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Abstract

We discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of
Kirchhoff Type

utt − φ(x)||∇u(t)||2∆u+ δut = |u|au, x ∈ RN , t ≥ 0 ,

with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case where N ≥ 3, δ ≥ 0 and
(φ(x))−1 = g(x) is a positive function lying in LN/2(RN)∩L∞(RN). It is proved that, when the initial
energy E(u0, u1), which corresponds to the problem, is non-negative and small, there exists a unique
global solution in time in the space X0 =: D(A) × D1,2(RN). When the initial energy E(u0, u1) is
negative, the solution blows-up in finite time. For the proofs, a combination of the modified potential
well method and the concavity method is used. Also, the existence of an absorbing set in the space
X1 =: D1,2(RN)×L2

g(RN) is proved and that the dynamical system generated by the problem possess
an invariant compact set A in the same space.

Finally, for the generalized dissipative Kirchhoff’s String problem

utt = −||A1/2u||2HAu− δAut + f(u), x ∈ RN , t ≥ 0 ,

with the same hypotheses as above, we study the stability of the trivial solution u ≡ 0. It is
proved that if f ′(0) > 0, then the solution is unstable for the initial Kirchhoff’s system, while if
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f ′(0) < 0 the solution is asymptotically stable. In the critical case, where f ′(0) = 0, the stability is
studied by means of the central manifold theory. To do this study we go through a transformation
of variables similar to the one introduced by R. Pego.
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1. Introduction and preliminaries

We study the following quasilinear hyperbolic initial value problem

utt − φ(x)||∇u(t)||2∆u+ δut − |u|au = 0, x ∈ RN , t ≥ 0 , (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.2)

with initial conditions u0, u1 in appropriate function spaces, N ≥ 3, and δ ≥ 0. Throughout the
paper we assume that the functions φ, g : RN → R satisfy the following condition:

(G) φ(x) > 0, for all x ∈ RN and (φ(x))−1 =: g(x) ∈ LN/2(RN) ∩ L∞(RN) .

This class will include functions of the form φ(x) ∼ c0 + ε|x|α, for some ε > 0 and α > 0,
resembling phenomena of slowly varying wave speed around the speed c0.

G.Kirchhoff in 1883 proposed the so called Kirchhoff string model in the study of oscillations of
stretched strings and plates

ph
ϑ2u

ϑt
=

p0 +
Eh

2L

L∫
0

(
ϑu

ϑx

)2

dx

 ϑ2u

ϑx2
+ f, 0 < x < L, t ≥ 0 ,

where u = u(x, t) is the lateral displacement at the space coordinate x and the time t, E the
Young modules, p the mass density, h the cross-section area, L the length, p0 the initial axial tension
and f the external force (see [10]). When p0 = 0 the equation is considered to be of degenerate type,
otherwise it is of nondegenerate type.

In the case of bounded domain, T. Kobayashi [11] constructed a unique weak solution by a
Faedo-Galerkin method for a quasilinear wave equation with strong dissipation (see also [1, 13]). K.
Nishihara [14] has derived a decay estimate from below of the potential of solutions. Also R. Ikehata
[4] has shown that for sufficiently small initial data, global existence can be obtained, even when the
influence of the source terms is stronger than that of the damping terms. Finally K. Ono [15] for
δ ≥ 0 has proved global existence and blow up results for a degenerate non-linear wave equation of
Kirchhoff type with strong dissipation.

In the case of unbounded domain, P. D’Ancona and S. Spagnolo [2] have shown the global
existence of a unique C∞ solution for the non-degenerate type with small C∞0 data. N. Karahalios
and N. Stavrakakis [5]–[9], have proved global existence and blow-up results for some semilinear
wave equations with variable wave speed on all RN . T Mizumachi (see [12]) studied the asymptotic
behavior of solutions to the Kirchhoff equation with a viscous damping term with no external force.
In our previous work (see [18]), we prove global existence and blow-up results of an equation of
Kirchhoff type in all of RN . Finally, in [19] we study the stability of the trivial solution u = 0 for
the generalized Kirchhoff’s string equation, using the central manifold theory.
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As we will see the space setting for the initial conditions and the solutions of our problem is
the product space X0 =: D(A) × D1,2(RN). By D1,2(RN) we define the closure of the C∞0 (RN)
functions with respect to the energy norm ||u||D1,2 =:

∫
RN |∇u|2dx. It is known that D1,2(RN) ={

u ∈ L
2N
N−2 (RN) : ∇u ∈ (L2(RN))N

}
. The weighted Lebesque space L2

g(RN) is the closure of C∞0 (RN)

functions with respect to the inner product (u, v)L2
g

=:
∫
RN g u v dx (see [3]). We also have that the

operator A = −φ∆ is self-adjoint and therefore graph-closed. Its domain D(A), is a Hilbert space
with respect to the norm

||Au||L2
g

=


∫
RN

φ|∆u|2dx


1/2

. (1.3)

So, we construct the following evolution quartet, with compact and dense embeddings:

D(A) ⊂ D1,2(RN) ⊂ L2
g(RN) ⊂ D−1,2(RN) .

For the positive selfadjoint operator A = −ϕ∆, we may define the fractional powers in the
following way. For every s > 0, As is an unbounded selfadjoint operator in L2

g(RN) with its domain
D(As) to be a dense subset in L2

g(RN). The operator As is strictly positive and injective. Also D(As),
endowned with the scalar product

(u, v)D(As) = (u, v)L2
g

+ (Asu,Asv)L2
g
,

becomes a Hilbert space. We write as usual V2s = D(As) and we have the following identifications

D(A−1/2) = D−1,2(RN), D(A0) = L2
g, D(A1/2) = D1,2(RN) .

Moreover, the mapping
As/2 : Vx −→ Vx−s

is an isomorphism. Furthermore, we have that the injection D(As1) ⊂ D(As2) is compact and dense,
for every s1, s2 ∈ R, s1 > s2.

In order to clarify the kind of solutions we are going to obtain for our problem, we give the
definition of the weak solution for the problem.

Definition 1.1. A weak solution of the problem is a function u such that
(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;D1,2(RN)], utt ∈ L2[0, T ;L2

g(RN)],
(ii) for all v ∈ C∞0 ([0, T ]× (RN)), satisfies the generalized formula

T∫
0

(utt(τ), v(τ))L2
g
dτ +

T∫
0

||∇u(t)||2
∫
RN

∇u(τ)∇v(τ)dxdτ


+δ

T∫
0

(ut(τ), v(τ))L2
g
dτ −

T∫
0

(f(u(τ)), v(τ))L2
g
dτ = 0 , (1.4)

where f(s) = |s|as, and

(iii) satisfies the initial conditions

u(x, 0) = u0(x) ∈ D(A) , ut(x, 0) = u1(x) ∈ D1,2(RN) .
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In the following section we briefly discuss the results concerning the asymptotic behaviour of
solutions for the problem (1.1)-(1.2). Among the global existence and blow-up results we also prove
existence of a compact functional invariant set. We would like to mention that up to our knowledge,
this is the first result concerning existence of functional invariant sets for mathematical models of
Kirchoff’s strings type.

2. Global Existence, Blow-up Results and Invariant Sets

In this section we give global existence and blow-up results for the problem (1.1)-(1.2) in the space
X0. We also prove existence of an attractor like set. For the proofs we refer on [18].

In order to obtain a local existence result for the problem (1.1)-(1.2), we need information con-
cerning the solvability of the corresponding nonhomogeneous linearized problem around the function
v, where (v, vt) ∈ C (0, T ;D(A)×D1,2) is given, restricted in the sphere BR.

utt − φ(x)||∇v(t)||2∆u+ δut = |v|av, (x, t) ∈ BR × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ BR, (2.1)

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

where v ∈ C (0, T ;D(A)) , vt ∈ C (0, T ;D1,2) .

Proposition 2.1. Assume that u0 ∈ D(A), u1 ∈ D1,2(RN) and 0 ≤ a ≤ 4/(N − 2), then the linear
wave Eq. (2.1) has a unique solution such that

u ∈ C (0, T ;D(A)) and ut ∈ C
(
0, T ;D1,2

)
.

Proof . The proof follows the lines of [6, Proposition 3.1]. The Galerkin method is used, based on
the information taken from the associated eigenvalue problem.
Next, we have the following theorem (for the proof we refer to [18]). �

Theorem 2.2. If (u0, u1) ∈ D(A)×D1,2 and satisfy the nondegenerate condition

||∇u0|| > 0 ,

then there exists T > 0, such that the problem (1.1)-(1.2) admits a unique local weak solution u
satisfying

u ∈ C(0, T ;D(A)), ut ∈ C(0, T ;D1,2) .

Moreover, at least one of the following statements holds true, either

(i) T = +∞, or

(ii) e(u(t)) =: ||ut||2D1,2 + ||u||2D(A) →∞, as t→ T−.
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The next theorem deals with the global existence, blow-up results and the energy decay property
of the problem. The proofs of the results are in [18].
First we define as the energy of the problem (1.1)-(1.2) the quantity

E(t) =: E(u(t), ut(t)) =: ||ut(t)||2L2
g

+
1

2
||u(t)||4D1,2 −

2

a+ 2
||u(t)||a+2

La+2
g

. (2.2)

Also we introduce the potential of the problem (1.1)-(1.2), as

J (u) =:
1

2
||u(t)||4D1,2 −

2

a+ 2
||u(t)||a+2

La+2
g

. (2.3)

So, we get the following relation

E(t) = ||ut(t)||2L2
g

+ J (u) . (2.4)

Finally, we introduce a modified version of the modified potential well used in [6] (see also [13]),
by

W =:
{
u ∈ D(A); K(u) = ||u(t)||4D1,2 − ||u(t)||a+2

La+2
g

> 0
}
∪ {0} . (2.5)

Theorem 2.3. Assume that N = 3, 8/3 < a < 4, u0 ∈ W (⊂ D(A)) and u1 ∈ D1,2. Also suppose
that the following inequality holds

E(u0, u1) ≤
(

1

C0µ
p1
0

)1/p2

, if
8

3
< a < 4 and p2 > 0 . (2.6)

Then a) for p1 =: 2(a+2)−3a
2

and p2 =: 3a−8
8

there exists a unique global solution u ∈ W of the
problem (1.1)-(1.2) satisfying

u ∈ C ([0,+∞); D(A)) and ut ∈ C
(
[0,+∞); D1,2(Rn)

)
.

b) Moreover, this solution obeys the following energy estimates

||ut||2L2
g

+ d−1∗ ||∇u||4 ≤ E(u, ut) ≤
{
E(u0, u1)

−1/2 + d−10 [t− 1]+
}−2

, (2.7)

where d∗ = 2(a+2)
a−2 and d0 ≥ 1, that is,

||∇u||4 ≤ C∗(1 + t)−1, (2.8)

where C∗ is some constant depending on ||u0||4D1,2 and ||u1||L2
g
.

c) Suppose that a ≥ 2, N ≥ 3 and the initial energy E(u0, u1) is negative. Then there exists a time
T, where

0 < T ≤ a−2 (−E(u0, u1))
−1
[{

(2δ||u0||2L2
g
− a(u0, u1)L2

g
)2

+ a2 (−E(u0, u1)) ||u0||2L2
g

}1/2

+ 2δ||u0||2L2
g
− a(u0, u1)L2

g

]
, (2.9)

such that the (unique) solution of the problem (1.1)-(1.2) blows-up at T, i.e.,

lim
t→T−

||u(t)||2L2
g

= +∞ . (2.10)



90 Papadopoulos, Matiadou, Pappas

The existence of an absorbing set in X0 is given below.

Lemma 2.4. Assume that ρ1 > 4α−1/2R2c23, 0 ≤ a < 2/(N − 2), N ≥ 3 and ||∇u0|| > 0. Then
the unique local solution defined by Proposition 2.1 exists globally in time.

Proof . Given the constants T > 0, R > 0, we introduce the two parameter space of solutions

XT,R =:
{
w ∈ C (0, T ;D(A)) : wt ∈ C

(
0, T ;D1,2

)
, w(0) = u0,

wt(0) = u1, e(w) ≤ R2, t ∈ [0, T ]
}
,

where e(w) =: ||wt||2D1,2 + ||w||2D(A). Also u0 satisfies the nondegenerate condition

||∇u0||2 > 0 . (2.11)

It is easy to see that the set XT,R is a complete metric space under the distance d(u, v) =:
sup0≤t≤T e(u(t)− v(t)). We may introduce the notation

M0 =:
1

2
||∇u0||2, T0 =: sup

{
t ∈ [0, ∞) : ||∇w(s)||2 > M0, 0 ≤ s ≤ t

}
.

By condition Eq. (2.11), we may see that M0 > 0, T0 > 0 and ||∇w(t)||2 > M0, for all t ∈ [0, T0].
Multiplying Eq. (2.1) by

gAv = g(−ϕ∆)v = −∆v = −∆(ut + εu)

where v = ut + εu and integrating over Rn, we obtain the following inequality

1

2

d

dt

{
||w||2D1,2||u||2D(A) + ||v||2D1,2 +

ε(δ − ε)
2

||u||2D1,2 } (2.12)

+ (δ − ε)||v||2D1,2 + ε||w||2D1,2||u||2D(A)

+ ε2(δ − ε)||u||2D1,2

≤
∣∣∣∣( d

dt
||w||2D1,2

)
||u||2D(A)

∣∣∣∣
+ k2||w||aLNa||∇w||

L
2N
N−2
||∇v|| .

We observe that

θ(t) =: ||w||2D1,2||u||2D(A) + ||v||2D1,2 +
ε(δ − ε)

2
||u||2D1,2

≥ ||w||2D1,2||u||2D(A) + ||v||2D1,2

≥ M0||u||2D(A) + ||ut||2D1,2 ≥ c−23 e(u) , (2.13)

with c3 =:
(
max

{
1, M−1

0

})1/2
. We also have that

∣∣∣∣( d

dt
||w||2D1,2

)
||u||2D(A)

∣∣∣∣ =

∣∣∣∣∣∣
2

∫
Rn

∆wwtϕgdx

 ||u||2D(A)

∣∣∣∣∣∣
≤ 2

(
||w||2D(A)

)1/2 (||wt||2L2
g

)1/2
||u||2D(A)

≤ 2α−1/2R||wt||D1,2||u||2D(A)

≤ 2α−1/2R2e(u) ≤ 2α−1/2R2c23 θ(t) . (2.14)
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By relations Eqs. (2.13)-(2.14) the inequality (2.12) becomes

d

dt
θ(t) + (δ − ε)||v||2D1,2 + ε||w||2D1,2||u||2D(A) +

2εε(δ − ε)
2

||u||2D(A)

≤ 2α−1/2R2c23 θ(t) + k2||w||aLNa||∇w||
L

2N
N−2
||∇v|| . (2.15)

We also have that

||w||aLNa ≤ Ra and ||∇w||
L

2N
N−2
≤ ||w||D(A) ≤ R. (2.16)

Applying Young’s inequality for ε = δ/2, in the last term of Eq. (2.15) we obtain

d

dt
θ(t) +

ρ1
2
θ(t)− 2α−1/2R2c23 θ(t) ≤

C(R)

δ
, (2.17)

where ρ1 = min( δ
2
− ε, ε, 2ε) and C(R) = k2R

2(a+1). So

d

dt
θ(t) + C∗θ(t) ≤

C(R)

δ
, (2.18)

where C∗ = 1
2

(
ρ1 − 4α−1/2R2c23

)
> 0. Applying Gronwall’s Lemma in Eq. (2.18) we get

θ(t) ≤ θ(0) e−C∗t +
1− e−C∗t

C∗

C(R)

δ
. (2.19)

By using the nondegenerate condition ||∇u0||2 > 0 we may assume that ||∇w(s)|| > M0, 0 ≤
s ≤ t, t ∈ [0,∞), (see [16] and [17, Theorem 1.1]). Letting t → ∞, in relation Eq. (2.19) we
conclude that

lim
t→∞

sup θ(t) ≤ C(R)

δC∗
=: R2

∗ . (2.20)

From inequality (2.20) and following the arguments of Theorem 3.1 (see [18]) we conclude that
the solution of Eq. (2.1) exists globally in time. �

Remark 2.5. (Global Solutions) From the last Lemma 2.4 we may observe that solutions of
the problem (1.1)-(1.2), (given by Theorem 2.2), belong to the space Cb (R+, X0) , i.e., we have
achieved global solutions for the given problem. Let us remark that, in the Theorem 2.3, using
a modified potential well technique, we have proved global existence results under the conditions
N = 3, 8/3 < α < 4 and the initial energy E(0) been non-negative and small. On the other hand, in
Lemma 2.4, we could achieve global results for different type of nonlinearities, i.e., α ∈ (0, 2/(N−2)),
but for any N ≥ 3 and independently of the sign of the initial energy E(0).

Lemma 2.4 has an immediate consequence:

Remark 2.6. A nonlinear semigroup S(t) : X0 → X0, t ≥ 0, may be associated to the problem
(1.1)-(1.2) such that for ψ = {u0, u1} ∈ X0, S(t)ψ = {u(t), ut(t)} is the weak solution of the
problem (1.1)-(1.2). Moreover the ball B0 =: BX0(0, R̄∗) for any R̄∗ > R∗, where R∗ is defined by
Lemma 2.4, is an absorbing set for the semigroup S(t) in the energy space X0 ⊂ X1, compactly.
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In the rest of the paper we show that the ω-limit set of the absorbing set B0 is a compact invariant
set. To this end, we need to decompose the semigroup S(t), in the form S(t) = S1(t) + S2(t), where
for a suitable bounded set B ⊂ X0, the semigroups S1(t), S2(t) satisfy the following properties:

(S1) S1(t) is uniformly compact for t large, i.e., ∪t≥t0S1(t)B is relatively compact in X1.
(S2) supk∈B ||S2(t)k||X1 → 0, as t→∞.
As a consequence of the above properties we have the following result.

Theorem 2.7. Let φ satisfy hypothesis (G). Then the semigroup S(t) associated with the
problem (1.1)-(1.2) possesses a functional invariant set A = ω(B0), which is compact in the weak
topology of X1.

Remark 2.8. We have that X0 is compactly embedded in X1, so the set ∪t≥t0S1(t)B is compact
with respect to the strong topology in X1. For the functional invariant compact set A = ω(B0), we
observe that (u0, u1) ∈ A, if |∇u0| > 0. So, A is an attractor like set.

Finally, in the following section we study the stability of the initial solution u = 0 for the
generalized Kirchhoff equation.

3. Stability Results

We consider the generalized quasilinear dissipative Kirchhoff’s String problem

utt = −||A1/2u||2HAu− δAut + f(u), x ∈ Rn, t ≥ 0 ,

under the same initial conditions as above and H is a Hilbert space. First, we prove existence of
solution for our problem, under small initial data (for the proof we refer to [19]).

Theorem 3.1. (Local Existence) Let f(u) a C1-function such that |f(u)| ≤ k1|u|a+1, |f ′(u)| ≤
k2|u|a, 0 ≤ a ≤ 4/(N − 2) and N ≥ 3. Consider that (u0, u1) ∈ D(A) × V and satisfy the
nondegenerate condition

||A1/2u0|| > 0 . (3.1)

Then there exists T0 > 0 such that the problem (1.1)-(1.2) admits a unique local weak solution u
satisfying

u ∈ C(0, T ;D(A)) and ut ∈ C(0, T ;V ) .

The linearized equation of the system around solution u = 0 is

ūt + Âū = 0 , (3.2)

where

ūt = (w, v)T and Â =

[
δA −f ′(0)
−1 0

]
. (3.3)

So, in order to study the stability of the solution, we study the spectrum of the operator Â. The
characteristic polynomial of Â is

∣∣∣∣ −δλj + µj f ′(0)
1 µj

∣∣∣∣ = 0 ,
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or equivalently

µ2
j − δλjµj − f ′(0) = 0 .

Let, ∆ = δ2λ2j + 4f ′(0). Then according to the sign of f ′(0), we have the following cases:
I) Let f ′(0) > 0, then we have that 0 is unstable for the initial Kirchhoff’s system.
II) Let f ′(0) < 0. This implies that the operator Â admits two real eigenvalues which are both
positive. Thus we obtain that the solution u = 0 is asymptotically stable for the initial Kirchhoff’s
system.
III) Let f ′(0) = 0. In this case we use the central manifold theory in order to study the stability
of the initial solution u = 0. Making use of the change of variables similar to what is found by Pego
(see [21]), namely

{
p(x, t) = A−1/2ut,
q(x, t) = −δA1/2u− p , (3.4)

we can rewrite Eqs. (3.2)-(3.3) in the form of a reaction-diffusion system:


pt(x, t) = −δAp+ ( 1

δ3
||p+ q||2H)(p+ q) + A−1/2f(u),

qt(x, t) = −( 1
δ3
||p+ q||2H)(p+ q)− A−1/2f(u),

p(x, t) = 0, t > 0,
p(x, 0) = p0(x), q(x, 0) = q0(x) ,

(3.5)

where p+ q = −δA1/2u.

In order to prove the existence of a local central manifold we need the following result (for the
proof see [21])

Proposition 3.2. For some neighborhood U of 0 in X1/2 =: V ×H, system (3.5) has a local center
manifold defined by

W c
loc(0) = {ξ + η |ξ = hc(η), ξ ∈ X1/2

+ ∩ U, η ∈ X0 ∩ U} ,

where we have that hc(0) = Dhc(0) = 0.

We get that the center manifold is approximated in the following form

hc(q) =
1

δ4
||q||2HA−1q +

2A−3/2f(u)

δ
+O(||q||4H) . (3.6)

Solutions on the center manifold satisfy

p(t) = hc(q(t)),

qt(t) = − 1

δ3
||hc(q) + q||2H(hc(q) + q) . (3.7)

From system (3.7) we obtain that the stability of the solution u = 0 depends on f . Thus we have
the following cases
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(i) if f(u0) < 0, then we get that (p, q) = (0, 0) is unstable, so u = 0 is also unstable for the
initial Kirchhoff’s system,

(ii) if f(u0) > 0, then (p, q) = (0, 0) is asymptotically stable, so u = 0 is also asymptotically
stable for the initial system,

(iii) if f(u0) = 0, we have that solutions on the center manifold satisfy the following system

p(t) = hc(q(t)) ,

qt(t) = − 1

δ3
||q||2Hq +O(||q||5H) .

So, we obtain that (p, q) = (0, 0) is stable, that is, u = 0 is stable for the initial Kirchhoff’s
system.
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