
Int. J. Nonlinear Anal. Appl. 7 (2016) No. 2, 195-204
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2017.1332.1329

Approximation of a generalized Euler-Lagrange type
additive mapping on Lie C∗-algebras
Zhihua Wanga,∗, Prasanna K. Sahoob

aSchool of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
bDepartment of Mathematics, University of Louisville, Louisville, KY 40292, USA

(Communicated by M.B. Ghaemi)

Abstract

Using fixed point method, we prove some new stability results for Lie (α, β, γ)-derivations and Lie
C∗-algebra homomorphisms on Lie C∗-algebras associated with the Euler-Lagrange type additive
functional equation

n∑
j=1

f

(
− rjxj +

∑
1≤i≤n,i 6=j

rixi

)
+ 2

n∑
i=1

rif(xi) = nf

( n∑
i=1

rixi

)
where r1, . . . , rn ∈ R are given and ri, rj 6= 0 for some 1 ≤ i < j ≤ n.
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1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: When is it true that a
function, which approximately satisfies a functional equation E, must be close to an exact solution
of E?

If the problem admits a solution, we say that the equation E is stable. Such a problem was
formulated by Ulam [18] in 1940 and solved in the next year for the Cauchy functional equation
by Hyers [5]. It gave rise to the stability theory for functional equations. Hyers’ theorem was
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generalized by Aoki [1] for additive mappings and by Rassias [15] for linear mappings by considering
an unbounded Cauchy difference. Găvruţă [3] generalized the Rassias’ result by using a general
control function in the spirit of Rassias’ approach. Later, the stability of several functional equations
has been extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [6, 7, 8, 16, 17] and references therein).

Now, we deal with the following additive functional equation of Euler-Lagrange type [11]:

n∑
j=1

f

(
− rjxj +

∑
1≤i≤n,i 6=j

rixi

)
+ 2

n∑
i=1

rif(xi) = nf

( n∑
i=1

rixi

)
(1.1)

where r1, . . . , rn ∈ R. Every solution of the functional equation (1.1) is said to be a generalized
Euler-Lagrange type additive mapping. Najati and Park [11] investigated the generalized Hyers-Ulam
stability of the functional equation (1.1) in Banach modules over a C∗-algebra. They also applied
their results to investigate C∗-algebra homomorphisms in unital C∗-algebras. In [9], Kenary et al.
proved the generalized Hyers-Ulam stability of the functional equation (1.1) in non-Archimedean
Banach spaces by using fixed point method.

In this paper, using some ideas from [4, 10], we apply a fixed point theorem to investigate the
stability by using contractively subhomogeneous and expansively superhomogeneous functions for
Lie (α, β, γ)-derivations and Lie C∗-algebra homomorphisms on Lie C∗-algebras associated with the
Euler-Lagrange type additive functional equation (1.1).

Next, following [4, 10], we recall some definitions and preliminary results to be used in this paper.
A C∗-algebra A endowed with the Lie product [x, y] = xy−yx

2
on A , is called a Lie C∗-algebra [13, 14].

Let A and B be Lie C∗-algebras. A C-linear mapping D : A → A is called a Lie derivation of A
if D : A → A satisfies

D([x, y]) = [D(x), y] + [x,D(y)]

for all x, y ∈ A [13, 14]. Following [12], a C-linear mapping D : A → A is called a Lie (α, β, γ)-
derivation of A if there exist α, β, γ ∈ C such that

αD([x, y]) = β[D(x), y] + γ[x,D(y)]

for all x, y ∈ A . A C-linear mapping H : A → B ia called a Lie C∗-algebra homomorphism if
H([x, y]) = [H(x), H(y)] for all x, y ∈ A [2].

The following fixed point theorem will play an important role in proving our main theorems.

Theorem 1.1. (Banach). Let (X, d) be a complete metric space and consider a mapping T : X → X
is a strictly contractive mapping, that is

d(T x, T y) ≤ Ld(x, y)

for all x, y ∈ X and for some (Lipschitz constant) 0 < L < 1. Then there exists a unique a ∈ X such
that T a = a. Moreover, for each x ∈ X,

lim
n→∞

T nx = a

and in fact for each x ∈ X,

d(x, a) ≤ 1

1− L
d(x, T x).
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Let k be a fixed positive integer. We recall that a function η : A→ B having a domain A and a
codomain (B,≤) that are both closed under addition is called:
(i) a homogeneous function of degree k if η(λx) = λk η(x) (for the case k = 1, the corresponding
function is simply called homogeneous),
(ii) a contractively subhomogeneous function of degree k if there exists a constant L with 0 < L < 1
such that η(λx) ≤ Lλk η(x),
(iii) a expansively superhomogeneous function of degree k if there exists a constant L with 0 < L < 1

such that η(λx) ≤ λk

L
η(x) for all x, y ∈ A and all positive integer λ > 1.

Remark 1.2. (cf. [4]) If η is contractively subadditive and expansively superadditive separately, then
η is contractively subhomogeneous (` = 1) and expansively superhomogeneous (` = −1), respectively,
and therefore

η(λ`j x) ≤ (λ` L)j η(x), j ∈ N.

Also, if there exists a constant L satisfying 0 < L < 1 such that a function η : An =

n times︷ ︸︸ ︷
A× · · · × A→ B

satisfies

η(x1, . . . ,

ith︷︸︸︷
λ`x , . . . , xn) ≤ λ` Lη(x1, . . . ,

ith︷︸︸︷
x , . . . , xn)

for all x, xj ∈ A (1 ≤ j 6= i ≤ n) and all positive integers λ, then we say that η is n-contractively
subhomogeneous if ` = 1, and η is n-expansively superhomogeneous if ` = −1.

Remark 1.3. (cf. [4]) If η is n-contractively subadditive and n-expansively superadditive separately,
then η is contractively subhomogeneous of degree n and expansively superhomogeneous of degree n,
respectively.

2. Main results

Throughout this section, we will assume that X and Y are linear spaces, A and B are Lie C∗-
algebras and n0 ∈ N is a positive integer. Further, we assume that T1

1/n0
:= {eiθ; 0 ≤ θ ≤ 2π/n0}.

For convenience, we use the following abbreviations for a given mapping f : A → B:

Dµ,r1,...,rn, f (x1, . . . , xn) :=
n∑
j=1

f

(
− µrjxj +

∑
1≤i≤n,i 6=j

µrixi

)

+ 2
n∑
i=1

µrif(xi)− nf
( n∑

i=1

µrixi

)
and

Dα,β,γ, f (x, y) := α f([x, y])− β [f(x), y]− γ [x, f(y)]

for all x1, . . . , xn, x, y ∈ X, all µ ∈ T1
1/n0

, r1, . . . , rn ∈ R and α, β, γ ∈ C.
Before proceeding to the proof of the main results, we first introduce the following lemmas which

will be used in this paper.
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Lemma 2.1. (cf. [11]). Let X and Y be linear spaces and let r1, . . . , rn be real numbers with∑n
k=1 rk 6= 0 and ri, rj 6= 0 for some 1 ≤ i < j ≤ n. Assume that a mapping f : X → Y satisfies

the functional equation (1.1) for all x1, . . . , xn ∈ X. Then f is an additive mapping satisfying
f(rk x) = rk f(x) for all x ∈ X and rk ∈ R (1 ≤ k ≤ n).

Using the same method of the proof of Lemma 2.1, we have an alternative result of Lemma 2.1
when

∑n
k=1 rk = 0.

Lemma 2.2. (cf. [11]). Let X and Y be linear spaces and let r1, . . . , rn be real numbers with
ri, rj 6= 0 for some 1 ≤ i < j ≤ n. Assume that a mapping f : X → Y with f(0) = 0 satisfies
the functional equation (1.1) for all x1, . . . , xn ∈ X. Then f is an additive mapping satisfying
f(rk x) = rk f(x) for all x ∈ X and rk ∈ R (1 ≤ k ≤ n).

Lemma 2.3. (cf. [2, 4]). Let f : A → A be an additive mapping such that f(µx) = µf(x) for all
µ ∈ T1

1/n0
and all x ∈ A . Then the mapping f is C-linear.

Remark 2.4. Throughout this paper, let r1, . . . , rn be real numbers such that ri, rj 6= 0 for fixed
1 ≤ i < j ≤ n and ϕij(x, y) := ϕ(0, . . . , 0, x︸︷︷︸

ith

, 0, . . . , 0, y︸︷︷︸
jth

, 0, . . . , 0) for all x, y ∈ A and all

1 ≤ i < j ≤ n.

In the following theorem, we prove the generalized Hyers-Ulam stability of the functional equation
(1.1) on Lie C∗-algebras by using contractively subhomogeneous and expansively superhomogeneous
functions.

Theorem 2.5. Assume that there exist a contractively subhomogeneous mapping ϕ : A n → [0,∞)
and a 2-contractively subhomogeneous mapping ψ : A 2 → [0,∞) with a constant 0 < L < 1 such
that a mapping f : A → A with f(0) = 0 satisfies

‖Dµ,r1,...,rn, f (x1, . . . , xn)‖ ≤ ϕ(x1, . . . , xn) (2.1)and
‖Dα,β,γ, f (x, y)‖ ≤ ψ(x, y) (2.2)

for all x1, . . . , xn, x, y ∈ A , all µ ∈ T1
1/n0

and some α, β, γ ∈ C. Then there exists a unique Lie

(α, β, γ)-derivation L : A → A which satisfies the functional equation (1.1) and the inequality

‖f(x)− L(x)‖ ≤ 1

4(1− L)

{
[ϕij(

x

ri
,
x

rj
) + 2ϕij(

x

2ri
,− x

2rj
)]

+ [ϕij(
x

ri
, 0) + 2ϕij(

x

2ri
, 0)] + [ϕij(0,

x

rj
) + 2ϕij(0,−

x

2rj
)]

}
(2.3)

for all x ∈ A .

Proof . Consider the set

W :=

{
g : A → A , sup

x∈A

‖g(x)− f(x)‖
Φ(x)

<∞
}
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where

Φ(x) :=
1

2

{
[ϕij(

x

ri
,
x

rj
) + 2ϕij(

x

2ri
,− x

2rj
)]

+ [ϕij(
x

ri
, 0) + 2ϕij(

x

2ri
, 0)] + [ϕij(0,

x

rj
) + 2ϕij(0,−

x

2rj
)]

}
for all x ∈ A , and introduce the following metric on W:

d(g, h) = sup
x∈A

‖g(x)− h(x)‖
Φ(x)

.

Then it is easy to see that (W, d) is a complete metric space. Now we consider the mapping J :
W→W given by

J g(x) :=
1

2
g(2x), for all g ∈W and x ∈ A . (2.4)

Let g, h ∈W and let ρ ∈ R+ be an arbitrary constant with d(g, h) ≤ ρ. From the definition of d, we
have

‖g(x)− h(x)‖
Φ(x)

≤ ρ

for all x ∈ A . By the assumption and the last inequality, we get

‖J g(x)− J h(x)‖
Φ(x)

=
‖g(2x)− h(2x)‖

2Φ(x)
≤ L‖g(2x)− h(2x)‖

Φ(2x)
≤ Lρ

for some L < 1 and for all x ∈ A . Hence, it holds that d(J g,J h) ≤ Lρ, that is, d(J g,J h) ≤
Ld(g, h) for all g, h ∈ W. This means that J is a strictly contractive self-mapping of W, with the
Lipschitz constant L.

For each 1 ≤ k ≤ n with k 6= i, j, substituting xk = 0 and µ = 1 in the functional inequality
(2.1), we obtain

‖f(−rixi + rjxj) + f(rixi − rjxj)− 2f(rixi + rjxj) + 2rif(xi) + 2rjf(xj)‖ ≤ ϕij(xi, xj) (2.5)

for all xi, xj ∈ A . Letting xi = 0 in (2.5), we get

‖f(−rjxj)− f(rjxj) + 2rjf(xj)‖ ≤ ϕij(0, xj) (2.6)

for all xj ∈ A . Similarly, letting xj = 0 in (2.5), we get

‖f(−rixi)− f(rixi) + 2rif(xi)‖ ≤ ϕij(xi, 0) (2.7)

for all xi ∈ A . It follows from (2.5), (2.6) and (2.7) that

‖f(−rixi + rjxj) + f(rixi − rjxj)− 2f(rixi + rjxj) + 2rif(xi) + 2rjf(xj)

−(f(−rixi)− f(rixi) + 2rif(xi))− (f(−rjxj)− f(rjxj) + 2rjf(xj))‖
≤ ϕij(xi, xj) + ϕij(xi, 0) + ϕij(0, xj) (2.8)



200 Wang, Sahoo

for all xi, xj ∈ A . Replacing xi and xj by x
ri

and y
rj

in (2.8), we obtain

‖f(−x+ y)+f(x− y)− 2f(x+ y) + f(x) + f(y)− f(−x)− f(−y)‖

≤ ϕij(
x

ri
,
y

rj
) + ϕij(

x

ri
, 0) + ϕij(0,

y

rj
) (2.9)

for all x, y ∈ A . Putting y = x in (2.9), we have

‖2f(x)− 2f(−x)− 2f(2x)‖ ≤ ϕij(
x

ri
,
x

rj
) + ϕij(

x

ri
, 0) + ϕij(0,

x

rj
) (2.10)

for all x ∈ A . Replacing x and y by x
2

and −x
2

in (2.9), respectively, we get

‖f(x) + f(−x)‖ ≤ ϕij(
x

2ri
,− x

2rj
) + ϕij(

x

2ri
, 0) + ϕij(0,−

x

2rj
) (2.11)

for all x ∈ A . It follows from (2.10) and (2.11) that

‖f(2x)− 2f(x)‖ ≤ Φ(x) (2.12)

for all x ∈ A . Thus

‖1
2
f(2x)− f(x)‖

Φ(x)
≤ 1

2
(2.13)

for all x ∈ A . Hence d(J f, f) ≤ 1
2
. Due to Theorem 1.1, there exists a unique mapping L ∈W such

that L(2x) = 2L(x) for all x ∈ A , i.e., L is a unique fixed point of J . Moreover,

L(x) = lim
m→∞

f(2mx)

2m
(2.14)

for all x ∈ A . Also

d(f,L) ≤ 1

1− L
d(f,J f) ≤ 1

2(1− L)
,

i.e., inequality (2.3) holds for all x ∈ A .
It follows from (2.1), (2.14) and the contractively subhomogeneity of ϕ that

‖Dµ,r1,...,rn,L(x1, . . . , xn)‖ = lim
m→∞

1

2m
‖Dµ,r1,...,rn, f (2

mx1, . . . , 2
mxn)‖

≤ lim
m→∞

1

2m
ϕ(2mx1, . . . , 2

mxn)

≤ lim
m→∞

Lmϕ(x1, . . . , xn) = 0

holds for all x1, . . . , xn ∈ A and µ ∈ T1
1/n0

. So Dµ,r1,...,rn,L(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ A and

µ ∈ T1
1/n0

. If we put µ = 1 in the last equality, then L is additive by Lemma 2.2 and L(rkx) = rk L(x)
for all x ∈ A and for all 1 ≤ k ≤ n. So letting xi = x and xk = 0 for all 1 ≤ k ≤ n, k 6= i in the last
equality, we obtain L(µx) = µL(x). Now by using Lemma 2.3, we infer that the mapping L ∈W is
C-linear.
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It follows from the 2-contractively subhomogeneity of ψ, (2.2) and (2.14) that

‖Dα,β,γ,L(x, y)‖ = lim
m→∞

1

4m
‖Dα,β,γ, f (2

mx, 2my)‖

≤ lim
m→∞

1

4m
ψ(2mx, 2my) ≤ lim

m→∞

1

4m
(2L)2mψ(x, y) = 0

for all x, y ∈ A and some α, β, γ ∈ C. Then we have

αL([x, y]) = β [L(x), y] + γ [x,L(y)] (2.15)

for all x, y ∈ A and some α, β, γ ∈ C. Thus, the mapping L ∈W is a unique Lie (α, β, γ)-derivation
on Lie C∗-algebra A satisfying (2.3). This completes the proof of the theorem. �

Theorem 2.6. Assume that there exist an expansively superhomogeneous mapping ϕ : A n → [0,∞)
and a 2-expansively superhomogeneous mapping ψ : A 2 → [0,∞) with a constant 0 < L < 1 such
that a mapping f : A → A with f(0) = 0 satisfies (2.1) and (2.2) for all x1, . . . , xn, x, y ∈ A , all
µ ∈ T1

1/n0
and some α, β, γ ∈ C. Then there exists a unique Lie (α, β, γ)-derivation L : A → A

which satisfies the functional equation (1.1) and the inequality

‖f(x)− L(x)‖ ≤ L

4(1− L)

{
[ϕij(

x

ri
,
x

rj
) + 2ϕij(

x

2ri
,− x

2rj
)]

+ [ϕij(
x

ri
, 0) + 2ϕij(

x

2ri
, 0)] + [ϕij(0,

x

rj
) + 2ϕij(0,−

x

2rj
)]

}
(2.16)

for all x ∈ A .

Proof . Let (W, d) be a complete metric space defined in the proof of Theorems 2.5. Now, we
consider the mapping J : W→W defined by

J g(x) := 2g(
x

2
), for all g ∈W and x ∈ A . (2.17)

One can show that d(J g,J h) ≤ Ld(g, h) for all g, h ∈W. By (2.12), we have

‖2f(
x

2
)− f(x)‖ ≤ Φ(

x

2
) (2.18)

for all x ∈ A . Thus

‖2f(x
2
)− f(x)‖

Φ(x)
≤ L

2
(2.19)

for all x ∈ A . Hence d(J f, f) ≤ L
2
. Due to Theorem 1.1, there exists a unique mapping L ∈ W

such that L(2x) = 2L(x) for all x ∈ A , i.e., L is a unique fixed point of J . Moreover,

L(x) = lim
m→∞

2mf(
x

2m
) (2.20)

for all x ∈ A . Also

d(f,L) ≤ 1

1− L
d(f,J f) ≤ L

2(1− L)
,

which implies that (2.16) holds for all x ∈ A .
The remaining assertion goes through in a similar way to the corresponding part of Theorem 2.5.

�
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Theorem 2.7. Assume that there exists a contractively subhomogeneous mapping φ : A n+2 → [0,∞)
with a constant 0 < L < 1 such that a mapping f : A → A with f(0) = 0 satisfies

‖Dµ,r1,...,rn,f (x1, . . . , xn) + Dα,β,γ,f (x, y)‖ ≤ φ(x1, . . . , xn, x, y) (2.21)

for all x1, . . . , xn, x, y ∈ A , all µ ∈ T1
1/n0

and some α, β, γ ∈ C. Then there exists a unique Lie

(α, β, γ)-derivation L : A → A which satisfies the functional equation (1.1) and the inequality

‖f(x)− L(x)‖ ≤ 1

4(1− L)

{
[φij(

x

ri
,
x

rj
) + 2φij(

x

2ri
,− x

2rj
)]

+ [φij(
x

ri
, 0) + 2φij(

x

2ri
, 0)] + [φij(0,

x

rj
) + 2φij(0,−

x

2rj
)]

}
(2.22)

for all x ∈ A .

Proof . For each 1 ≤ k ≤ n with k 6= i, j, substituting xk = x = y = 0 and µ = 1 in the functional
inequality (2.21), we obtain

‖f(−rixi + rjxj) + f(rixi − rjxj)− 2f(rixi + rjxj) + 2rif(xi) + 2rjf(xj)‖

≤ φ(

n times︷ ︸︸ ︷
0, . . . , 0, x︸︷︷︸

ith

, 0, . . . , 0, y︸︷︷︸
jth

, 0, . . . , 0, 0, 0) (2.23)

for all xi, xj ∈ A . For convenience, let

φij(x, y) := φ(

n times︷ ︸︸ ︷
0, . . . , 0, x︸︷︷︸

ith

, 0, . . . , 0, y︸︷︷︸
jth

, 0, . . . , 0, 0, 0)

for all x, y ∈ A and all 1 ≤ i < j ≤ n. By the same way as in the proof of Theorem 2.5, we obtain

‖f(2x)− 2f(x)‖ ≤ Ψ(x) (2.24)

for all x ∈ A , where

Ψ(x) :=
1

2

{
[φij(

x

ri
,
x

rj
) + 2φij(

x

2ri
,− x

2rj
)]

+ [φij(
x

ri
, 0) + 2φij(

x

2ri
, 0)] + [φij(0,

x

rj
) + 2φij(0,−

x

2rj
)]

}
.

We introduce the same definition for W as in the proof of Theorem 2.5 (by replacing Φ by Ψ) such
that (W, d) becomes a complete metric space. Let T : W→W be the mapping defined by

T g(x) :=
1

2
g(2x), for all g ∈W and x ∈ A .

Then, we have d(T g, T h) ≤ Ld(g, h) for all g, h ∈W. It follows from (2.24) that d(T f, f) ≤ 1
2
. The

rest of this proof is similar to the proof of Theorems 2.5 and 2.6. This completes the proof. �
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Theorem 2.8. Assume that there exists an expansively superhomogeneous mapping φ : A n+2 →
[0,∞) with a constant 0 < L < 1 such that a mapping f : A → A with f(0) = 0 satisfies (2.21)
for all x1, . . . , xn, x, y ∈ A , all µ ∈ T1

1/n0
and some α, β, γ ∈ C. Then there exists a unique Lie

(α, β, γ)-derivation L : A → A which satisfies the functional equation (1.1) and the inequality

‖f(x)− L(x)‖ ≤ L

4(1− L)

{
[φij(

x

ri
,
x

rj
) + 2φij(

x

2ri
,− x

2rj
)]

+ [φij(
x

ri
, 0) + 2φij(

x

2ri
, 0)] + [φij(0,

x

rj
) + 2φij(0,−

x

2rj
)]

}
for all x ∈ A .

Proof . The proof is similar to the proof of Theorem 2.7. �

Next, we investigate the Lie C∗-algebra homomorphisms on Lie C∗-algebras associated with the
functional equation (1.1).

Theorem 2.9. Assume that there exist a contractively subhomogeneous mapping ϕ : A n → [0,∞)
and a 2-contractively subhomogeneous mapping ψ : A 2 → [0,∞) with a constant 0 < L < 1 such
that a mapping f : A → B with f(0) = 0 satisfies (2.1) for all x1, . . . , xn ∈ A and all µ ∈ T1

1/n0
,

and

‖f([x, y])− [f(x), f(y)]‖ ≤ ψ(x, y) (2.25)

for all x, y ∈ A . Then there exists a unique Lie C∗-algebra homomorphism L : A → B satisfying
(2.3) for all x ∈ A .

Proof . By the same method as in Theorem 2.5, we obtain a C-linear mapping L : A → B satisfying
(2.3). The mapping is given by L(x) = lim

m→∞
f(2mx)

2m
for all x ∈ A . It follows from (2.25) that

‖L([x, y])−[L(x),L(y)]‖

= lim
m→∞

1

4m
‖f(4m[x, y])− [f(2mx), f(2my)]‖

= lim
m→∞

L2mψ(x, y) = 0

for all x, y ∈ A . Thus, L is a Lie C∗-algebra homomorphism. This completes the proof. �

Theorem 2.10. Assume that there exist an expansively superhomogeneous mapping ϕ : A n →
[0,∞) and a 2-expansively superhomogeneous mapping ψ : A 2 → [0,∞) with a constant 0 < L < 1
such that a mapping f : A → B with f(0) = 0 satisfies (2.1) and (2.25) for all x1, . . . , xn, x, y ∈ A
and all µ ∈ T1

1/n0
. Then there exists a unique Lie C∗-algebra homomorphism L : A → B satisfying

(2.16) for all x ∈ A .

Proof . The proof is similar to the proof of Theorems 2.6 and 2.9. �
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[2] J. Brzdȩk and A. Fošner, Remarks on the stability of Lie homomorphisms, J. Math. Anal. Appl. 400 (2013)

585–596.
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