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Abstract

In this paper fixed point and coincidence results are presented for two and three single-valued map-
pings. These results extend previous results given by Rhoades (2003) and Djoudi and Merghadi
(2008).
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1. Introduction and preliminaries

Let (X, d) be a metric space and let f, g : X −→ X be two single valued mappings. f, g are said to
be:
(a) Weakly commuting if for all x ∈ X

d(fgx, gfx) ≤ d(fx, gx). (1.1)

(b) Weakly compatible if for all t ∈ X such that

ft = gt then fgt = gft. (1.2)

Clearly, every pair of weakly commuting mappings is weakly compatible. But the converse is not
true.(see [4; Example 3])

Let f, g be self-mappings on X satisfying the following condition

g(X) ⊂ f(X) . (1.3)
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Let now x0 be an arbitrary point of X and generate inductively the sequence {yn}∞n=0 as follow,

g(xn) = f(xn+1) = yn, n = 0, 1, 2, ...

O(yk, r) is called the rth orbit of yk and defines as follow:

O(yk, r) := {yk, yk+1, ..., yk+r}, k = 0, 1, 2, ...

Also we define,
O(y0,∞) := {y0, y1, ..., yn, ...}.

For any set A, δ(A) will denote the diameter of A. Furthermore, we put for every x, y ∈ X,

M(x, y) := max {d(fx, fy), d(fx, gx), d(fy, gy), d(fx, gy), d(fy, gx)}.

and

N(x, y) := max {d(fx, fy), d(fx, gx), d(fy, gy),
1

2
[d(fx, gy) + d(fy, gx)]}.

We introduce the notation Φ for all nondecreasing and continuous from the right mapping ϕ :
R+ → [0,+∞] with ϕ(t) < t for every t > 0.
Also we introduce the notation Ψ for all nondecreasing continuous mapping F : R+ → [0,+∞] with
F−1(0) = {0}.

In [10], S. Sessa generalized an elegant result due to G. Jungck [7] and proved the following
theorem.

Theorem 1.1. Let f be a continuous self-mapping of X and g : X → X verifying the conditions:

(a) d(fgx, gfx) ≤ d(fx, gx),

(b) g(X) ⊂ f(X),

(c) d(gx, gy) ≤ φ(M(x, y)).

If there exists x0 ∈ X such that δ(O(y0,∞)) <∞, then f and g have a unique common fixed point.

In [9], trying to extend a theorem of Branciari [1] and theorem of Ćirić [2], B.E. Rhoades estab-
lished two fixed point theorems satisfying a contractive inequality of integral type. In particular he
proved the following theorem.

Theorem 1.2. Let (X, d) be a complete metric space, k ∈ [0, 1), g : X → X and f = I : X → X be
the identity mapping of X. Suppose that for all x, y ∈ X, the condition∫ d(gx,gy)

0

ϕ(t) dt ≤ k

∫ M(x,y)

0

ϕ(t) dt, (1.4)

is valid where,
(i) ϕ : R+ → [0,∞] is a Lebesgue-integrable mapping which is summable, nonnegative, and satisfies∫ ε

0
ϕ(t) dt > 0 for each ε > 0.

If there is a point x ∈ X with bounded orbit, then g has a unique fixed point in X.

A. Djoudi and F. merghadi [4] (2008) proved the following two theorems in particular, they
extended theorem 2 for maps which are not necessary continuous, that extended [5] and [6].
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Theorem 1.3. Let (X, d) be a complete metric space and let f, g : X → X be to mappings verifying
conditions (1.2), (1.3). Suppose that∫ d(gx,gy)

0

ϕ(t) dt ≤ φ

(∫ M(x,y)

0

ϕ(t) dt

)
, (1.5)

for all x, y ∈ X, where φ ∈ Φ and ϕ is a functions having the property (i). Assume that f(X) is a
closed subset of X, and that there exists x0 ∈ X, such that δ(O(y0,∞)) <∞. Then f and g have a
unique common fixed point.

Theorem 1.4 (see [ 4; Theorem 11]). Let f and g be two self-mappings of complete metric space
(X, d) verifying conditions (1.1), (1.3) and (1.5). Assume that f is a continuous function on X and
that there exists x0 ∈ X, such that δ(O(y0,∞)) < ∞. Then f and g have a unique common fixed
point.

Zang and song [12] proved the following theorem that extended Theorem 1.3 where φ(t) ≡ t .

Theorem 1.5. Let (X, d) be a complete metric space, and T, S : X → X two mapping such that for
all x, y ∈ X

d(Tx, Sy) ≤ N(x, y)− ϕ(N(x, y))

where ϕ : R+ → [0,∞) is a lower semi-continuous function with ϕ(t) > 0 for t ∈ (0,∞) and ϕ(0) = 0
and

N(x, y) := max{d(x, y), d(x, Tx), d(y, Sy),
1

2
[d(y, Tx) + d(x, Sy)]}.

Then there exists a unique point u ∈ X such that u = Tu = Su.

In the proof of our main results, we will use the following lemma and refer to [11] for its proof.

Lemma 1.6. Let ϕ : R+ −→ R+ is a nondecreasing function and continuous from right. Then for
all t > 0, ϕ(t) < t if and only if limk φ

k(t) = 0 , where φk denotes the k-times repeated composition
of φ with itself.

Rouhani and Moradi [3] (2010) extended Theorem 1.5 for multi-valued maps.
In section 2, we extend Djoudi-Merghadi’s Theorem [Theorem 1.3 and Theorem 1.4].
In section 3, by same method in [12] we extend another type of Theorem 1.4 and Theorem 1.4 without
assuming δ(O(y0,∞)) < +∞. These results extend extend the Rhoades Theorem (Theorem 1.2).

2. Extension of Djoudi-Merghadi’s Theorem

The following theorem extends Djoudi and Merghadi’s Theorem (Theorem 1.3).

Theorem 2.1. Let f and g be two self-mappings of complete metric space (X, d) fulfilling conditions
(1.1), (1.3). Suppose that,

F (d (gx, gy)) ≤ φ (F (M (x, y))) , (2.1)

for all x, y ∈ X, where φ ∈ Φ and F ∈ Ψ. Assume that f(X) is a closed subset of X and there exists
x0 ∈ X, such that δ(O(y0,∞)) <∞. Then f and g have a unique common fixed point.
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Proof . We may assume that δ(O(yk, r)) > 0 for all k ≥ 0 and r ≥ 1, since, if there exist k ≥ 0 and
r ≥ 1 such that δ(O(yk, r)) = 0, we immediately get, yk = yk+1 = y that is f(xk+1) = g(xk+1) = y,
then from (1.2), fy = gy.
Hence

M(y, xk+1) = max{d(fy, fxk+1), d(fy, gy), d(fxk+1, gxk+1),

d(fy, gxk+1, d(fxk+1, gy)}
= max{d(fy, y), d(gy, y)} = d(gy, y).

Therefore from (2.1)

F (d(gy, y)) = F (d(gy, gxk+1)) ≤ φ(F (M(y, xk+1)))

= φ(F (d(gy, y))).

Since φ(t) < t for all t > 0, F (d(gy, y)) = 0 and since F−1(0) = {0}, d(gy, y) = 0. Hence, gy = y
and so fy = gy = y.
So we may assume that δ(O(yk, r)) > 0 for all k ≥ 0 and r ≥ 1.
We break the argument into four steps.

Step 1.{yn} is Cauchy.
Proof . From the definition of δ(O(yk, r)), there exist m,n satisfying k ≤ n < m ≤ k + r such that
δ(O(yk, r)) = d(yn, ym). So

F (δ(O(yk, r))) = F (d(yn, ym)) = F (d(gxn, gxm))

≤ φ(F (xn, xm)), (2.2)

where

M(xn, xm) = max{d(yn−1, ym−1), d(yn−1, yn), d(ym−1, ym),

d(yn−1, ym), d(ym−1, yn)} (2.3)

≤ δ(O(yk−1, r + 1)).

From (2.2), (2.3) and using induction we conclude that

F (δ(O(yk, r))) ≤ φ(F (δ(O(yk−1, r + 1))))

≤ φ2(F (δ(O(yk−2, r + 2))))

≤ ... (2.4)

≤ φk(F (δ(O(y0, r + k))))

For every m, n integer with m > n, d(ym, yn) ≤ δ(O(yn,m)). So from (2.4) and δ(O(y0,∞) <∞

F (d(ym, yn)) ≤ φ(F (δ(O(yn,m))))

≤ φn(F (δ(O(y0, n+m)))) (2.5)

≤ φn(F (δ(O(y0,+∞))))

Using Lemma 1.6, lim
n→∞

φn(t) = 0 and hence, from (2.5), lim
n,m→∞

F (d (yn, ym)) = 0. Since F ∈ Ψ,

lim
n,m→∞

d (yn, ym) = 0. Therefore {yn} is Chauchy. �
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Step 2. gz = fz for some z ∈ X.
Proof . By Step 1 and completeness of X, there exists z ∈ X such that lim yn

n→∞
= z. That is

z = lim
n→∞

yn = lim
n→∞

gxn = lim
n→∞

fxn+1.

Since f(X) is closed, there exists a point u ∈ X such that z = f(u). Using (2.1),

F (d(gu, gxn)) ≤ φ(F (M(u, xn)), (2.6)

where

M(u, xn) = max{d(fu, fxn), d(fu, gu), d(fxn, gxn),

d(fu, gxn), d(fxn, gu)}
= max{d(z, yn−1), d(z, gu), d(yn−1, yn),

d(z, yn), d(yn−1, gu)},

and this shows that lim
n→∞

M(u, xn) = d(z, gu).

Hence from (2.6)
F (d(gu, z)) ≤ φ(F (M(z, gu)),

and so d(gu, z) = 0. Therefore gu = z. From fu = gu = z and (1.2) we obtain fz = gz. �

Step 3. f and g have a common fixed point.
Proof . Using (1.2) and fz = gz = t, we get ft = gt. From (1.6) we conclude that

F (d(gt, gz)) ≤ φ(F (M(t, z)), (2.7)

where

M(t, z) = max{d(ft, fz), d(ft, gt), d(fz, gz),

d(ft, gz), d(fz, gt)}
= d(gt, gz),

and this shows that d(gt, gz) = 0. So gt = gz. Hence g(t) = t and so f(t) = g(t) = t. Therefor
f and g have a common fixed point. Unicity of the common fixed point follows from (2.1) and this
completes the proof. � �

Remark 2.2. One can cheek without great difficulty that Theorem 2.2 is still true if we have ”g(X)
is closed” instead of ”f(X) is closed”. Moreover, the theorem also remains valid if we have g or f
is surjective instead of ”g(X) is closed”.

Remark 2.3. We derive Theorem 8 of A. Djoudi and F. Merghadi [4] (Theorem 1.4) if we let, in
Theorem 2.2, F (t) =

∫ t

0
φ(s)ds.

The following theorem extends Theorem 1.4 ([5; Theorem 11]).

Theorem 2.4. Let f and g be two self-mappings of complete metric space (X, d) verifying conditions
(1.1), (1.3) and (2.1), for φ and F that introduced in Theorem 2.1 and let f be a continuous function
of X, such that δ(O(y0,∞)) < ∞ for some y0 ∈ X. Then f and g have a unique common fixed
point.
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Proof . Unicity of the common fixed point follows from (2.1). Following the proof of Theorem 2.1
we may conclude that {yn} is a Cauchy sequence converging to some z in X and

z = lim
n→∞

yn = lim
n→∞

gxn = lim
n→∞

fxn+1.

Since f is continuous fyn converges to fz. Furthermore, condition (1.1) triangular inequality imply

d(gyn, fz) ≤ d(gyn, fyn+1) + d(fyn+1, fz)

= d(gfxn+1, fgxn+1) + d(fyn+1, fz)

≤ d(fxn+1, gxn+1) + d(fyn+1, fz) (2.8)

= d(yn, yn+1) + d(fyn+1, fz).

Letting n→∞ in the above inequality, we conclude that lim
n→∞

gyn = fz.

M(yn, z) = max{d(fyn, fz), d(fyn, gyn), d(fz, gz), d(fyn, gz), d(fzn, gyn)},

converges from the right to d(fz, gz). Consequently, we obtain from (2.1),

F (d(gyn, gz)) ≤ φ(F (M(yn, z)), (2.9)

and by taking the limit of (2.9), as n →∞, gives

F (d(fz, gz)) ≤ φ(F (M(fz, z)).

So F (d(fz, gz)) = 0. Hence, d(fz, gz) = 0 and therefore fz = gz. Thus fgz = gfz = ggz. Now we
show that gz is a common fixed point for f and g. Using (2.9),

F (d(ggz, gz)) ≤ φ(F (M(gz, z))

= φ(F (d(ggz, z))

and hence d(ggz, gz) = 0. Therefore, ggz = gz. Thus fgz = ggz = gz. This shows that gz is
common fixed point for f and g. �

Remark 2.5. By define F (t) =
∫ t

0
φ(s)ds we can conclude Theorem 1.4. Also by define φ(t) = t we

can extend Ćirić theorem [2].

3. Extension of Rhoade’s Theorem

By the same method in Zang and Song [12] we have two extension of Rhoads Theorem. In partic-
ular M(x, y) in Theorem 2.1 and Theorem 2.4 is replaced by N(x, y) without assuming δ(O(y0,∞)) <
∞.

Theorem 3.1. Let f , g1 and g2 be three self-mappings of complete metric space (X, d) verifying the
conditions :

(a) ∀t ∈ X if ft = git Then fgit = gift (i = 1, 2),

(b) g1(X) ⊆ f(X) and g2(X) ⊆ f(X),

(c) F (d(g1x, g2y) ≤ φ(F (N(x, y))).
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where φ, F ∈ Ψ, φ(t) < t for all t > 0 and where

N(x, y) = max {d(fx, fy), d(fx, g1x), d(fy, g2y),
1

2
[d(fx, g2y) + d(fy, g1x)]}.

Assume that f(X) is a closed subset of X. Then f , g1, g2 have a unique common fixed point.

Proof . If for some x, y ∈ X, d(g1x, g2y) ≥ N(x, y) then

F (d(g1x, g2y)) ≥ F (N(x, y)) ≥ φ(F (N(x, y)).

Since φ(t) < t for all t > 0, F (N(x, y)) = 0. So N(x, y) = 0. Hence f(x) = f(y) = g1(x) = g2(y) = t.
Using (a) we conclude that g1t = ft = g2t. From (c),

F (d(g1x, g2t)) ≤ φ(F (N(x, t)).

where

N(x, t) = max{d(fx, ft), d(fx, g1x), d(ft, g2t),
1

2
[d(fx, g2t) + d(ft, g1x)]}

= max{d(g1x, g2t),
1

2
[d(g1x, g2t) + d(g2t, g1x)]}

= d(g1x, g2t),

and this shows that F (d(g1x, g2t)) = 0. So d(g1x, g2t) = 0 and hence t = g1x = g2t. Therefore,
g1t = ft = g2t = t. So we may assume that for all x, y ∈ X, d(g1x, g2y) < N(x, y). Let x0 ∈ X.
Using (b) there exist {xn}∞n=0 and {yn}∞n=0 such that y0 = g1(x0) = f(x1), y1 = g2(x1) = f(x2), ...
y2n = g1(x2n) = f(x2n+1), y2n+1 = g2(x2n+1) = f(x2n+2), ... .
We break the proof into four steps.

Step 1. lim
n,m→∞

d(yn, ym) = 0.

Proof . For all n ∈ N

d(y2n, y2n+1) = d(g1x2n, g2x2n+1) < N(x2n, x2n+1)

= max {d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),
1

2
[d(y2n−1, y2n+1) + d(y2n, y2n)]}

≤ max {d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),
1

2
[d(y2n−1, y2n) + d(y2n, y2n+1)]}

= max {d(y2n−1, y2n), d(y2n, y2n+1)}.

So

d(y2n, y2n+1) < N(x2n, x2n+1)

= max {d(y2n−1, y2n), d(y2n, y2n+1)} (3.1)

= d(y2n−1, y2n).

Similarly,

d(y2n+2, y2n+1) < N(x2n+2, x2n+1) = d(y2n+1, y2n). (3.2)
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Therefore by (3.1) and (3.2) we conclude that

d(yk+1, yk) < d(yk, yk−1),

for all k ∈ N. Therefore the sequence {d(yn+1, yn)} is decreasing and bounded belove. So there exists
r ≥ 0 such that lim

n→∞
d(yn+1, yn) = r. We need to show that r = 0. Using (3.1), (3.2) and condition

(c) we have

F (d(yn+1, yn)) ≤ φ(F (N(xn, xn+1))) = φ(F (d(yn, yn−1))), (3.3)

for all n ∈ N. Letting n→∞ in (3.3), F (r) ≤ φ(F (r)). So F (r) = 0 and hence r = 0. �

Step 2. {yn} is a bounded sequence.
Proof . If {yn} is a unbounded, then by Step 1, {y2n} and {y2n−1} are unbounded. We choose
the sequence {n(k)}∞k=1 such that n(1) = 1, n(2) > n(1) is even and minimal in sense such that
d(yn(2), yn(1)) > 1 and similarly n(3) > n(2) is odd and minimal in sense such that d(yn(3), yn(2) > 1,
..., n(2k) > n(2k − 1) is even and minimal in sense such that d(yn(2k)), yn(2k−1) > 1 and n(2k + 1) >
n(2k) is odd and minimal in sense such that d(yn(2k+1), yn(2k) > 1. Obviously n(k) ≥ k for every
k ∈ N. By Step 1 there exists N0 ∈ N such that for all k ≥ N0, d(yk+1, yk) < 1

4
. So for k ≥ N0 we

have n(k + 1)− n(k) ≥ 2 and

1 < d(yn(k+1), yn(k))

≤ d(yn(k+1), yn(k+1)−2) + d(yn(k+1)−2, yn(k))

≤ d(yn(k+1), yn(k+1)−2) + 1.

Hence lim
k→∞

d(yn(k+1), yn(k)) = 1. Also

1 < d(yn(k+1), yn(k))

≤ d(yn(k+1), yn(k+1)+1) + d(yn(k+1)+1, yn(k)+1) + d(yn(k)+1, yn(k))

≤ d(yn(k+1), yn(k+1)+1) + d(yn(k+1)+1, yn(k+1)) + d(yn(k+1), yn(k))

+ d(yn(k), yn(k)+1) + d(yn(k)+1, yn(k))

= 2d(yn(k+1), yn(k+1)+1) + d(yn(k+1), yn(k)) + 2d(yn(k)+1, yn(k)),

and this shows that lim
k→∞

d(yn(k+1)+1, yn(k)+1) = 1.

Using (c),

F (d(yn(k+1)+1, yn(k)+1)) ≤ φ(F (N(xn(k+1)+1, xn(k)+1))), (3.4)

where

d(yn(k+1), yn(k)) ≤ N(xn(k+1)+1, xn(k)+1)

= max {d(yn(k+1), yn(k)), d(yn(k+1), yn(k+1)+1), d(yn(k), yn(k)+1),

1

2
[d(yn(k+1), yn(k)+1) + d(yn(k), yn(k+1)+1]}

≤ max {d(yn(k+1), yn(k)), d(yn(k+1), yn(k+1)+1), d(yn(k), yn(k)+1),

1

2
[2d(yn(k+1), yn(k)) + d(yn(k), yn(k)+1) + d(yn(k+1), yn(k+1)+1)]},
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and this shows that lim
k→∞

N(xn(k+1)+1, xn(k)+1) = 1. Since (3.4) holds and F ∈ Ψ, F (1) ≤ φ(F (1)).

So F (1) = 0 and this is a contradiction. �

Step 3. {yn} is Cauchy.
Proof . Let Cn = sup{d(yi, yj) : i, j ≥ n}. Since {yn} is bounded, Cn < +∞ for all n ∈ N.
Obviously {Cn} is decreasing. So there exists C ≥ 0 such that lim

n→∞
Cn = C. We need to show that

C = 0.
For every k ∈ N, there exists n(k),m(k) ∈ N such that m(k) > n(k) ≥ k and

Ck −
1

k
≤ d(ym(k), yn(k)) ≤ Ck. (3.5)

By (3.5), we conclude that

lim
k→∞

d(ym(k), yn(k)) = C. (3.6)

From Step 1 and (3.6), we have

lim
k→∞

d(ym(k)+1, yn(k)+1) = lim
k→∞

d(ym(k)+1, yn(k))

= lim
k→∞

d(ym(k), yn(k)+1)

= lim
k→∞

d(ym(k), yn(k)) = C.

So we can assume that for every k ∈ N, m(k) is odd and n(k) is even. Hence,

F (d(ym(k), yn(k))) ≤ φ(F (M(xm(k), xn(k)))), (3.7)

where

N(xm(k), xn(k)) = max {d(ym(k)−1, yn(k)−1), d(ym(k)−1, ym(k)), d(yn(k)−1, yn(k)),

1

2
[d(ym(k)−1, yn(k)) + d(yn(k)−1, ym(k))]}.

This inequality shows that lim
k→∞

N(xm(k), xn(k)) = C. and from (3.7) we get F (C) ≤ φ(F (C)). So

C = 0. �

Step 4. f, g1 and g2 have a common fixed point.
Proof . Since (X, d) is complete and {yn} is Cauchy there exists z ∈ X such that lim

n→∞
yn = z. Since

f(X) is closed, there exists a point u ∈ X such that z = f(u). For all n ∈ N For all n ∈ N

F (d(g1u, y2n+1)) = F (d(g1u, g2x2n+1)) ≤ φ(F (N(u, x2n+1)))), (3.8)

where

N(u, x2n+1) = max {d(fu, fx2n+1), d(fu, g1u), d(fx2n+1, g2x2n+1),
1

2
[d(fu, g2x2n+1) + d(fx2n+1, g1u)]}

= max {d(z, y2n), d(z, g1u), d(y2n, y2n+1),
1

2
[d(z, y2n+1) + d(y2n, g1u)]},
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and this shows that lim
n→∞

N(u, x2n+1) = d(z, g1u). Letting n→∞ in (3.8), we conclude that

F (d(g1u, z)) ≤ φ(F (d(g1u, z)))),

and so F (d(g1u, z)) = 0. Hence d(g1u, z) = 0 and therefore g1u = z. Similarity, g2u = z. Therefore
fu = g1u = g2u = z. Using condition (a) we conclude that g1z = fz = g2z. Now we prove that z is
a common fixed point for f, g1 and g2.
For all n ∈ N,

F (d(g1z, y2n+1)) = F (d(g1z, g2x2n+1)) ≤ φ(F (N(z, x2n+1)))), (3.9)

where

N(z, x2n+1) = max {d(fz, fx2n+1), d(fz, g1z), d(fx2n+1, g2x2n+1),
1

2
[d(fz, g2x2n+1) + d(fx2n+1, g1z)]}

= max {d(g1z, y2n), 0, d(y2n, y2n+1),
1

2
[d(g1z, y2n+1) + d(y2n, g1z)]},

and this shows that lim
n→∞

N(z, x2n+1) = d(z, g1z). Letting n→∞ in (3.9), we get

F (d(g1z, z)) ≤ φ(F (d(g1z, z)))),

This shows that F (d(g1z, z)) = 0 and so d(g1z, z) = 0. Hence g1z = z. Therefore f(z) = g1(z) =
g2(z) = z. Unicity of the common fixed point follows from (c). � �

Theorem 3.2. Let f , g1 and g2 be three self-mappings of complete metric space (X, d) verifying the
conditions (b) and (c) of Theorem 3.1, where φ, F ∈ Ψ and where φ(t) < t for all t > 0. Assume that
f is a continuous function of X. If for all x ∈ X,

d(fgix, gifx) ≤ d(fx, gix), i = 1, 2. (3.10)

Then f , g1, g2 have a unique common fixed point.

Proof . Following the proof of Theorem 3.1 we may conclude that {yn} is Cauchy sequence con-
verging to some z in X and

z = lim yn
n→∞

= lim
n→∞

g1x2n = lim
n→∞

g2x2n+1 = lim
n→∞

fxn.

Since f is continuous, fyn converges fz. Using (3.10) and triangular inequality for all n ∈ N

d(g1y2n+1, fz) ≤ d(g1y2n+1, fy2n+2) + d(fy2n+2, fz)

= d(g1fx2n+2, fg1x2n+2) + d(fy2n+2, fz)

≤ d(fx2n+2, g1x2n+2) + d(fy2n+2, fz)

= d(y2n+1, y2n+2) + d(fy2n+2, fz).

This shows that lim
n→∞

d(g1y2n+1, fz) = 0.

From (c)

F (d(g1y2n+1, g2z)) ≤ φ(F (N(y2n+1, z)), (3.11)
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where

N(y2n+1, z) = max {d(fy2n+1, fz), d(fy2n+1, g1y2n+1), d(fz, g2z),
1

2
[d(fy2n+1, g2z) + d(fz, g1y2n+1)]},

and this shows that lim
n→∞

N(y2n+1, z) = d(fz, g2z). Hence, from (3.11) we conclude that F (d(fz, g2z)) ≤
φ(F (d(fz, g2z))). So F (d(fz, g2z)) = 0 and hence d(fz, g2z) = 0. Therefore fz = g2z. Similarly
fz = g1z. Therefore fz = g1z = g2z = t.

Now we prove that t is common fixed point for f, g1 and g2. Using fz = g1z = g2z = t and
condition (3.10), we have ft = g1t = g2t. So from (c)

F (d(g1t, t)) = F (d(g1g1t, g2t)) ≤ φ(F (N(g1z, z)),

where

N(g1z, z) = max {d(ft, fz), d(ft, g1t), d(fz, g2z),
1

2
[d(ft, g2z) + d(fz, g1t)]},

= d(ft, fz) = d(g1t, t).

Hence F (d(g1t, t)) ≤ φ(F (d(g1t, t))) and so F (d(g1t, t)) = 0. Therefore d(g1t, t) = 0 and this shows
that g1t = t. Hence ft = g1t = g2t = t. By (c) we conclude that the common fixed point is unique
and this completes the proof. �

4. Conclusion

We have extended Djoudi-Merghadi’s Theorem by replacing
∫ t

0
φ(s)ds with F where F ∈ Ψ. We

have also extended Rhoades theorem by assuming f, g1 and g2 verifying the condition (c) in Theorem
3.1 and 3.2, and found the common fixed point of f, g1 and g2. For the future directions of research
we can consider three maps f, g1 and g2 in Theorem 2.1 and Theorem 2.4.
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