, x2n+1),

we have q(x2n+1, gx
′)� c, as n→∞.

Since
q(x2n, gx

′) ≤ sq(x2n, x2n+1) + sq(x2n+1, gx
′),

we have q(x2n, gx
′)� c, as n→∞

and q(xn, gx
′)� c, as n→∞, q(xn, x

′)� c, as n→∞.
By (q4) with e = c, it follows that d(gx′, x′)� c, as n→∞. This shows that gx′ = x′.
Suppose that v = fv = gv. Then we have

q(v, v) = q(fv, gv) ≤ aq(v, v) + bq(v, fv) = (a+ b)q(v, v).

Since a+ b < 1, we have q(v, v) = θ. This completes the proof. �

Remark 2.8. Compared to Theorem 3.3 in [7], Theorem 2.7 in this paper presents a method without
the continuity of the mappings.

We give an example to illustrate Theorem 2.6.
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Example 2.9. Let E = R, and P = {x ∈ E : x ≥ 0}. Let X = [0, 1] and define a mapping
d : X × X → E, d(x, y) = |x − y|2 for all x, y ∈ X. Then (X, d) is a cone b-metric space. Define
a mapping q : X × X → E by q(x, y) = y2 for all x, y ∈ X and let an order relation v defined by
x v y ⇔ x ≤ y. Then q is a generalized c-distance on X. If f(x) = x2

4
, for all x 6= 1 and f(1) = 1

2
.

Let a = 1
4
, b = 1

5
, then f satisfies the assertion of Theorem 2.6. Moreover, 0 is a fixed point of f .

Proof . Firstly, we prove (X, d) is a cone b-metric space.

(1) d(x, y) = |x− y|2 ≥ 0, d(x, y) = 0⇔ x = y;

(2) |x− z|2 ≤ 2|x− y|2 + 2|y − z|2, we have d(x, z) ≤ 2d(x, y) + 2d(y, z);

(3) d(x, y) = |x− y|2 = |y − x|2 = d(y, x).

Next, we prove q is a generalized c-distance on X.

(q1) q(x, y) = y2 ≥ 0;

(q2) z2 = q(x, z) ≤ 2q(x, y) + 2q(y, z) = 2y2 + 2z2, .ie., q(x, z) ≤ 2q(x, y) + 2q(y, z);

(q3) is obvious;

(q4) d(x, y) = |x− y|2 ≤ x2 + y2 = q(z, x) + q(z, y).

Finally, we prove f satisfies the assertion of Theorem 2.6.

(i) If x = y = 1, then we have

q(fx, fy) = q(
1

2
,
1

2
) =

1

4
, aq(x, y) =

1

4
q(1, 1) =

1

4
, bq(x, fx) =

1

20
,

we get q(fx, fy) ≤ aq(x, y) + bq(x, fx).

(ii) If x 6= 1 and y = 1, then we have

q(fx, fy) = q(
x2

4
,
1

2
) =

1

4
, aq(x, y) =

1

4
q(x, 1) =

1

4
, bq(x, fx) = bq(x,

x2

4
) =

x4

80
,

we get q(fx, fy) ≤ aq(x, y) + bq(x, fx).

(iii) If x 6= 1, y 6= 1, then we have

q(fx, fy) = q(
x2

4
,
y2

4
) =

y4

16
, aq(x, y) =

y2

4
, bq(x, fx) =

x4

80
,

since 0 ≤ y < 1, we have y4

16
≤ y2

4
and q(fx, fy) ≤ aq(x, y) + bq(x, fx).

�

Remark 2.10. (i) (X, d) in Example 2.9 is not only a cone metric space, but also a cone b-metric
space.

(ii) The mapping f in Example 2.9 is not continuous.
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Theorem 2.11. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone
b-metric space. Let q be a generalized c-distance on X and f : X → X be a continuous and
nondecreasing mapping with respect to v. Suppose that the following two assertions hold:

(i) there exist a, b, c,m > 0 with sa+ sb+ c+ (s2 + s)m < 1 such that

q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy) +mq(x, fy)

for all x, y ∈ X with x v y.

(ii) there exists x0 ∈ X such that x0 v fx0.

Then f has a fixed point x′ ∈ X. If v = fv, then q(v, v) = θ.

Proof . If fx0 = x0, then the proof is finished. Suppose that fx0 6= x0. Since x0 v fx0 and f is
nondecreasing with respect to v, we obtain by induction,

x0 v fx0 = x1 v f 2x0 = x2 v · · · v fnx0 = xn v fn+1x0 = xn+1 v · · · .

Now, we have

q(xn, xn+1) = q(fxn−1, fxn) ≤ aq(xn−1, xn) + bq(xn−1, fxn−1) + cq(xn, fxn) +mq(xn−1, fxn)
= aq(xn−1, xn) + bq(xn−1, xn) + cq(xn, xn+1) +mq(xn−1, xn+1)
≤ aq(xn−1, xn) + bq(xn−1, xn) + cq(xn, xn+1) + smq(xn−1, xn) + smq(xn, xn+1)
≤ a+b+sm

1−c−smq(xn−1, xn),

we have q(xn, xn+1) ≤ hq(xn−1, xn) ≤ · · · ≤ hnq(x0, x1), where h = a+b+sm
1−c−sm , for all n ≥ 1.

Let m > n.Then we have

q(xn, xm) ≤ sq(xn, xn+1) + sq(xn+1, xm)
≤ sq(xn, xn+1) + (s2q(xn+1, xn+2) + s2q(xn+2, xm))
≤ sq(xn, xn+1) + s2q(xn+1, xn+2) + · · ·+ sm−nq(xm−1, xm)
≤ shnq(x0, x1) + s2hn+1q(x0, x1) + · · ·+ sm−nhm−1q(x0, x1)

= shn(1−(sh)m−n)
1−sh q(x0, x1)

≤ shn

1−shq(x0, x1),

where 0 < a + b + c + 2sm < sa + sb + c + (s2 + s)m < 1, so 0 < h < 1, and 0 < sh < 1, we show
that {xn} is a Cauchy sequence in X.

Since X is complete, there exists a point x′ ∈ X such that xn → x′ as n→∞.
Finally, the continuity of f and fxn−1 = xn → x′ as n→∞ imply that fx′ = x′. Thus we prove

that x′ is a fixed point of f.
Suppose that v = fv. Then we have q(v, v) = q(fv, fv) ≤ aq(v, v) + bq(v, fv) +

cq(v, fv) +mq(v, fv)
= (a+ b+ c+m)q(v, v),

since 0 < a+ b+ c+ d < sa+ sb+ c+ (s2 + s)d < 1, we have q(v, v) = θ. This completes the proof.
�

From Theorem 2.11, we easily obtain the following result.

Corollary 2.12. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone
metric space. Let q be a c-distance on X and f : X → X be a continuous and nondecreasing mapping
with respect to v. Suppose that the following two assertions hold:
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(i) there exist a, b, c > 0 with a+ b+ c < 1 such that

q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy)

for all x, y ∈ X with x v y.

(ii) there exists x0 ∈ X such that x0 v fx0.

Then f has a fixed point x′ ∈ X. If v = fv, then q(v, v) = θ.

Remark 2.13. Theorem 2.11 is not only to give some generalized contractive condition of Theorem
3.1 in [7] but also to generalize the spaces.

Theorem 2.14. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone
b-metric space and P is a normal cone with normal constant K. Let q be a generalized c-distance on
X and f : X → X be a continuous and nondecreasing mapping with respect to v. Suppose that the
following three assertions hold:

(i) there exist a, b, c,m > 0 with sa+ sb+ c+ (s2 + s)m < 1 such that

q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy) +mq(x, fy)

for all x, y ∈ X with x v y.

(ii) there exists x0 ∈ X such that x0 v fx0.

(iii) inf{||q(x, y)||+ ||q(x, fx)|| : x ∈ X} > 0 for all y ∈ X with y 6= fy.

Then f has a fixed point x′ ∈ X. If v = fv, then q(v, v) = θ.

Proof . If we take xn = fnx0 in the proof of Theorem 2.6, then we have

x0 v x1 v x2 v · · · v xn v xn+1 v · · · .

Moreover, {xn} converges to a point x′ ∈ X and

q(xn, xm) ≤ shn

1− sh
q(x0, x1)

for all m > n ≥ 1, where h =
a+ b+ sm

1− c− sm
< 1. By (q3), we have

q(xn, x
′) ≤ s2hn

1− sh
q(x0, x1)

for all n ≥ 1. Since P is a normal cone with normal constant K, we have

||q(xn, xm)|| ≤ Kshn

1− sh
||q(x0, x1)||

for all m > n > 1 and

||q(xn, x′)|| ≤
Ks2hn

1− sh
||q(x0, x1)||
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for all n ≥ 1. If x′ 6= fx′, then, by hypotheses, we have
0 < inf{||q(x, x′)||+ ||q(x, fx)|| : x ∈ X}
≤ inf{||q(xn, x′)||+ ||q(xn, xn+1)|| : n ≥ 1}
≤ inf{Ks2hn

1−sh ||q(x0, x1)||+
Kshn

1−sh ||q(x0, x1)|| : n ≥ 1}
= 0.

This is a contradiction. Therefore, we have x′ = fx′. Suppose that v = fv holds. we can prove
q(v, v) = θ by the final part of the proof of Theorem 2.11. This completes the proof. �

Corollary 2.15. Let (X,v) be a partially ordered set and suppose that (X, d) is a complete cone
metric space and P is a normal cone with normal constant K. Let q be a c-distance on X and
f : X → X be a continuous and nondecreasing mapping with respect to v. Suppose that the
following two assertions hold:

(i) there exist a, b, c > 0 with a+ b+ c < 1 such that

q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy)

for all x, y ∈ X with x v y.

(ii) there exists x0 ∈ X such that x0 v fx0.

(iii) inf{||q(x, y)||+ ||q(x, fx)|| : x ∈ X} > 0 for all y ∈ X with y 6= fy.

Then f has a fixed point x′ ∈ X. If v = fv, then q(v, v) = θ.

We give an example to illustrate Theorem 2.14.

Example 2.16. Let E = R, and P = {x ∈ E : x ≥ 0}. Let X = [0, 1] and define a mapping
d : X × X → E, d(x, y) = |x − y|2 for all x, y ∈ X. Then (X, d) is a cone b-metric space. Define
a mapping q : X × X → E by q(x, y) = y2 for all x, y ∈ X and let an order relation v defined by
x v y ⇔ x ≤ y. Then q is a generalized c-distance on X. If f(x) = x2

4
, for all x 6= 1 and f(1) = 1

2
.

Let a = 1
4
, b = c = d = 1

32
, then f satisfies the assertion of Theorem 2.14. Moreover, 0 is a fixed

point of f .

Proof . Firstly, we prove (X, d) is a cone b-metric space.

(1) d(x, y) = |x− y|2 ≥ 0, d(x, y) = 0⇔ x = y;

(2) |x− z|2 ≤ 2|x− y|2 + 2|y − z|2, we have d(x, z) ≤ 2d(x, y) + 2d(y, z);

(3) d(x, y) = |x− y|2 = |y − x|2 = d(y, x).

Next, we prove q is a generalized c-distance on X.

(q1) q(x, y) = y2 ≥ 0;

(q2) z2 = q(x, z) ≤ 2q(x, y) + 2q(y, z) = 2y2 + 2z2, .ie., q(x, z) ≤ 2q(x, y) + 2q(y, z);

(q3) is obvious;

(q4) d(x, y) = |x− y|2 ≤ x2 + y2 = q(z, x) + q(z, y).

Finally, we prove f satisfies the assertion of Theorem 2.14.
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(i) If x = y = 1, then we have

q(fx, fy) = q(
1

2
,
1

2
) =

1

4
, aq(x, y) =

1

4
q(1, 1) =

1

4
,

we get q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy) + dq(x, fy).

(ii) If x 6= 1 and y = 1, then we have

q(fx, fy) = q(
x2

4
,
1

2
) =

1

4
, aq(x, y) =

1

4
q(x, 1) =

1

4
,

we get q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy) + dq(x, fy).

(iii) If x 6= 1, y 6= 1, then we have

q(fx, fy) = q(
x2

4
,
y2

4
) =

y4

16
, aq(x, y) =

y2

4
,

since 0 ≤ y < 1, we have y4

16
≤ y2

4
and q(fx, fy) ≤ aq(x, y) + bq(x, fx) + cq(y, fy) + dq(x, fy).

Finally, for any x, y ∈ E with y 6= Ty, i.e., y > 0, we get
inf{||q(x, y)||+ ||q(x, fx)|| : x ∈ X} = y2 > 0.

�

3. Applications

As an application of Theorem 2.6, we will present the existence of solution of an integral equation.
Let X = C(I,Rn), E = Rn, P = {(x1, x2, · · ·, xn) : xi ≥ 0, i = 1, · · ·, n}, and define d : X×X → E

by d(x, y) = {d(x, y)i}ni=1, d(x, y)i = sup
t∈I
|x(t)−y(t)|2, i = 1, · · ·, n, for every x, y ∈ X. Then (X, d) is a

cone b-metric space and s = 2. Define a mapping q : X×X → E by q(x, y) = {q(x, y)i}ni=1, q(x, y)i =
sup
t∈I
|y(t)|2, i = 1, ···, n, for every x, y ∈ X. and let an order relation v defined by x v y ⇔ sup

t∈I
|x(t)| ≤

sup
t∈I
|y(t)|. Then q is a generalized c-distance on X.

Theorem 3.1. Let I be the closed unit interval [0, 1] in R. Consider the following integral equation

x(t) =

∫ t

0

g(s, x(s))ds, t ∈ I. (3.1)

where g : I × Rn → Rn is such that g(s, ·) is increasing for every s ∈ I.
Suppose that the following assertion hold:

{(|g(s, y)i|)}ni=1 ≤
1

2
{|y(s)|, · · ·, |y(s)|},

for every s ∈ I, x, y ∈ X. Then the integral equation (3.1) has a solution in C(I,Rn).
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Proof . Define T : X → X by

Tx(t) =

∫ t

0

g(s, x(s))ds, x ∈ X.

For each x, y ∈ X, we have

q(Tx, Ty) = (sup
t∈I
|[Ty](t)|2, · · ·, sup

t∈I
|[Ty](t)|2)

≤ (sup
t∈I

(
∫ t

0
|g(s, y(s)|ds)2, · · ·, sup

t∈I
(
∫ t

0
|g(s, y(s)|ds)2)

≤ (sup
t∈I

(
∫ t

0
1
2
|y(s)|ds)2, · · ·, sup

t∈I
(
∫ t

0
1
2
|y(s)|ds)2)

≤ (1
4

sup
t∈I

(
∫ t

0
|y(s)|2ds), · · ·, 1

4
sup
t∈I

(
∫ t

0
|y(s)|2ds))

≤ (1
4

sup
t∈I

(
∫ t

0
sup |y(s)|2ds), · · ·, 1

4
sup
t∈I

(
∫ t

0
sup |y(s)|2ds))

≤ 1
4
(sup |y(s)|2, · · ·, sup |y(s)|2) sup

t∈I

∫ t

0
1ds

≤ 1
4
q(x, y) + 1

5
q(x, fx).

Then according to Theorem 2.6, the integral equation (3.1) has a solution. �
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