
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,879 |
تعداد دریافت فایل اصل مقاله | 7,656,355 |
بررسی انتقال حرارت در فومهای فلزی در حضور جابجایی اجباری و تشعشع حرارتی به روش اغتشاش هموتوپی | ||
مدل سازی در مهندسی | ||
مقاله 1، دوره 14، شماره 46، مهر 1395، صفحه 1-9 اصل مقاله (862.04 K) | ||
شناسه دیجیتال (DOI): 10.22075/jme.2017.1771 | ||
نویسندگان | ||
مازیار دهقان* 1؛ یوسف رحمانی2؛ سیف الله سعدالدین1؛ محمدصادق ولیپور1؛ داوود دومیری گنجی2 | ||
1دانشگاه سمنان | ||
2دانشگاه صنعتی بابل | ||
تاریخ دریافت: 02 اردیبهشت 1393، تاریخ پذیرش: 05 آبان 1393 | ||
چکیده | ||
جریان اجباری در محیط متخلخل فلزی اشباع از سیال در حضور تشعشع حرارتی به کمک روش اغتشاش هموتوپی بررسی میشود. مدل دارسی-برینکمن برای جریان سیال در محیط متخلخل برای دیدن تاثیرات دیواره استفاده میشود. شار حرارتی ثابتی به دیواره کانال وارد و انتقال حرارت تشعشعی به کمک هدایت حرارتی متغیر با دما مدلسازی میشود. در مطالعه حاضر برای اولین بار مساله انتقال حرارت غیر خطی همبسته جابجایی-تشعشع به کمک یک روش نیمه تحلیلی حل میشود. تاثیرات پارامترهای تشعشعی λ) و Tr) و پارامتر شکل محیط متخلخل (s) روی عدد ناسلت و پروفیل دمای بدون بعد بررسی و نشان داده میشود که محیط متخلخل و تشعشع حرارتی باعث افزایش میزان انتقال حرارت خواهد شد. همچنین بر دقت روش اغتشاش هموتوپی و محدودیتهای آن نیز بحث خواهد شد. | ||
کلیدواژهها | ||
: محیط متخلخل؛ اغتشاش هموتوپی؛ مدل غیر دارسی؛ تشعشع حرارتی؛ فومهای فلزی | ||
عنوان مقاله [English] | ||
Investigation of the forced convection heat transfer in the presence of radiation in metal foams using HPM | ||
نویسندگان [English] | ||
Maziar Dehghan1؛ Yousef Rahmani2؛ Seyfolah Saedodin1؛ Mohammad Sadegh Valipour1؛ Davood Domiri Ganji2 | ||
چکیده [English] | ||
Forced convection heat transfer in metal foams in the presence of radiation heat transfer is studied using the homotopy perturbation method (HPM). To see wall effects, Darcy-Brinkman model for the flow in porous media is used. A constant heat flux is imposed at the wall and the radiation heat transfer is modeled by a temperature-dependent conductivity. In the present study the case of conjugate convection and radiation heat transfer is analyzed by a semi-analytical approach for the first time. Effects of the radiation parameters (λ, Tr) and porous medium shape parameter (s) on the Nusselt number and dimensionless temperature profile are investigated. Moreover, a discussion on the accuracy and limitations of the HPM method will be presented. | ||
کلیدواژهها [English] | ||
porous media, Homotopy perturbation method, non-Darcian model, radiation, metal foams | ||
مراجع | ||
1- [1] Vafai, K., Kim, S.J. (1989). “Forced convection in a channel filled with a porous medium: An exact solution”. J. Heat Transfer 111, pp. 1103-1106. [2] Nakayama, A., Shenoy, A.V. (1993). “Non-Darcy Forced Convective Heat Transfer in a Channel Embedded in a Non-Newtonian Inelastic Fluid-Saturated Porous Medium”. Can. J. Chem. Eng. 71, pp. 168–173. [3] Alazmi, B., Vafai, K. (2001). “Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and a Fluid Layer”. Int. J. Heat Mass Transfer 44, pp. 1735–1749. [4] Nield, D.A., Kuznetsov, A.V. (2010). “Forced convection in cellular porous materials: Effect of temperature-dependent conductivity arising from radiative transfer”. Int. J. Heat Mass Transfer 53, pp. 2680–2684. [5] Dehghan, M., Valipour, M.S., Saedodin, S. (2014). “Perturbation analysis of the local thermal non-equilibrium condition in a fluid saturated porous medium bounded by an iso-thermal channel”. Transport in Porous Media 102 (2), pp. 139-152. [6] Dehghan, M., Jamal-Abad, M.T., Rashidi, S. (2014). “Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers”. Energy Conversion Management 85, pp. 264-271. [7] Ganji, D.D., Sadighi, A. (2007). “Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations”. Journal of Computational and Applied Mathematics 207, pp. 24. [8] He, J.H. (1999). “Homotopy perturbation technique”. Computer Methods in Applied Mechanics and Engineering 178, pp. 257–262. [9] Bararnia, H., Ghasemi, E., Soleimanikutanaei, S., Barari, A., Ganji, D.D (2011). “HPM-PADE Method on Natural Convection of Darcian Fluid About a vertical Full Cone Embedded in Porous Media”. Journal of Porous Media 14, pp. 545-553. [10] Hatami, M., Ganji, D.D. (2013). “Thermal performance of circular convective–radiative porous fins with different section shapes and materials”. Energy Conversion and Management 76, pp. 185–93. [11] Jalilpour, B., Jafarmadar, S., Ganji, D.D, Shotorban, A.B, Taghavifar, H. (2014). “Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux”. Journal of Porous Media 195, pp. 194-204. [12] Hatami, M., Ganji, D.D. (2014). “Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method”. Energy Conversion and Management 78, pp. 347–358. [13] Wu, Z., Caliot, C., Flamant, G., Wang, Z. (2011). “Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers”. Solar Energy 85, pp. 2374–2385. [14] Xu, C., Song, Z., Chen, L., Zhen, Y. (2011). “Numerical investigation on porous media heat transfer in a solar tower receiver”. Renewable Energy 36, pp. 1138-1144. [15] Bayraka, F., Oztop, H.F., Hepbasli, A. (2013). “Energy and exergy analyses of porous baffles inserted solar air heaters for building applications”. Energy and Buildings 57, pp. 338–345. [16] Kandasamy, R., Muhaimin, I., Rosmila, A.K. (2014). “The performance evaluation of unsteady MHD non-Darcy nanofluid flow over a porous wedge due to renewable (solar) energy”. Renewable Energy 64, pp. 1-9. [17] Nield, D.A., Kuznetsov, A.V. (2013). “An historical and topical note on convection in porous media”. J. Heat Transfer 135, doi:10.1115/1.4023567. [18] Kuznetsov, A.V., Nield, D.A. (2010). “The Cheng-Minkowycz problem for cellular porous materials: effect of temperature-dependent conductivity arising from radiative transfer”. Int. J. Heat Mass Transfer 53, pp. 2676–2679. [19] Nield, D.A., Bejan, A. (2006). “Convection in Porous Media”. 3rd Ed., Springer, NY. [20] Zhao, C.Y., Tassou, S.A., Lu, T.J. (2008). “Analytical considerations of thermal radiation in cellular metal foams with open cells”. Int. J. Heat Mass Transfer 51, pp. 929–940. [21] Viskanta, R. (2009). “Overview of radiative transfer in cellular porous materials”. Proceedings of ASME 2009 Heat Transfer Summer Conference, San Francisco, CA, July 19–23. [22] Dehghan, M., Rahmani, Y., Ganji, D.D., Saedodin, S., Valipour, M.S., Rashidi, S. (2015). “Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis”. Renewable Energy 74, pp. 448-455. [23] Ganji, D.D., Languri, E.M. (2010). “Mathematical methods in nonlinear heat transfer: a semi-analytical approach”. Xlibris, IN. [24] Mirzaei, M., Dehghan, M. (2013). “Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach”. Heat Mass Transfer 49, pp. 1803-1811.
| ||
آمار تعداد مشاهده مقاله: 3,505 تعداد دریافت فایل اصل مقاله: 1,942 |