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Abstract

In this paper, employing the common property (E.A), we prove a common fixed theorem for weakly
compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results gener-
alize the results of S. Kumar [S. Kumar, Common fixed point theorems in Intuitionistic fuzzy metric
spaces using property (E.A), J. Indian Math. Soc., 76 (1-4) (2009), 94–103] and C. Alaca et al. [C.
Alaca, D. Turkoglu and C. Yildiz, Fixed points in Intuitionistic fuzzy metric spaces, Chaos Solitons
and Fractals, 29 (2006), 1073–1078].
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1. Introduction

In 1986, Jungck [8] introduced the notion of compatible maps for a pair of self mappings. However,
the study of common fixed points of non-compatible maps is also very interesting (see [16]). Aamri
et al. [1] generalized the concept of non-compatibility by defining the notion of property (E.A)
and in 2005, Liu et al. [13] defined common property (E.A) in metric spaces and proved common
fixed point theorems under strict contractive conditions. Jungck et al. [9] initiated the study of
weakly compatible maps in metric space and showed that every pair of compatible maps is weakly
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compatible but reverse is not true. In the literature, many results have been proved for contraction
maps satisfying property (E.A.) in different settings such as probabilistic metric spaces [5, 7]; fuzzy
metric spaces [12, 15]; Intuitionistic fuzzy metric spaces [11, 19]. In this paper, employing the
common property (E.A), we prove a common fixed theorem for weakly compatible mappings via an
implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar
[11] and C. Alaca et al. [2].

2. Preliminaries and Definitions

The concepts of triangular norms (t-norms) and triangular conorms (t-conorms) are known as the
axiomatic skelton that we use are characterization fuzzy intersections and union respectively. These
concepts were originally introduced by Menger [14] in study of statistical metric spaces.

Definition 2.1. [18] A binary operation ∗ : [0, 1][0, 1]→ [0, 1] is continuous t-norm if * satisfies the
following conditions:
(i) * is commutative and associative;
(ii) * is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1]
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2. [18] A binary operation ♦ : [0, 1][0, 1][0, 1] is continuous t-conorm if ♦ satisfies the
following conditions:
(i) ♦ is commutative and associative;
(ii) ♦ is continuous;
(iii) a♦0 = a for all a ∈ [0, 1]
(iv) a♦b ≤ c♦d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1]

Alaca et al. [2] using the idea of Intuitionistic fuzzy sets, defined the notion of Intuitionistic fuzzy
metric space with the help of continuous t-norm and continuous t-conorms as a generalization of
fuzzy metric space due to Kramosil et al. [10] as:

Definition 2.3. [2] A 5-tuple (X,M,N, ∗,♦) is said to be an Intuitionistic fuzzy metric space if X
is an arbitrary set, * is a continuous t-norm, ♦ is a continuous t-conorm and M,N are fuzzy sets on
X2[0,∞) satisfying the following conditions:
(i) M(x, y, t) +N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0;
(ii) M(x, y, 0) = 0 for all x, y ∈ X;
(iii) M(x, y, t) = 1 for all x, y ∈ X and if and only if x = y;
(iv) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0;
(v) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all x, y ∈ X and s, t > 0;
(vi) for all x, y ∈ X, M(x, y, .) : [0,∞)→ [0, 1] is left continuous;
(vii) limt→∞M(x, y, t) = 1 for all x, y ∈ X and t > 0;
(viii) N(x, y, 0) = 1 for all x, y ∈ X ;
(ix) N(x, y, t) = 0 for all x, y ∈ X and t > 0 if and only if x = y;
(x) N(x, y, t) = N(y, x, t) for all x, y ∈ X and t > 0;
(xi) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t+ s) for all x, y ∈ X and s, t > 0;
(xii) for all x, y ∈ X, N(x, y, .) : [0,∞)→ [0, 1] is right continuous;
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(xiii) limt→∞N(x, y, t) = 0for all x, y ∈ X and t > 0.
Then (M,N) is called an Intuitionistic fuzzy metric space on X. The functions M(x, y, t) and
N(x, y, t) denote the degree of nearness and the degree of non-nearness between x and y w.r.t. t
respectively.

Remark 2.4. [2] Every fuzzy metric space (X,M, ∗) is an Intuitionistic fuzzy metric space of the
form (X,M, 1−M, ∗,♦) such that t-norm * and t-conorm ♦ are associated as
x♦y = 1− ((1− x) ∗ (1− y)) for all x, y ∈ X.

Remark 2.5. [2] In Intuitionistic fuzzy metric space (X,M,N, ∗,♦), M(x, y, .) is non-decreasing
and N(x, y, .) is non-increasing for all x, y ∈ X.

Alaca et al.[2] introduced the following notions:

Definition 2.6. Let (X,M,N, ∗,♦) be an Intuitionistic fuzzy metric space. Then
(a) a sequence {xn} in X is said to be Cauchy sequence if, for all t > 0 and p > 0,
limn→∞M(xn+p, xn, t) = 1 and limn→∞N(xn+p, xn, t) = 0;
(b) a sequence {xn} inX is said to be convergent to a point x ∈ X if, for all t > 0, limn→∞M(xn, x, t) =
1 and limn→∞N(xn, x, t) = 0.

Definition 2.7. [2] An Intuitionistic fuzzy metric space (X,M,N, ∗,♦) is said to be complete if
and only if every Cauchy sequence in X is convergent.

Example 2.8. [2] Let X = { 1
n

: n ∈ N} ∪ {0} and let * be the continuous t-norm and ♦ be the
continuous t-conorm defined by and respectively, for all a, b ∈ [0, 1]. For each t ∈ (0,∞) and x, y ∈ X,
define (M,N) by
M(x, y, t) = t

t+|x−y| if t > 0;

M(x, y, 0) = 0
and
N(x, y, t) = |x−y|

t+|x−y| if t > 0;

N(x, y, 0) = 1
Clearly, (X,M,N, ∗,♦) is complete Intuitionistic fuzzy metric space.

Definition 2.9. [1] A pair of self mappings (T, S) of an Intuitionistic fuzzy metric space (X,M,N, ∗,♦)
is said to satisfy the property (E.A) if there exist a sequence {xn} in X such that limn→∞Txn =
limn→∞Sxn = z for some z ∈ X.

Example 2.10. Let X = [0,∞). Consider (X,M,N, ∗,♦) be an Intuitionistic fuzzy metric space as
in Example 2.8. Define T, S : X → X by Tx = x

5
and Sx = 2x

5
for all x ∈ X. Clearly, for sequence

{xn} = { 1
n
}, T and S satisfies property (E.A).

Definition 2.11. [9] Two pairs (A, S) and (B, T ) of self mappings of an Intuitionistic fuzzy metric
space (X,M,N, ∗,♦) are said to satisfy the common property (E.A) if there exist two sequences
{xn} and {yn} in X such that limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = z for
some z ∈ X.
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Example 2.12. Let X = [-1,1]. Consider (X,M,N, ∗,♦) be an Intuitionistic fuzzy metric space as
in Example 2.8. Define self mappings A,B, S and T on X as Ax = x

3
, Bx = −x

3
, Sx = x, Tx = −x

for all x ∈ X. Then, with sequences {xn} = { 1
n
} and {yn} = {−1

n
} in X, one can easily verify that

limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = 0. Therefore, pairs (A, S) and (B, T )
satisfies the common property (E.A).

Definition 2.13. [9] A pair of self mappings (T, S) of an Intuitionistic fuzzy metric space (X,M,N, ∗,♦)
is said to be weakly compatible if they commute at coincidence points i.e. if Tu = Su for some u ∈ X,
then TSu = STu.

3. Main Results

Implicit relations play important role in establishing of common fixed point results. Let M4 be the set
of all real continuous functions ψ, φ : [0, 1]4 → R, non-decreasing in the first argument and satisfying
the following conditions:
(A) φ(u, 1, u, 1) ≥ 0⇒ u ≥ 1,
(B) φ(u, 1, 1, u) ≥ 0⇒ u ≥ 1,
(C) φ(u, u, 1, 1) ≥ 0⇒ u ≥ 1,
(D) ψ(u, 0, u, 0) ≤ 0⇒ u ≤ 0,
(E) ψ(u, 0, 0, u) ≤ 0⇒ u ≤ 0,
(F) ψ(u, u, 0, 0) ≤ 0⇒ u ≤ 0
for all u ≥ 0.

Example 3.1. Define ψ, φ : [0, 1]4 → R as φ(t1, t2, t3, t4) = 14t1−12t2+6t3−8t4 and ψ(t1, t2, t3, t4) =
12t1−9t2 +8t3−11t4. Clearly, and satisfies all conditions (A), (B), (C), (D), (E) and (F). Therefore,
ψ, φ ∈M4

We begin with following observation:

Lemma 3.2. Let {Ai}, S and T be self mappings of an Intuitionistic fuzzy metric space (X,M,N, ∗,♦)
satisfying the following:
(3.1) the pair (A0, T ) satisfies the property (E.A.);
(3.2) for any x, y ∈ X, and ψ, φ ∈M4 and for all t > 0, there exists k ∈ (0, 1) such that,
φ(M(Aix,A0y, kt),M(Sx, Ty, t),M(Sx,Aix, t),M(Ty,A0y, t)) ≥ 0;
ψ(N(Aix,A0y, kt), N(Sx, Ty, t), N(Sx,Aix, t), N(Ty,A0y, t)) ≤ 0;
(3.3) Ai(X) ⊆ T (X) or A0(X) ⊆ S(X).
Then the pairs (Ai, S) and (A0, T ) share the common (E.A.) property.

Proof . As the pair (A0, T ) satisfies property (E.A.), then there exist a sequence {xn} in X such
that limn→∞A0xn = limn→∞Txn = z for some z ∈ X. Since A0(X) ⊆ S(X), hence for each {xn},
there exist {yn} in X such that A0xn = Syn.
Therefore, limn→∞A0xn = limn→∞Syn = limn→∞Txn = z. Now, we claim that limn→∞Aiyn = z.
Suppose not, then applying inequality (3.2), we obtain
φ(M(Aiyn, A0xn, kt),M(Syn, Txn, t),M(Syn, Aiyn, t),M(Txn, A0xn, t)) ≥ 0;
ψ(N(Aiyn, A0xn, kt), N(Syn, Txn, t), N(Syn, Aiyn, t), N(Txn, A0xn, t)) ≤ 0;
which on making n→∞ reduces to
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φ(M(limn→∞Aiyn, z, kt),M(z, z, t),M(z, limn→∞Aiyn, t),M(z, z, t)) ≥ 0;
ψ(N(limn→∞Aiyn, z, kt), N(z, z, t), N(z, limn→∞Aiyn, t), N(z, z, t)) ≤ 0;
As φ and ψ is non-decreasing in the first argument, we have
φ(M(limn→∞Aiyn, z, t),M(z, z, t),M(z, limn→∞Aiyn, t),M(z, z, t)) ≥ 0;
ψ(N(limn→∞Aiyn, z, t), N(z, z, t), N(z, limn→∞Aiyn, t), N(z, z, t)) ≤ 0;
Using (B) and (E), we get
M(limn→∞Aiyn, z, t) ≥ 1 and N(limn→∞Aiyn, z, t) ≤ 0.
Hence M(limn→∞Aiyn, z, t) = 1 and N(limn→∞Aiyn, z, t) = 0.
Therefore, limn→∞Aiyn = z. Hence, the pairs (Ai, S) and (A0, T ) share the common (E.A.) property.
�

Theorem 3.3. Let {Ai}, S and T be self mappings of a Intuitionistic fuzzy metric space (X,M,N, ∗,♦)
satisfying the conditions (3.2) and
(3.4) the pair (Ai, S) and (A0, T ) share the common property (E.A);
(3.5) S(X) and T (X) are closed subsets of X.
Then the pairs and have a point of coincidence each. Moreover, {Ai}, S and T have a unique common
fixed point provided both the pairs (Ai, S) and (A0, T ) are weakly compatible.

Proof . In view of (3.4), there exist two sequences {xn} and {yn} in X such that limn→∞A0yn =
limn→∞Aixn = limn→∞Sxn = limn→∞Tyn = z for some z ∈ X. Since S(X) is a closed subset of X,
therefore, there exists a point u ∈ X such that z = Su. We claim that Aiu = z. If Aiu 6= z, then by
(3.2), take x = u, y = yn,
φ(M(Aiu,A0yn, kt),M(Su, Tyn, t),M(Su,Aiu, t),M(Tyn, A0yn, t)) ≥ 0;
on making n→∞, we get
φ(M(Aiu, z, kt),M(z, z, t),M(z, Aiu, t),M(z, z, t)) ≥ 0;
φ(M(Aiu, z, kt), 1,M(z, Aiu, t), 1) ≥ 0;
and
ψ(N(Aiu,A0yn, kt), N(Su, Tyn, t), N(Su,Aiu, t), N(Tyn, A0yn, t)) ≤ 0;
on making n→∞, we get
ψ(N(Aiu, z, kt), N(z, z, t), N(z, Aiu, t), N(z, z, t)) ≤ 0;
ψ(N(Aiu, z, kt), 0, N(z, Aiu, t), 0) ≤ 0;
As φ and ψ is non-decreasing in the first argument, we have
φ(M(Aiu, z, t), 1,M(z, Aiu, t), 1) ≥ 0;
and
ψ(N(Aiu, z, t), 0, N(z, Aiu, t), 0) ≤ 0;
Using (A) and (D), we get M(Aiu, z, t) ≥ 1 and N(Aiu, z, t) ≤ 0.
Hence M(Aiu, z, t) = 1 and N(Aiu, z, t) = 0.
Therefore, Aiu = z = Su which shows that u is a coincidence point of the pair (Ai, S).
Since T (X) is also a closed subset of X, therefore limn→∞Tyn = z in T (X) and hence there exists
v ∈ X such that Tv = z = Aiu = Su.
Now, we show that A0v = z. If not, then by using inequality (3.2), take x = u, y = v, we have
φ(M(Aiu,A0v, kt),M(Su, Tv, t),M(Su,Aiu, t),M(Tv,A0v, t)) ≥ 0;
φ(M(z, A0v, kt), 1, 1,M(z, A0v, t)) ≥ 0;
and
ψ(N(Aiu,A0v, kt), N(Su, Tv, t), N(Su,Aiu, t), N(Tv,A0v, t)) ≤ 0;
ψ(N(z, A0v, kt), 0, 0, N(z, A0v, t)) ≤ 0;
As φ and ψ is non-decreasing in the first argument, we have
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φ(M(z, A0v, kt), 1, 1,M(z, A0v, t)) ≥ 0;
and
ψ(N(z, A0v, kt), 0, 0, N(z, A0v, t)) ≤ 0;
Using (B) and (E), we get M(z, A0v, kt) ≥ 1 and N(z, A0v, kt) ≤ 0.
Hence M(z, A0v, kt) = 1 and N(z, A0v, kt) = 0. Therefore, A0v = z = Tv which shows that v is a
coincidence point of the pair (A0, T ).
Since the pairs (Ai, S) and (A0, T ) are weakly compatible and Aiu = Su,A0v = Tv, therefore,
Aiz = AiSu = SAiu = Sz,A0z = A0Tv = TA0v = Tz. If Aiz 6= z, then by using inequality (3.2),
we have
φ(M(Aiz, A0v, kt),M(Sz, Tv, t),M(Sz,Aiz, t),M(Tv,A0v, t)) ≥ 0;
φ(M(Aiz, z, kt),M(Aiz, z, t),M(Aiz, Aiz, t),M(z, z, t)) ≥ 0;
φ(M(Aiz, z, kt),M(Aiz, z, t), 1, 1) ≥ 0;
and
ψ(N(Aiz, A0v, kt), N(Sz, Tv, t), N(Sz,Aiz, t), N(Tv,A0v, t)) ≤ 0;
ψ(N(Aiz, z, kt), N(Aiz, z, t), N(Aiz, Aiz, t), N(z, z, t)) ≤ 0;
ψ(N(Aiz, z, kt), N(Aiz, z, t), 0, 0) ≤ 0;
As φ and ψ is non-decreasing in the first argument, we have
φ(M(Aiz, z, t),M(Aiz, z, t), 1, 1) ≥ 0;
and
ψ(N(Aiz, z, kt), N(Aiz, z, t), 0, 0) ≤ 0;
Using (C) and (F ), we get
M(Aiz, z, t) ≥ 1 and N(Aiz, z, t) ≤ 0.
Hence M(Aiz, z, t) = 1 and N(Aiz, z, t) = 0.
Therefore, Aiz = z = Sz.
Similarly, one can prove that A0z = Tz = z. Hence A0z = Aiz = Sz = Tz and z is common fixed
point of Ai, A0, S and T.
Uniqueness: Let z and w be two common fixed points of Ai, A0, S and T . If z 6= w, then by using
inequality (3.2), we have
φ(M(Aiz, A0w, kt),M(Sz, Tw, t),M(Sz,Aiz, t),M(Tw,A0w, t)) ≥ 0;
φ(M(z, w, kt),M(z, w, t),M(z, z, t),M(w,w, t)) ≥ 0;
φ(M(z, w, t),M(z, w, t),M(z, z, t),M(w,w, t)) ≥ 0;
φ(M(z, w, t),M(z, w, t), 1, 1) ≥ 0;
and
ψ(N(Aiz, A0w, kt), N(Sz, Tw, t), N(Sz,Aiz, t), N(Tw,A0w, t)) ≤ 0;
ψ(N(z, w, kt), N(z, w, t), N(z, z, t), N(w,w, t)) ≤ 0;
ψ(N(z, w, t), N(z, w, t), N(z, z, t), N(w,w, t)) ≤ 0;
ψ(N(z, w, t), N(z, w, t), 0, 0) ≤ 0;
Using (C) and (F ), we have
M(z, w, t) ≥ 1 and N(z, w, t) ≤ 0.
Hence, M(z, w, t) = 1 and N(z, w, t) = 0.
Therefore, z = w. �

By choosing Ai, A0, S and T suitably, one can derive corollaries involving two or more mappings.
As a sample, we deduce the following natural result for a pair of self mappings by setting A0 = Ai

and T = S in above theorem:

Corollary 3.4. Let Ai and S be self mappings of an Intuitionistic fuzzy metric space (X,M,N, ∗,♦)
satisfying the following:
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(3.6) the pair (Ai, S) satisfies the property (E.A.);
(3.7) for any x, y ∈ X, φ and ψ in M4 and for all t > 0,
φ(M(Aix,Aiy, kt),M(Sx, Sy, t),M(Sx,Aix, t),M(Sy,Aiy, t)) ≥ 0;
ψ(N(Aix,Aiy, kt), N(Sx, Sy, t), N(Sx,Aix, t), N(Sy,Aiy, t)) ≤ 0;
(3.8) S(X) is a closed subset of X.
Then, Ai and S have a point of coincidence each. Moreover, if the pairs (Ai, S) is weakly compatible,
then Ai and S have a unique common fixed point.

The following example illustrates Theorem 3.3.

Example 3.5. Let (X,M,N, ∗,♦) be an Intuitionistic fuzzy metric space as in Example 2.8 where
X = [0, 2) and define ψ, φ : [0, 1]4 → R as φ(t1, t2, t3, t4) = 14t1−12t2 +6t3−8t4 and ψ(t1, t2, t3, t4) =
12t1 − 9t2 + 8t3 − 11t4. Clearly, all conditions (A), (B), (C), (D), (E) and (F ) hold. Therefore
ψ, φ ∈M4

Define Ai, A0, S and T by
Aix = A0x = 1,
Sx = 1 if x ∈ Q,Sx = 2

3
otherwise

and
Tx = 1 if x ∈ Q, Tx = 1

3
otherwise

for all x, y ∈ X = [0, 2) and t > 0. Then with sequences {xn = 1
n
} and {yn = −1

n
} in X, we have

limn→∞A0xn = limn→∞Aiyn = limn→∞Syn = limn→∞Txn = 1 ∈ X which shows that pairs (Ai, S)
and (A0, T ) share the common property (E.A). By a routine calculation, one can verify the condition
(3.2). Thus, all the conditions of Theorem 3.3 are satisfied and x = 1 is the unique common fixed
point of Ai, A0, S and T.
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