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Abstract

We study the equilibrium states for an energy functional with a parametric force field on a region
of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman’s and
Skrypnik’s variational methods. Consideration of equilibrium states under a constraint of geometrical
character is based on an analog of Skrypnik’s method, described in [P. Vyridis, Bifurcation in a
Variational Problem on a Surface with a Constraint, Int. J. Nonlinear Anal. Appl. 2 (1) (2011),
1-10]. In local coordinates, equilibrium points satisfy an elliptic boundary value problem.
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1. Introduction

Let M be a smooth surface in R3 and ~η(x) , x ∈ R3 a continuously differentiable vector field identified
to the normal vector field for every x ∈ M . Let U ⊂ R3 an open set with diamU < δ, where δ > 0
small enough and S = M ∩ U an open and connected set in M , with boundary ∂S consisting of
two non-intersecting sufficiently smooth components Γ and Γ1. We denote by ~ν(x) a differentiable
vector field in R3, which is the normal vector field of the one - dimensional curve ∂S for every
x ∈ ∂S, located in the tangent plane TxM ⊂ R3. We also denote by ~τ(x) for x ∈ R3 a continuously
differentiable vector field vector field identified for each x ∈ ∂S to the unitary tangent vector field of
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the curve ∂S, and belonging to the tangent plane TxM for each x ∈ ∂S. We assume that the mean
curvature H of surface M does not vanish:

H 6= 0 . (1.1)

Let a vector field ~u ∈ H0(S, TxM), where

H0(S, TxM) =
{
~u ∈ W 1

2 (S, TxM) , ~u|Γ ∈ W 2
2 (Γ, TxM) , ~u|Γ1 = ~0

}
.

We denote by W 1
2 (S, TxM) and W 2

2 (Γ, TxM) the Sobolev spaces of functions defined on S and Γ with
values in TxM ⊂ R3, respectively. For every specific ~u ∈ H0(S, TxM), we introduce the following
functionals

F [ ~u ] =
1

2

∫
S

aijkl(x) ξij(~u) ξkl(~u) dS +
1

2

∫
Γ

|δiδi ~u|2ds (1.2)

G[ ~u ] =

∫
Γ

q(~u, x) ds (1.3)

I[ ~u, λ ] = F [ ~u ]− λG[ ~u ] , λ ∈ R. (1.4)

The coefficients aijkl ∈ L∞(S) satisfy the symmetry properties aijkl(x) = aklij(x), and they are
positive definite, i.e.

aijkl(x) ξijξkl ≥ Λ ξij ξij , Λ > 0 . (1.5)

The tensor ξij(~u) is defined as:

ξij(~u) =
1

2
(∇iu

j +∇ju
i) , (1.6)

where ∇i is the i-th component of the tangent differentiation with respect to the surface M [2]:

∇i =
∂

∂xi
− ηi(x) ηj(x)

∂

∂xj
, i = 1, 2, 3 , x ∈M (1.7)

and δi is the i-th component of the tangent directional differentiation along the curve ∂S:

δi = τ i(x)
d

ds
= τ i(x) τ j(x)

∂

∂xj
, i = 1, 2, 3 , x ∈ ∂S . (1.8)

For the above differential operators the following formulae of integration by parts hold on S ⊂ M
[5]: ∫

S

u∇iv dS =

∫
∂S

u v ν i ds−
∫
S

Hniu v dS −
∫
S

v∇iu dS , (1.9)

and on a closed curve ∂S, located in the surface M [8]:∫
∂S

u δi v ds = −
∫
∂S

(Kν i +Rηi)u v ds−
∫
∂S

v δi u ds , (1.10)

where
H = −∇iη

i (1.11)

is the mean curvature of surface M [2], K is the geodesic curvature, and R is the normal curvature
of curve ∂S, located in the surface M [1]. These geometric characteristics of a curve, located in a
surface, are subjected to the Darboux frame [1] :

d~τ

ds
= K ~ν +R~n ,

d~ν

ds
= −K ~τ + k ~n ,

d~n

ds
= −R~τ − k ~ν , (1.12)
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where k is the geodesic torsion of curve ∂S, and s is the natural parameter. Finally, we assume that
function q is three times differentiable with the following properties

q(~0, x) = 0 , qui(~0, x) = 0 , x ∈ Γ , i = 1, 2, 3. (1.13)

Hence, the first term of (1.2) represents the elastic energy of the medium, stored by the deformation.
The second term of denotes the work, done by the outer forces due to the deformation of the shell
Γ. Finally, the (1.3) denotes the stored potential energy of the shell. The medium is fixed up to a
part Γ1 of the boundary ∂S.

A critical point for functional (1.4) is a vector field ~u ∈ H0(S, TxM) such that

I ′[ ~u, λ ]~v = F ′[ ~u ]~v − λG′[ ~u ]~v = 0 , (1.14)

or equivalently ∫
S

aijkl(x) ξij(~u) ξkl(~v) dS +

∫
Γ

δiδi ~u δjδj ~v ds− λ
∫

Γ

qui(~u, x) vids = 0 (1.15)

for all ~v ∈ H0(S, TxM). We note that ~u = ~0 is a solution for equation (1.15) due to the second
relation of (1.13), therefore a critical point for (1.4) for all λ ∈ R.

The first aim of this work is the investigation of the critical points for functional (1.4). One
approach is to treat (1.15) as a bifurcation problem, based on Skrypnik’s variational method [7].
According to this theory, every λ ∈ R, which corresponds to a non zero critical point ~u ∈ H0(S, TxM)
of (1.4), is a bifurcation point for (1.15). A second approach is to follow the Lyusternik - Schnirelman’s
variational method [3], which allows to prove the existence of countable different solutions for equation
(1.15).

The second aim is the investigation of the critical points for functional (1.4), under the existence
of a constraint with the property of leaving the length of curve Γ invariant on the surface M . The
constraint restricts the domain of (1.15) to a smaller subspace X1 of H0(S, TxM). A generalized
Skrypnik’s method [8] approaches (1.15) as a bifurcation problem on subspace X1.

We also show that under additional smoothness of boundary ∂S, coefficients aijkl and function
q, the integral equation (1.15) can be written in the equivalent form of an elliptic boundary value
problem.

2. Functional spaces on curve and surface

Let Γ a smooth closed curve in R3, parametrized by natural parameter s. Then ~u ∈ W 2
2 (Γ,R3) means

that ~u ∈ W 2
2 ((0, L),R3) where L is the length of the closed curve Γ and

~u(0) = ~u(L) , ~u′(0) = ~u′(L).

The norms on spaces L2(Γ,R3) and W 2
2 (Γ,R3) are defined, respectively, as:

‖~u‖L2(Γ,R3) =

[ ∫ L

0

|~u(s)|2ds
]1/2

, (2.1)

‖~u‖W 2
2 (Γ,R3) =

[ ∫ L

0

(
|~u′′(s)|2 + |~u(s)|2

)
ds

]1/2

. (2.2)



122 Vyridis

After a straight calculation we see that

‖~u‖ =

[ ∫
Γ

(
|δiδi~u|2 + |~u|2

)
ds

]1/2

(2.3)

defines a norm in W 2
2 (Γ,R3) equivalent to (2.2).

Let S a domain on the surface M ⊂ R3. Then there exists a cover of open sets Ua ⊂ R3, a =
1, 2, ..., N , such that S∩Ua is a graph of a two times differentiable function fa defined on bounded do-
main Va ⊂ R2. The graph of each function fa is located on a coordinate system which is transformed
from the initial one by an appropriate composition of a translation and rotation. Then

S ∩ Ua =
{

(x1, x2, fa(x
1, x2)), (x1, x2) ∈ Va

}
.

On such a coordinate system on R3 we pick up the axes x1, x2 from the tangent plane of the surface
M at the point xa ∈ S ∩ Ua, while the axis x3 comes along the normal vector ~η of the surface M at
the point xa. In this specific system of local coordinates, the components of the normal vector of M
at xa satisfy the relations:

η3 =
1√

1 + |gradfa|2
, ηj = −η3∂fa

∂xj
, j = 1, 2 , (2.4)

the area element is given by

dS =
√

1 + |gradfa|2 dx1dx2 =
1

n3
dx1 dx2 , (2.5)

and the components of the tangential differentiation (1.7) are written as:

∇i = (δik − nink)
∂

∂xk
, i = 1, 2, 3 , k = 1, 2 , (2.6)

where δik stands for the Kronecker symbol.
We consider the partition of unity on the surface S ⊂M which corresponds to the cover {Ua}, a =

1, ..., N

suppψa ⊂ S ∩ Ua , ψa ∈ C∞0 (S ∩ Ua) , ψa(x) ≥ 0,
N∑
a=1

ψa(x) = 1 .

Then ~u ∈ L2(S,R3) and ~u ∈ W 1
2 (S,R3) mean, respectively, that ψa~u ◦ f−1

a ∈ L2(Va,R3) and ψa~u ◦
f−1
a ∈ W 1

2 (Va,R3). The norms on spaces L2(S,R3) and W 1
2 (S,R3) are chosen, respectively, as:

‖~u‖L2(S,R3) =

[ N∑
a=1

∫
Va

|ψa~u ◦ f−1
a |2dx1dx2

]1/2

, (2.7)

‖~u‖W 1
2 (S,R3) =

[ N∑
a=1

∫
Va

( ∣∣∂(ψa~u ◦ f−1
a )

∂x1

∣∣2 +
∣∣∂(ψa~u ◦ f−1

a )

∂x2

∣∣2) dx1 dx2

]1/2

. (2.8)

The symbol ◦f−1
a will be omitted in the rest of this paper.

Proposition 2.1. The expression

‖u‖ =

[ ∫
S

ξij(~u) ξij(~u) dS +

∫
S

|~u|2 dS
]1/2

(2.9)

defines a norm on W 1
2 (S,R3) equivalent to (2.8).
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Proof . It is obvious that the corresponding inner product (~u,~v) to (2.9) is bilinear and symmetric,
while (~u, ~u) = 0 implies ~u = 0 for each ~u ∈ W 1

2 (S,R3). We prove the equivalence of (2.9) to the
standard norm (2.8). We consider the family of functions {ϕa} corresponding to the cover {Ua},
a = 1, 2, ..., N , such that

ϕa ∈ C∞0 (Uk) , ϕa(x) ≥ 0 ,
N∑
k=1

ϕ2
a(x) = 1 , x ∈ Ua .

Now for every ε > 0 there exists δ > 0 such for diamUa < δ the inequalities

|ni(x)| < ε , i = 1, 2 , 1 ≤ 1

n3(x)
≤ 1√

1− 2 ε2
x ∈ Ua . (2.10)

hold. This means
|ni(x)nj(x)| → 0 , i, j = 1, 2 , x ∈ Ua . (2.11)

In this chosen system of local coordinates, using (1.6), (2.5) and (2.6) the expression (2.9) can be
written in the form:

‖u‖2 =
n∑

a=1

(
I1,a(~u) + I2,a(~u) + I3,a(~u)

)
, (2.12)

where

I1,a(~u) =
1

2

∫
Va

ϕ2
a(x) (δik − nink) (δil − ninl)

∂uj

∂xk
∂uj

∂xl
1

n3
dx1dx2 , (2.13)

I2,a(~u) =
1

2

∫
Va

ϕ2
a(x) (δik − nink) (δjl − njnl)

∂uj

∂xk
∂ui

∂xl
1

n3
dx1dx2 , (2.14)

I3,a(~u) =

∫
Va

ϕ2
a(x) |~u|2 1

n3
dx1dx2 . (2.15)

We estimate the integral I1,a(~u). Using the inequalities (2.10) we obtain:

(1− ε2)2

2

∫
Va

ϕ2
a

∂uj

∂xk
∂uj

∂xk
dx1dx2 ≤ I1,a ≤

(1 + ε2)2

2
√

1− 2 ε2

∫
Va

ϕ2
a

∂uj

∂xk
∂uj

∂xk
dx1dx2 . (2.16)

Using the identity

ϕa
∂uj

∂xk
=

∂

∂xk
(ϕau

j)− uj ∂ϕa

∂xk

we find that ∫
Va

ϕ2
a

∂uj

∂xk
∂uj

∂xk
dx1dx2

=

∫
Va

[
∂

∂xk
(ϕau

j)− uj ∂ϕa

∂xk

][
∂

∂xk
(ϕau

j)− uj ∂ϕa

∂xk

]
dx1dx2

=

∫
Va

∂(ϕau
j)

∂xk
∂(ϕau

j)

∂xk
dx1dx2 +

∫
Va

(∂ϕa

∂xk
)2|~u|2dx1dx2

− 2

∫
Va

∂(ϕau
j)

∂xk
uj
∂ϕa

∂xk
dx1dx2.
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Since supp(ϕa ◦ f−1
a ) ⊂ Va, we set:

m = min
Va

∣∣∂ϕa

∂xk
∣∣ , M = max

Va

∣∣∂ϕa

∂xk
∣∣ .

Using the inequality

2
∣∣∂(ϕau

j)

∂xk
uj
∂ϕa

∂xk
∣∣ ≤ ε

∣∣∂(ϕau
j)

∂xk
∣∣2 +

1

ε
|~u|2
∣∣∂ϕa

∂xk
∣∣2

for ε > 0, we conclude that

(1− ε2)2

2

[
(1− ε)

∫
Va

∣∣∂(ϕau
j)

∂xk
∣∣2 dx1dx2 + (m− M

ε
)

∫
Va

|~u|2 dx1dx2

]
≤

≤ I1,a(~u) ≤ (2.17)

≤ (1 + ε2)2

2
√

1− 2 ε2

[
(1 + ε)

∫
Va

∣∣∂(ϕau
j)

∂xk
∣∣2 dx1dx2 +M(1 +

1

ε
)

∫
Va

|~u|2 dx1dx2

]
.

For the integral I2,a(~u), we obtain a similar estimation to (2.17), since

− ∂u
i

∂xk
∂ui

∂xk
≤ −

(∂u1

∂x2

)2 −
(∂u1

∂x2

)2 ≤ ∂ui

∂xk
∂uk

∂xi
≤ ∂ui

∂xk
∂ui

∂xk
.

This means that

(1− ε2)2

2

[
(1− ε)

∫
Va

∣∣∂(ϕau
j)

∂xk
∣∣2 dx1dx2 + (m− M

ε
)

∫
Va

|~u|2 dx1dx2

]
≤ I1,a(~u) + I2,a(~u)

≤ (1 + ε2)2

√
1− 2 ε2

[
(1 + ε)

∫
Va

∣∣∂(ϕau
j)

∂xk
∣∣2 dx1dx2

+M(1 +
1

ε
)

∫
Va

|~u|2 dx1dx2

]
.

(2.18)

Let C(ε) and Kε be positive constants, possibly with additional indexes, with the properties

C(ε)→ C > 0 , Kε → +∞ , ε→ 0 .

Then (??) becomes

C1(ε)

∫
Va

∣∣∂(ϕau
j)

∂xk
∣∣2 dx1dx2 −K1,ε

∫
Va

|~u|2 dx1dx2 ≤

≤ I1,a(~u) + I2,a(~u) ≤ (2.19)

≤ C2(ε)

∫
Va

∣∣∂(ϕau
j)

∂xk
∣∣2 dx1dx2 +K2,ε

∫
Va

|~u|2 dx1dx2 .

We introduce the functions:

ψa(x) =
ϕa(x)

ϕ(x)
, a = 1, 2..., N, ϕ(x) =

N∑
a=1

ϕa(x) ≥ 0 , x ∈ Va .



Free and constrained equilibrium states . . . 6 (2015) No. 1, 119-134 125

The functions ψa are a partition of unity corresponding to the cover {Ua}, a = 1, 2, ..., N . Then
inequality (2.19) reduces to

C1(ε)

∫
Va

∣∣∂(ϕψau
j)

∂xk
∣∣2 dx1dx2 −K1,ε

∫
Va

|~u|2 dx1dx2

≤ I1,a(~u) + I2,a(~u)

≤ C2(ε)

∫
Va

∣∣∂(ϕψau
j)

∂xk
∣∣2 dx1dx2 +K2,ε

∫
Va

|~u|2 dx1dx2.

(2.20)

Using the identity∣∣∂(ϕψau
j)

∂xk
∣∣2 =

∣∣ ∂ϕ
∂xk

∣∣2|ψau
j|2 + |ϕ|2

∣∣∂(ψau
j)

∂xk
∣∣2 + 2

∂ϕ

∂xk
ψau

jϕ
∂(ψau

j)

∂xk
,

and estimating every term as above we derive:

C1(ε)

∫
Va

∣∣∂(ψau
j)

∂xk
∣∣2 dx1dx2 −K0,ε

∫
Va

|ψau
j|2dx1dx2−

−K1,ε

∫
Va

|~u|2 dx1dx2 +

∫
Va

ϕ2
a|~u|2dx1dx2 ≤

≤ I1,a(~u) + I2,a(~u) + I3,a(~u) ≤ (2.21)

≤ C2(ε)

∫
Va

∣∣∂(ψau
j)

∂xk
∣∣2 dx1dx2 +K3,ε

∫
Va

|ψau
j|2dx1dx2+

+K2,ε

∫
Va

|~u|2 dx1dx2 +K

∫
Va

ϕ2
a|~u|2dx1dx2 .

Fixing ε > 0 and summing over all a = 1, 2, ..., N from (2.21) we get

C1‖~u‖2
W 1

2 (S,R3) −K1‖~u‖2
L2(S,R3) ≤ ‖u‖2 ≤ C2‖~u‖2

W 1
2 (S,R3) +K2‖~u‖2

L2(S,R3) .

The Sobolev embedding of W 1
2 (S,R3) into L2(S,R3) implies that there exists constant C > 0 such

that
C1‖~u‖2

W 1
2 (S,R3) −K1‖~u‖2

L2(S,R3) ≤ ‖~u‖2 ≤ C‖~u‖2
W 1

2 (S,R3) .

Therefore
C1

1 +K1

‖~u‖2
W 1

2 (S,R3) ≤ ‖~u‖
2 ≤ C ‖~u‖2

W 1
2 (S,R3) .

�

We consider the following space

H(S,R3) =
{
~u ∈ W 1

2 (S,R3) : ~u|∂S ∈ W 2
2 (∂S,R3)

}
= W 1

2 (S,R3) ∩W 2
2 (∂S,R3) .

Proposition 2.2. H(S,R3) is a Hilbert space endowed with the norm

‖~u‖H(S,R3) =
(
‖~u‖2

W 1
2 (S,R3) + ‖~u‖2

W 2
2 (∂S,R3)

)1/2
. (2.22)
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Proof . We are going to show that H(S,R3) is a complete space. Let {~un} be a Cauchy sequence
in H(S,R3). Then due to the completeness of spaces W 1

2 (S,R3) and W 2
2 (∂S,R3), we have ~un → ~u

in W 1
2 (S,R3) and ~un|∂S → ~v in W 2

2 (∂S,R3). Hence, the Sobolev imbedding theorem implies that
~un|∂S → ~u|∂S in L2(∂S). Therefore, the uniqueness of the limit in L2(∂S) implies that ~u|∂S = ~v,
which means that ~u|∂S ∈ W 2

2 (∂S,R3). �

Finally, we introduce the space

H0(S, TxM) =
{
~u ∈ W 1

2 (S, TxM) : ~u|Γ ∈ W 2
2 (Γ, TxM), ~u|Γ1 = ~0

}
.

From proposition (2.2), H0(S,R3) is a Hilbert space with respect to norm (2.22).

Proposition 2.3. The expression

‖~u‖ =

[ ∫
S

aijkl(x) ξij(~u) ξkl(~u) dS +

∫
Γ

|δiδi~u|2 ds
]1/2

(2.23)

defines a norm on H0(S, TxM) equivalent to (2.22).

Proof . Since aijkl ∈ L∞(S), using propositions (2.1) and (2.2) we obtain:

‖~u‖2 ≤ c

∫
S

ξij(~u) ξij(~u) dS +

∫
Γ

|δiδi~u|2ds ≤ c1‖~u‖2
H0(S,TxM) , (2.24)

where c and c1 are positive constants. It is enough to show that there exists constant C > 0 such
that

‖~u‖2
L2(S,TxM) + ‖~u‖2

L2(Γ,TxM) ≤ C ‖~u‖2 . (2.25)

Suppose that the inequality (2.25) is not valid. Then there exists a sequence {~un} ⊂ H0(S, TxM)
such that

‖~un‖2 <
1

n

(
‖~un‖2

L2(S,TxM) + ‖~un‖2
L2(Γ,TxM)

)
, n ∈ N . (2.26)

We introduce the sequence:

~vn =
~un√

‖~un‖2
L2(S,TxM) + ‖~un‖2

L2(Γ,TxM)

, n ∈ N . (2.27)

Then ~vn ∈ H0(S, TxM),

‖~vn‖2
L2(S,TxM) + ‖~vn‖2

L2(Γ,TxM) = 1 , ‖~vn‖ <
1

n
,

and
‖~vn‖2

H(S,TxM) = ‖~vn‖2
W 1

2 (S,TxM) + ‖~vn‖2
W 2

2 (Γ,TxM) = 1 + c ‖~vn‖ ≤ 1 +
c

n
,

where c is a positive constant. This means that sequence {~vn} is bounded in space H0(S, TxM) and
that bound is independent of n. Hence, there exists a subsequence of ~vn (we keep the same index n),
which weakly converges to a ~v ∈ H0(S, TxM). The compactness of Sobolev embedding of H0(S, TxM)
into the spaces L2(S, TxM) and L2(Γ, TxM) implies that

‖~v‖ = 0 , ‖~v ‖2
L2(S,TxM) + ‖~v ‖2

L2(Γ,TxM) = 1 . (2.28)
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From the first relation of (2.28) we get
ξij(~v) = 0

or
∇iv

j +∇jv
i = 0 (2.29)

for all i, j. Since ni∇i = 0, we multiply (2.29) by ni and integrate the result over S to obtain:∫
S

ni∇jv
idS = 0

for all j. Using formula (1.9), and considering that ni(x)vi(x) = 0, since ~v(x) ∈ TxM , we get:∫
S

vi∇jn
idS = 0

for all j. Suppose that ~v 6= ~0. Then necessarily ∇in
j = 0 holds for all i, j. Consequently, we have

that ∇in
i = 0 for i = j. From (1.11), we conclude that the mean curvature H of surface M vanishes.

This contradicts to the initial hypothesis (1.1). Thus ~v = ~0, which also contradicts to the second
relation of (2.28). �

3. Free equilibrium states

Under the additional assumption of smoothness

∂S ∈ C∞ , aijkl ∈ C∞(S) , q ∈ C∞(TxM,∂S) (3.1)

the integral equation (1.15) can be written in the classical form of a boundary value problem

Hηlbijkl(x) ξij(~u) +∇l [ bijkl(x) ξij(~u)] = 0, x ∈ S

bijkl(x) ξij(~u)νl + (K2 +R2 −K −R)Duk+
+D2uk − λquk(~u, x) = 0, x ∈ Γ

~v = ~0, x ∈ Γ1

(3.2)

for all k. Here D = δiδi, and
bijkl = aijkl + aijlk. (3.3)

Equation (3.2) is derived from (1.15) using the formulae (1.9), (1.10) and (1.12). Equation (3.2) is
called equilibrium condition and describes the balance between the outer forces and the stress forces.

Theorem 3.1. The number λ0 is a bifurcation point for problem (1.15), if and only if∫
S

aijkl(x) ξij(~u) ξkl(~v) dS +

∫
Γ

δiδi ~u δjδj ~v ds− λ0

∫
Γ

quiuk(~0, x) viukds = 0 (3.4)

has a nonzero solution ~u ∈ H0(S, TxM) for all ~v ∈ H0(S, TxM).
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Proof . First we note that the functional (1.3) is differentiable due to the smoothness of function q.
The compactness of Sobolev embedding of W 2

2 (Γ,R3) into C(Γ,R3) implies that the functional (1.3)
is weakly continuous and its differential G′[ ~u ] satisfies the local Lipschitz continuous with

G′[ ~u ] = A~u+N(~u) ,

where operator A : H0(S, TxM) −→ H0(S, TxM) is defined as

(A~u,~v)H0(S,TxM) =

∫
Γ

quiuj(~0, x) viuj ds ,

and

(N(~u), ~v)H0(S,TxM) =

∫
Γ

[
qui(~u, x)− quiuj(~0, x)uj

]
vi ds

for all ~v ∈ H0(S, TxM). Obviously, operator A is linear and symmetric. The above embedding
implies that operator A is compact and there exists a positive constant C > 0 such that

‖N(~u)‖H0(S,TxM) ≤ C ‖~u‖2
H0(S,TxM) .

Based on proposition (2.3), the functional (1.2) can be written in the equivalent form

F [ ~u ] =
1

2
‖~u ‖2

H0(S,TxM) =
1

2
(~u, ~u)H0(S,TxM) ,

where ( , ) denotes the inner product of space H0(S, TxM). Thus, the integral equation (3.4) can be
represented as

(~u, ~v)− λ0 (A~u, ~v) = 0 . (3.5)

Under the above notations, the variational method of I. V. Skrypnik [7] provides that λ0 ∈ R,
corresponding to a non zero critical point ~u of the functional (1.4), is a bifurcation point for equation
(1.14), if and only if

I ′′[~0, λ0](~u,~v) = (I ′′[~0, λ0] ~u, ~v) = 0 (3.6)

is satisfied by a non zero solution for all ~v ∈ H0(S, TxM). Since (3.6) is equivalent to (3.4) or (3.5)
we proved our assertion. �

We define a closed subspace

H1(S, TxM) = {~u ∈ H0(S, TxM) : (~u,~v) = 0 , ~v ∈
◦
W 2

1 (S, TxM) }

of H0(S, TxM), where ( , ) is the inner product with respect to norm (2.23), and ~v ∈
◦
W 1

2 (S, TxM)
means that ~v ∈ W 1

2 (S, TxM) with ~v = ~0 on ∂S. Thus, H1(S, TxM) is the orthogonal complement of
◦
W 1

2 (S, TxM), and

H0(S, TxM) = H1(S, TxM)⊕
◦
W 1

2 (S, TxM) .

Proposition 3.2. A vector field ~u is a solution of equation (1.15), if and only if it is a critical point
of functional (1.4), restricted in H1(S, TxM).
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Proof . Let ~u ∈ H0(S, TxM) be a solution of equation (1.15). Then

F ′[ ~u ]~v − λG′[ ~u ]~v =
(
F ′[ ~u ]− λG′[ ~u ] , ~v

)
= 0

for all ~v ∈ H0(S, TxM). Since

~v = ~v1 + ~v2 , ~v1 ∈ H1(S, TxM) , ~v2 ∈
◦
W 1

2 (S, TxM)

from proposition (2.3) we derive

0 =
(
F ′[ ~u ] , ~v2

)
=

∫
S

aijkl(x) ξij(~u) ξkl(~v2) dS +

∫
Γ

δiδi ~u δjδj ~v2 ds = (~u,~v2)

for ~v2 ∈
◦
W 1

2 (S, TxM), which means that ~u ∈ H1(S, TxM). The reverse assertion is obvious. �

We assume that the function q satisfies, in addition to (1.13), the following conditions

q(~u, x) > 0 , qui(~u, x)ui > 0 , q(−~u, x) = q(~u, x) , qui(c ~u, x) = cp+1qui(~u, x) (3.7)

for all ~u ∈ H0(S, TxM), x ∈ ∂S, c ∈ R and p > 0.

Theorem 3.3. For every λ > 0 equation (1.15) admits a countable set of non zero solutions.

Proof . Since the functionals (1.2) and (1.3) have the properties described in the proof of theorem
3.1, we can apply the Lyusternik - Schnirelman’s variational method [3]. Thus, for λ > 0 and α > 0
there exists a countable set ~wn, µn of different solutions for the problem

F ′[ ~wn ]− µnλG
′[ ~wn ] = 0 , F [ ~wn ] = α ,

where ~wn ∈ H1(S, TxM), or equivalently∫
S

aijkl(x) ξij(~wn) ξkl(~v) dS +

∫
Γ

δiδi ~wn δjδj ~v ds− µnλ

∫
Γ

qui(~wn, x) vids = 0 , (3.8)

‖~wn‖2
H0(S,TxM) = α

for all ~v ∈ H1(S, TxM). We set ~wn = cn~un, where cn ∈ R. Then from (3) we derive that µn > 0 and∫
S

aijkl(x) ξij(~un) ξkl(~v) dS +

∫
Γ

δiδi ~un δjδj ~v ds− µnc
p
nλ

∫
Γ

qui(~un, x) vids = 0 ,

‖~un‖2
H0(S,TxM) =

α

c2
n

.

Choosing cn = µ
−1/p
n , we see that ~un is a solution for (1.15). �

Note that, under the assumptions of smoothness (3.1), the integral equation (3.4) is equivalent
to the boundary value problem:

Hηlbijkl(x) ξij(~u) +∇l [ bijkl(x) ξij(~u)] = 0, x ∈ S

bijkl(x) ξij(~u)νl + (K2 +R2 −K −R)Duk+

+D2uk − λ0quiuk(~0, x)ui = 0, x ∈ Γ

~v = ~0, x ∈ Γ1

(3.9)

for all k.
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Theorem 3.4. If the conditions of smoothness (3.1) hold, then every solution of boundary value
problem (4.17) is C∞ differentiable.

Proof . From equation (1.15) it follows that ~u is a weak solution for the differential equation

Hηlbijkl(x) ξij(~u) +∇l [ bijkl(x) ξij(~u)] = 0 . (3.10)

In the introduced system of local coordinates on x ∈ S, using (2.6), the higher derivative term of
(3.10)

(L~u)k = ∇l [ bijkl(x) ξij(~u)]

is represented as

(L~u)k = ( bijkl + bjikl )
( ∂2uj

∂xl∂xi
+ ninsnlnr ∂2uj

∂xr∂xs
− nins ∂2uj

∂xl∂xs
− nlnr ∂2uj

∂xr∂xi
)
,

where j, k = 1, 2, 3, and i, l, s, r = 1, 2. Thus in a small enough neighborhood of x ∈ S, and
considering (2.11) this term is defined as

(L0~u)k = ( bijkl + bjikl )
∂2uj

∂xl∂xi
.

Let vectors ~ζ, ~θ ∈ TxM . From (3.3) and (1.5), we can verify that

( bijkl + bjikl) ζ
iθjζkθl ≥ 2 Λ|~ζ|2|~θ|2 ,

which means that L is an elliptic operator. Let ~u a solution for (3.4). Now according to [6], since

~u|Γ ∈ W 2
2 (Γ, TxM), the solution of (3.10) belongs to space W

2+1/2
2 (S, TxM). Thus, equation (3.4) is

equivalent to∫
Γ

[
bijkl(x) ξij(~u)νl + (K2 +R2 −K −R)Duk − λ quiuk(~0, x)ui) +D2uk

]
vk ds = 0 , (3.11)

where
bijkl(x) ξij(~u)νl + (K2 +R2 −K −R)Duk − λ quiuk(~0, x)ui ∈ L2(Γ).

Equation (3.11) implies that ~u|Γ ∈ W 4
2 (Γ, TxM), and consequently ~u ∈ W 4+1/2

2 (S, TxM). Iterating
this argument, we find that ~u ∈ C∞. �

4. Equilibrium states under a constraint

The mapping
y : ∂S −→M y(x) = x+ ~u(x) , ~u ∈ H0(S, TxM) , (4.1)

for small values of ‖~u‖, leaves invariant the length l(Γ) of the curve Γ on surface M if

l
(
y(Γ)

)
= l(Γ) . (4.2)

As in section 2, the domain S in M can be considered locally as a graph of a smooth function
f(x1, x2) on a bounded domain V ⊂ R2 with ∂V ∈ C1, that is:

S ∩ U =
{

(x1, x2, f(x1, x2)) , (x1, x2) ∈ V ⊂ R2
}
,
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where U ⊂ R3 with small enough diameter. In order to describe the point (x1, x2, f(x1, x2)) when
(x1, x2) ∈ ∂V , we introduce a local coordinate system in R2 such that the axis x1 lies in the tangential
direction of ∂V at point (x1, x2) and axis x2 comes along the normal vector of the curve ∂V at the
same point. Thus, vectors

~τ = (1, 0,−n
1

n3
) = (1, 0,

∂f

∂x1
) (4.3)

and ~n at point (x1, x2, f(x1, x2)) form a basis for R2. In this coordinate system, curve ∂V can be
defined locally in a small neighborhood of point (x1, x2) as

x2 = h(x1) ,

where h is a differentiable function on a small neighborhood (−ε, ε) of 0 ∈ R, with

h(0) = 0 , h′(0) = 0 . (4.4)

Thus, curve ∂S in the same system of local coordinates can be defined locally as:

∂S ∩ U =
{(
x1, h(x1), f(x1, h(x1))

)
, x1 ∈ (−ε, ε)

}
.

Using the above coordinates in R3, we denote the parametric representation of curve Γ by

Γ(x1) =
(
x1, h(x1), f(x1, h(x1))

)
, x1 ∈ [−a, a] ,

with Γ(a) = Γ(−a) and Γ′(a) = Γ′(−a). Since Γ′(x1) 6= ~0, we can choose the arc length t ∈ [ 0, L]
instead of x1 as a parametrization of curve Γ, where L is the length of curve Γ. In this case

|Γ̇(t)| =
∣∣dΓ(t)

dt

∣∣ = 1 (4.5)

holds. Thus, according to (4.1) curve Γ transforms to the curve

γ(t) = Γ(t) + ~u
(
Γ(t)

)
, t ∈ [0, L]

or
γ1(t) = t+ u1 , γ2(t) = h(t) + u2 , γ3(t) = f(t+ u1, h(t) + u2) . (4.6)

Consequently, constraint (4.2) holds if∫ L

0

√
gij
(
γ(t)

)
γ̇i(t) γ̇j(t) dt = l(Γ) = L , (4.7)

where gij(x) are the components of metric tensor at x ∈M . We define the functional

Φ[ ~u ] =

∫ L

0

[
gij
(
Γ(t) + ~u

) d
dt

(
Γi(t) + ui

) d
dt

(
Γj(t) + uj

)]1/2
dt− L . (4.8)

Obviously, (4.2) holds if
Φ[ ~u ] = 0. (4.9)

The mapping Φ : H0(S, TxM) −→ R is continuously differentiable in a small neighborhood of
~0 ∈ H0(S, TxM).



132 Vyridis

On a fixed point x ∈ Γ ⊂M in this system of local coordinates we have gij(x) = δij and

gij(y) =
∂ yk

∂ xi
∂ yk

∂ xj
, k = 1, 2, 3 , i, j = 1 .

Using the coordinate transformation (4.6), we obtain:

g11(y) = (1 + u1
x1 + u2

x2h′)2 + (h′ + u2
x2h′ + u2

x1)2 +
[
fy1(1 + u1

x1 + u2
x2h′) + fy2(h

′ + u2
x2h′ + u2

x1)
]2
.

From (1.8), we obtain
d

dt
ui(Γi(t)) =

∂ui

∂xj
Γ̇j(t) = τ jδju

i .

Considering the estimate (2.11) for a small enough neighborhood of x ∈ Γ, and relations (4.4), for
~u = ~0 we derive that

Φ′[~0 ]~v =

∫ L

0

(v1
x1 + τ kδkv

1) dt .

Finally, from (4.5), (4.3), (1.8), (1.10), and (1.12) we derive that

Φ′[~0 ]~v =

∫
Γ

(δ1v
1 + τ kδkv

1) ds =

∫
Γ

δ1v
1ds = −

∫
Γ

(K ν1 +Rn1) v1ds . (4.10)

Proposition 4.1. There exists decomposition of space H0(S, TxM) in direct sum

H0(S, TxM) = X1 ⊕X2 ,

where

X1 =
{
~v ∈ H0(S, TxM) :

∫
Γ

(Kν1 +Rn1) v1ds = 0
}
,

X2 =
{
~v ∈ H0(S, TxM) : v1|Γ =

C (Kν1 +Rn1)

‖Kν1 +Rn1‖L2(Γ)

, C 6= 0
}

and a differentiable mapping r from a neighborhood of ~0 ∈ X1 to a neighborhood of ~0 ∈ X2, such that
the solutions of equation (4.9) can be expressed as

~u = ~v + r[~v ] , ~v ∈ X1 (4.11)

with
r[~0 ] = ~0 , r′[~0 ] = 0 . (4.12)

Proof . This conclusion comes directly from Lyapunov - Schmidt decomposition and the implicit
function theorem [4]. From (4.8) it is obvious that Φ[~0 ] = 0 . Thus, we set X1 = KerΦ′[~0 ] and
X2 = X⊥1 . �

Now a critical point for the functional (1.4) under the constraint (4.9), for a given λ ∈ R, is the
vector field ~v ∈ X1, which satisfies the relation

I ′[~v, λ ] ~w = 0 (4.13)
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for each ~w ∈ X1. Assuming (4.11), equation (4.13) can be written equivalently as∫
S

aijkl(x) ξij (~w + r′[~v ]~w) ξkl (~v + r[~v ]) dS+

+

∫
Γ

δiδi (~v + r[~v ]) δjδj (~w + r′[~v ]~w) ds− (4.14)

−λ
∫

Γ

qui (~v + r[~v ], x)
(
wi + (r′ [~v ]~w)i

)
ds = 0.

Note that the vector field ~v = ~0 is a critical point for the functional (1.4) under the constraint (4.9),
due to (4.12). The linearised equation, which corresponds to (4.13), is

I ′′[~0, λ ] (~v, ~w) = 0 , ~v, ~w ∈ X1 , (4.15)

or equivalently∫
S

aijkl(x) ξij(~v) ξkl(~w) dS +

∫
Γ

δiδi~v δjδj ~w ds− λ
∫

Γ

quiuj
(~0, x) viwj ds = 0 . (4.16)

Theorem 4.2. The number λ0 is a bifurcation point for problem (4.13), if and only if equation (4.16)
has a nonzero solution for all ~w ∈ X1.

Proof . The properties of functional Φ, described in proposition (4.1) and functionals F and G,
described in the proof of proposition (3.1), allow us to apply a generalized variant of Skrypnik’s
method, demonstrated in [8], which states the existence of bifurcation points for equation (1.4)
under constraint (4.9). Note that, because of proposition (2.3), the integral equation (3.6) can be
written as

(~v, ~w)− λ (A~v, ~w) = 0

for all ~w ∈ X1. �

Under the additional assumptions of smoothness (3.1), using formulae (1.9), (1.10), and proposi-
tion (4.1), the integral equation (4.16) in local coordinates reduces to the equivalent boundary value
problem:

Hηlbijkl(x) ξij(~u) +∇l [ bijkl(x) ξij(~u)] = 0, x ∈ S

bij1l(x) ξij(~u)νl + (K2 +R2 −K −R)Du1+

+D2u1 − λ0quiu1(~0, x)ui = Kν1 +Rn1, x ∈ Γ

bij2l(x) ξij(~u)νl + (K2 +R2 −K −R)Du2+

+D2u2 − λ0quiu2(~0, x)ui = 0, x ∈ Γ

~v = ~0, x ∈ Γ1 .

(4.17)
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Birkhäuser, Boston-Basel-Stuttgart, 1984.
[3] L.A. Lyusternik and L. Schnirelman, Topological Methods in Variational Problems, Institut of Mathematics and

Mechanics Research Publications, Moscow, 1930.
[4] V.G. Osmolovskii, Linear and nonlinear pertubations of operator div, Translations of Mathematical Monographs,

Vol. 160, 1997.
[5] V.G. Osmolovskii, The Variational Problem on Phase Transitions in Mechanics of Continuum Media, Saint

Petersburg University Publications, 2000.
[6] Ya.A. Roitberg and Z.G. Sheftel, A theorem on homeomorphisms for elliptic systems and its applications, Mat.

Sb. (N.S.) 78 (1969) 446–472.
[7] I.V. Skrypnik, Nonlinear Partial Differential Equations of Higher Order, Naukova Dumka, Kiev, 1973.
[8] P. Vyridis, Bifurcation in a Variational Problem on a Surface with a Constraint, Int. J. Nonlinear Anal. Appl. 2

(2011) 1–10.


	 Introduction
	 Functional spaces on curve and surface
	 Free equilibrium states
	 Equilibrium states under a constraint

