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Abstract

In this paper we establish several polynomials similar to Bernstein’s polynomials and several refine-
ments of Hermite-Hadamard inequality for convex functions.
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1. Introduction

Let us assume that the function f is continuous on [0,1]. Bernstein’s polynomials of order n =
0,1,2,... of the function f is defined by

B0 =3 ()t - et Ly

It is a well known fact that the sequence {B,(f)} converges uniformely to f(z) as n — oco. A
systematic study of Bernstein’s polynomials of convex function was first made by Popoviciu (1961).
Temple (1954) proved that a continuous function f is convex iff for every n = 0,1, ...

Bni1(f) < Bu(/)

and Arama (1960) proved that a continuous function f is convex iff, f(x) < B, (f) for every z € [0, 1].
For historical backround see [3].
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Let f : [a,b] = R be a convex function, then the inequality

)< [ e <TI0 (12)

a+b
2

i

is known as the Hermite-Hadamard inequality. In [6] the author obtained a new refinement of the
Hermite-Hadamard inequality.

Theorem 1.1. Let f be a convex function on [a,b]. Then we have

/a o)z <y, < 10O

a-+b 1
< <
2 )_:En_b—a

I

where

1 — . lb—a
anQ—HZf(a+(z—§) - ),

= g 3 [F(0L = gt 0+ (1= e )

If we use the similar technic used in Theorem [1.1} we conclude that

a n b
O <y S (o g 0-@) < 2 [t
1 - k+1 k
Sm;[f(@+n—+l(b—a))+f(a+n—H(b—G))]
fla)+ f(b R k
BRCESY —|—n+1zlf(a—|—n+1(b—a))
< f(CL)‘Z"f(b)‘ (1.3)

Remember that the Beta Integral is defined by
1
B(a,b) = / 2711 — 2)"da(a > 0,b > 0)
0

This integral converges for a > 0,b > 0 and we have

(a— (b —1)!
(a+b-1)!

B(a,b) =

In this paper we establish several polynomials similar to Bernstein’s polynomials for convex function.
In addition we obtain several refinements of Hermite-Hadamard inequality via these polynomials and
we comare some of refinements.
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2. Main results
Lemma 2.1. For all a,b and x € R the following identities hold:
(1) Xn: (”) 21— 2k =1
k
k=0
(2) En: (”) o L A
k n
k=0
“(n\ r—a, b—x , k
2h—a)) =
@ > ()G G Lo =
“/n\ z—a, b—x kE+1 n b
4 k n—k bh— —
) ;(k)(b—a) (b—a) (a+n+1( @) n+1x+n—|—1
"\, x—a, b—x k n a
5 k - n—=k b_ —
(5) ;(k)(b—a)(b—a) (a+n+1( 2)) n+1x+n—|—1
"\, x—a, b—x 2k +1 n a+b
6 k n—k bh— —
(6) 2 (k>(b—a) =) et ) = T
Proof . (1) is obvious by binomial theorem
- n k n—k __ n __
> (k)x (I—z)"*=+0-2)"=1
k=0
For the proof of (2) by differentiating (1), we get
—~ (n k-1 n—k k n—k-17 _ ~ (1 i n—k—1 _
> L (1= @) — (0 = k)2t (1 - ) | = L) =) (k—nx) =0
k=0 k=0

Multiplication by z(1 — x) we have

Hence

By using (1), we obtain
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Thus,

By using (1), we obtain

() (22 (150) o () (22 (22) -

k=0

> (1) (72 (7)) wrto-op-n

For the proof of (4) by using (1) and (3) we have

> (1) E= =D+ E -0

SO

— n+1
n o~ (n\,z—a,b—z, k+1
= b—
a+n+1k2:%(k’>(b—a) (b—a) n (b=a)
n "\ x—a,b—x, , k 1
= —_— —(b— —(b—a)—
oty |2 () G G e e+ G0 )
—at " gy (lb—la—a)— " g b
B n+1 n+1n n o+ 1 n+1

The proofs of (5) and (6) are similar to the proof of (4) and can be omitted. [

In the following theorem, when f is convex on [a, b], we obtain polynomials similar to the Bern-
stein’s polynomials that converge uniformly to f(x) on [a, b].

Theorem 2.2. Let f be a convez function on [a,b]. Then we have

1) 6023 (1) GG s S0 = B

@) gt £ X (1) GG e e = 6
S =2 () GG e - ) = D)
0 g s 2 3 (1) GG e S - 0) = E)

and {B,(f)}, {Cn(f)}, {Dn(f)} and {E,.(f)} converge uniformly on [a,b] to f(z) as n — oo.

r—ag,b—r . .
b_ a) (—b— a) =1, (1), (2), (3) and (4) are obvious by

Lemma 2.1} B,(f) is the Bernstein’s polynomials and it is a well known fact that {B,(f)} converges

Proof . Since f is convex and (Z)(
k=0
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uniformly to f(x) as n — oo. We have

n b " /n\ x—a, b—x k
e+ i 6 =3 () G G e L6 e+ g
(n\ x—a,b—x, ., n k 1
<3 ()G G g 6+ )
_n f(b)
Cn+1 n(f)+n+1
> n b n f(b)
f(n+1x+n+1)§0”<f)§n+1B”(f)+n—|—1
since )
lim f(— ot =) = lm == Ba(f) + =] = f(2),
so {C,(f)} converges uniformly on [a,b] to f(z).
By (3) we have
n a " /n\ x—a, b2 n k
e ) < D = X (D) G G et o= an + 1)
f(a)
§n+1Bn<f)+n+1

so {D,(f)} converges uniformly to f(z).
By (4) we have

ity gty < B = 3 (D) D s E a2

n 1 a+b

< BN+ — 155

“n+1

)

so {E,(f)} converges uniformly on [a,b] to f(z). O

In the following theorems we obtain several refinements of Hermite-Hadamard inequality by
integrals inequalities and Bernstein’s polynomials.

Theorem 2.3. Let f be a convez function on [a,b]. Then the following inequalites hold:

2n+ 2

b n
b—a /f T +1)dx+/af(n+1x+n+1)dx]

b I b
0 1 >sb_a/ fEr e

1 b 1 - n a 1 br—a n b
<
@) f@)da / fgo+ e+ [ e f e+ s
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Proof . (1) By Jensen’s inequality we have

1 b n a+b 1 b a+b
dx > d
b—a/a f(n+1x+2n+2) x_f(b—a/a (n+1x+2n+2>> .
n_ a+b
f(b—a[2n+2 TRl
a+b
]

On the other hand we have

b b
n a+b 1 1, n a 1, n b
dz = : 1 p
/af(n+1x+2 +2)x —a/f[Q(n+1x+n+1)+2(n—|—1m+n+1)] v

b n b
d
—a)/a f(n—|—1x+n+1> v

b—a

da
n+1 v +1) T30

Now we prove that

n a b n b
d
(n+1x+n+1)x+/af(n+1x+n+ _b— /f

/fn+1 dt+ /fn+1 dx_/f

By change of variable we get

Let

nT + a

F@w=iiﬁ/”+1fﬁﬂryﬁ2+xﬂwm—/”ﬂww

2n
n+1

By differentiating, we obtain

n+1. n nr +a 1 an +x

F/(x) = %l%+1ﬂn+1)+ﬂ@—n+1ﬂn+1ﬂ—ﬂ@
) (2.1)

1—n nr + a 1 an+=x

@)+ S F O —

2n” " n+1

na+zx _nr-+a

On the other hand, since + < + < z and f is convex, we have
n+1 n+1

nr + a na-+x nr +a

n+1)_f(n+1) f(:rf)—f(nle

n:z:—ira na +x - nr +a
l’_

n+1 n+1 n+1

I )

Hence nr +a 1 na+zx n—1
FEEED) < S + (@) (22)

From (2.1) and (2.2) we deduce that F'(z) < 0. So F' is decreasing on [a,b] and F(b) < F(a).

Thus ) )
a 1 n b
- < d
/f Tt +n+1)dx—|—2/a f(n+1x+n+1)dx_/a f(x)dx
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For the proof of (2) we have

b—x n a r—a, n b
)= f[b—a(n+1 +n+1)+b—a(n+1$+n+1)]
b—=x n a T —a n b
_b—af(n+1x+n+1)+b—af(n—l—lx—i_nqtl)

By convexity of f and inequality [1.2] we obtain

bh—x n 1 br—a n b
<
/f Jdu —a/a b—af(n+1x+n+1)dx+b—&/a b—af(n+1$+n+1)dx
T, n 1 1 br—a. n 1
<
b_a/a @)+ e e [T )+ 0

n

b 1 b
:(b_a)2(n+1)/a(b—x—i—x—a)f(x)da:—l—(b_a)z(n+1)/a (b — 2)f(a) + (2 — a) F (b)) de

- n b 1 B B f() — f(a) 2_ 2

- =T L 0+ e — a0 + TR g )
nJ@+S0) | b@—aft) | (J0) = [@)a+b)

Sl 2 mn+Db—a) 2m+1)0b-a)

fla) + f(b)
R

0

Theorem 2.4. Let f be a convex function on [a,b]. Then the following inequalities hold:

I R k 1 &k k41
b_a/af<w>dwsn+1k§_%<a+ﬁ<b—a>>s S Ik slo+ S 00

1 n
NORSI0)
- 2
Proof . (1) By integrating from (1) of Theorem [2.2] we have

/f dx<—/ ()‘z:z POyt S~ a)))da

1 T—a. . b—=x

:kno <k>f( k<b_a))b—a/ab(b—a>k<b_a)nkdl’
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On the other hand we have

ki = 1—t)y"*dt=B ILn—k+1
b_a/a(b_a) (b_a) dx /Ot( £ dt (k+1,n—k+1)
kl(n — k) 1

T ) () ()

SO

k 1 1 k
[ o=, )f(a+5(b—a))(n+1)(z)=n+1k:0f(a+g(b—a))
For the second part of (1) we hav
> et @) S — = S et (b - @)+ (= )k (b))
RPNl +ij (b= a) + (1= ) flat+ (b —a)
k41 E+1 k k k
n+1Z fat =) ) (= e =) o)
_nilzg[(l—iﬂ)f(aﬂiif(b)]ﬂl—§>[<1—nil)ﬂa) )
- ;[”(” KD p+ K0 D
@)+ 70)
=10

The first part of (2) in proved in Theorem (2). For the second part, by using Lemma we get

1 bb—z n a 1 br—a n b
d d
b—a/a b—af(n+1m+n+ )x+b—a/a b—af(n+1x+n+1)m
x—a b—xn_kH k
_b—a/z(> b—a) f(a+n+1(b a))dz
x—ak+1b—xn_k k+1.
b—a/ Z() b—a (b—a) f(a+n+1(b a))dz

(et [
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So, we have

1 bh—x n a 1 br—ua n b
d d
b—a/a b—af(n+1x+n+1)x+b—a/a b—af(n—l—lx—'—njtl)x

n

< (Z)ﬂa i) [ Ry

e 3 (1) s igo o [ e

i zg!(nni k)!f(“nLH(b_“))%

;(nz—;)ké;—:l)f( n (b_a))+§(n+k2)+(nl+1)f( %(b_“))
=Y e D gmﬁéﬂjﬂgu )
Sk;(nié)]z;jl)[( nil)f()+ni1f()]+§(n+z;;+l)[( SE)J”() zj:f(b)]
B ,; Lvﬁ;)]z;j)f)? i <fi§>)<(fflf>)21 fla)+ io[(:il;)(];i?)z " fé;nli T/ 0)
f();Lf()

In the following theorem we compare some of refinements.

Theorem 2.5. Let f be a convez function on [a,b]. Then we have

b a
bia/ fw)de < f(2<)n+f n+1zf“+— b—a))

—_

b ’ b
@ fOG < [ e e < S fak R0 )

n+1
Sﬁfabfxdm
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n—l—lkz1 +1 ] -
:n—lm[g%f( +kn U?-@)H;(l—n 1)f(a+§(b—a))
_n—l%l[?{(f)l Z%ﬂ k; (b-a)+) A-+ 1>f<a+§<b—a>>+ﬁ)ﬂ

(n+1)? —~n+l ~ n+l
Cfl@+f) 1 SGAn2 k
=y n+1kzn+1f(a+ﬁ(b_“))

So
o [ e < B S e -
. fio 81 . J;()b) o)+ 0) (::12)2 Z fat S0 -a))
@10 at ; flat (b —a))
. _nil L zi;f(a+ﬁ(b—a)) (:if)z kz:f(avLﬁ(b—a))
Z < HOEIO

For the proof of (2) by using (6) of lemma 2.1 we have

e <3 ()BT B
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By integrating we obtain

b n a b n n k bl‘—a b_
bia/a f(n+lx+ —2'— )dxﬁko (ki)f(a gn:li:;(b_a))bia/a(b—a)k(b—a)n_kdq;
:Z<Z)f(a+;]zi;(b—a))/o t’f(l_t)n—kdt
k=0
& (n 2k +1 kl(n —k)!
_k:O <k)f(a 2n+2(b—a))m
RN 2% + 1
B n%_lk:of(a*_Qn—%2(b__a»

The other parts of (2) is clear by [L.3] and Theorem [2.3(1). O

Remark 2.6. The inequality of Theorem [2.5] is not comparable with the right side of [[.3] Because
by elementary calculus we have

n

I 1
b_a/a fa)da < (n+2)(n+1)[2(n—k+1)f(a+

k=0

1
~(b— )

1 G k
- (n+2)(n+1) ;(n + 1) fla+ n—+1(b —a)

Zf +—b—a))

42
_ fla) + f
“ > s
n—+2 n+2
Finally we close this paper with a simple theorem for 0-convex function.

Remember that a positive function f is called 0-convex on [a,b], if for each z,y € [a,b] and
t € [0,1],

))-

flta + (1= t)y) < [f@)]'[f ()]

It is obvious 0O-convex functions are log convex functions.

Theorem 2.7. Let f be a 0-convex function on |a,b] and f(x) > 1. Then we have

Proof . Since f is log-convex, by inequalities [T.3] we have

lnf<a+b n-luzlf 2k;+1(b_ —/mf
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So
2k +1

2n+1

(30 < W[ fa+

k=0

1 b
(b—a))] < m/g In f(z)dx
By increasing of e*, we get

a+b ~ 2k + 1 . L
< | | —+ b— 1 < eb-a S In f(z)dz

i

Since e* is convex, by Jensen’s inequality we obtain

N YA S LY S S f(b) — f(a)
¢ <b—a/ae dm_b—a/af(x)dxglnf(b)—lnf(a)

The last assertion follows from the 0-convexity of f [7, Theorem 2.3]. [
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