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An analytical and numerical solution for the free vibration of laminated polymeric compo-

site plates with different layups is studied in this paper. The governing equations of the 

laminated composite plates are derived from the classical laminated plate theory (CLPT) 

and the first-order shear deformation plate theory (FSDT). General layups are evaluated 

by the assumption of cross-ply and angle-ply laminated plates. The solver is coded in 

MATLAB. As a verification method, a finite element code using ANSYS is also developed. 

The effects of lamination angle, plate aspect ratio and modulus ratio on the fundamental 

natural frequencies of a laminated composite are also investigated and good agreement is 

found between the results evaluated and those available in the open literature. The results 

show that the fundamental frequency increases with the modular ratio and the bending-

stretching coupling lowers the vibration frequencies for both cross-ply and angle-ply 

laminates with the CLPT. Also it is found that the effect of bending-stretching coupling, 

transverse shear deformation and rotary inertia is to lower the fundamental frequencies.  
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1. Introduction  
 

A composite material can be defined as a combina-
tion of two or more materials that results in better 
properties than those of the individual components 
used alone. In contrast to metallic alloys, each material 
retains its separate chemical, physical and mechanical 
properties. The two constituents are reinforcement and 
a matrix. When composites are compared to bulk mate-
rials, the main advantages of composite materials are 
their high strength and stiffness, combined with low 
density, allowing for a weight reduction in the finished 
part. The reinforcing phase provides the strength and 
stiffness. In most cases, the reinforcement is harder, 
stronger and stiffer than the matrix. The reinforcement 
is usually a fiber or a particulate. Particulate composites 
have dimensions that are approximately equal in all 
directions. They may be spherical, platelets, or any oth-
er regular or irregular geometry. Particulate composites 

tend to be much weaker and less stiff than continuous-
fiber composites, but they are usually much less expen-
sive. Particulate reinforced composites usually contain 
less reinforcement (up to 40 volume percent to 50 vol-
ume percent) due to processing difficulties and brittle-
ness [1]. 

A fiber’s length is much greater than its diameter. 
The length-to-diameter (l/d) ratio is known as the as-
pect ratio and can vary greatly. Continuous fibers have 
long aspect ratios, whereas discontinuous fibers have 
short ones. Continuous-fiber composites normally have 
a preferred orientation, whereas discontinuous fibers 
generally have a random orientation. Examples of con-
tinuous reinforcements include unidirectional, woven 
cloth and helical winding, whereas examples of discon-
tinuous reinforcements are chopped fibers and random 
material. Continuous-fiber composites are often made 
into laminates by stacking single sheets of continuous 
fibers in different orientations to obtain the desired 
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strength and stiffness properties with fiber volumes as 
high as 60 percent to 70 percent. Fibers produce high-
strength composites because of their small diameter; 
they contain far fewer defects (normally surface de-
fects) compared to those in the material produced in 
bulk. As a general rule, the smaller the diameter of the 
fiber, the higher its strength, but often the cost increas-
es as the diameter becomes smaller. In addition, small-
er-diameter/high-strength fibers have greater flexibility 
and are more amenable to fabrication processes, such 
as weaving or forming over radius. Typical fibers in-
clude glass, aramid and carbon, which may be continu-
ous or discontinuous. The continuous phase is the ma-
trix, which is a polymer, metal or ceramic. Polymers 
have low strength and stiffness, metals have intermedi-
ate strength and stiffness but high ductility, and ceram-
ics have high strength and stiffness but are brittle. The 
matrix (continuous phase) performs several critical 
functions, including maintaining the fibers in the proper 
orientation and spacing and protecting them from abra-
sion and the environment. In polymer and metal matrix 
composites that form a strong bond between the fiber 
and the matrix, the matrix transmits loads from the ma-
trix to the fibers through shear loading at the interface. 
In ceramics-matrix composites, the objective is often to 
increase the toughness rather than the strength and 
stiffness; therefore, a low interfacial strength bond is 
desirable [1]. 

Tan and Nie [2] studied free and forced vibration of 
variable stiffness composite annular thin plates with 
elastically restrained edges based on the classical plate 
theory. They found that the transverse mode shapes of 
the plates with in-plane variable stiffness are different 
from those with constant stiffness. Zhang et al. [3] ana-
lyzed free vibration analysis of triangular CNT-
reinforced composite plates subjected to in-plane 
stresses using the FSDT element-free method. 
Chakraborty et al. [4] presented a novel approach, re-
ferred to as polynomial correlated function expansion 
(PCFE), for a stochastic free-vibration analysis of a 
composite laminate. Finally, based on the numerical 
results, new physical insights had been created on the 
dynamic behavior of composite laminates. Ganesh et al. 
[5] studied the free vibration analysis of delaminated 
composite plates using a finite element method. Mantari 
and Ore [6] presented a simplified first-order shear de-
formation theory (FSDT) for a laminated composite and 
sandwich plates. Their approach had a novel displace-
ment field that includes undetermined integral terms 
and contains only four unknowns. Su et al. [7] illustrat-
ed a modified Fourier series to study the free vibration 
of a laminated composite and four-parameter function-
ally graded sector plates with general boundary condi-
tions. Zhang et al. [8] studied the free-vibration analysis 
of functionally graded carbon nanotube-reinforced 
composite triangular plates using the FSDT and the el-
ement-free IMLS-Ritz method. They also examined the 

influence of a carbon nanotube volume fraction, plate 
thickness-to-width ratio, plate-aspect ratio and a 
boundary condition on the plate’s vibration behavior. 
Marjanović and Vuksanović [9] illustrated a layerwise 
solution to free vibrations and the buckling of a lami-
nated composite and sandwich plates with embedded 
delamination. The effects of plate geometry, lamination 
scheme, degree of orthotropy and delamination size or 
position on the dynamic characteristics of the plate 
were presented. Boscolo [10] presented an analytical 
closed-form solution for a free-vibration analysis of 
multilayered plates by using a layer-wise displacement 
assumption based on Carrera’s Unified Formulation. A 
wide range of boundary conditions were analyzed by 
using a Levy-type solution. Ou et al. [11] presented an 
efficient method for predicting the free and transient 
vibrations of multilayered composite structures with 
parallelepiped shapes, including beams, plates and sol-
ids. Rafiee et al. [12] analyzed the geometrically nonlin-
ear free vibration of shear deformable piezoelectric 
carbon nanotube/fiber/polymer multiscale laminated 
composite plates. Akhras and Li [13] used a spline finite 
strip with higher-order shear deformation for stability 
and a free-vibration analysis of piezoelectric composite 
plates. Grover et al. [14] assessed a new shear defor-
mation theory for free-vibration-response laminated 
composite and sandwich plates. They compared the 
results with finite element and analytical solutions. Jafa-
ri et al. [15] presented a free-vibration analysis of a 
generally laminated composite beam (LCB) based on 
the Timoshenko beam theory using the method of La-
grange multipliers. They examined some parameters, 
such as the slenderness ratio, the rotary inertia, the 
shear deformation, material anisotropy, ply configura-
tion and boundary conditions on the natural frequency 
and mode shape. Tai and Kim [16] illustrated the free 
vibration of laminated composite plates using two vari-
able refined plate theories. They applied the Navier 
technique to obtain the closed-form solutions of anti-

symmetric cross-ply and angle-ply laminates. Srinivasa 
et al. [17] and Ramu and Mohanty [18] used finite ele-
ment results as a verification method with those ob-
tained from experimental tests on the free vibration of 
composite plates. Chandrashekhara [19] presented an 
exact solution for the free vibration of symmetrically 
laminated composite beams. Ke et al. [20] investigated 
the nonlinear free vibration of functionally graded 
nanocomposite beams reinforced by single-walled car-
bon nanotubes (SWCNTs) based on the Timoshenko 
beam theory and von Kármán geometric nonlinearity. 
Also, the free vibration of anisotropic thin-walled com-
posite beams and delaminated composite beams were 
performed by Song [21] and Lee [22], respectively.  

Based on papers reviewed in the literature, few in-
vestigations were found that compared the analytical 
and numerical analyses of different theories and lami-
nation layups. Therefore, in this paper, the analytical 
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and numerical solutions for the free vibration of lami-
nated polymeric composite plates with different layups 
are compared. Two different theories and layups are 
selected. Also, finite-element analysis is performed us-
ing ANSYS to validate results obtained by analytical 
methods. The solver is coded in MATLAB. Also investi-
gated are the effects of different parameters, such as the 
lamination angle, the plate aspect ratio and the modulus 
ratio on the fundamental natural frequencies of lami-
nated composite. The main objective of this paper is to 
compare different theories and lamination schemes on 
the vibration response of laminated composites. 

 

2. Theoretical Formulation 
2.1. Classical lamination plate theory (CLPT) 
2.1.1 Displacement and strains 

A rectangular plate of sides a and b with thickness h 
is shown in Fig. 1. Based on the classical lamination 
plate theory, the following displacement field can be 
assumed [23]: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑥

 (1) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) − 𝑧
𝜕𝑤0
𝜕𝑦

 (2) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) (3) 
where 𝑢0, 𝑣0, 𝑤0 are the displacements along the co-

ordinate lines of a material point on xy-plane. 
The von Karman strains associated with the dis-

placement field in static loading can be computed using 
the strain-displacement relations for small strains: 

𝜀𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤0
𝜕𝑥2

, 𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 𝜀𝑥𝑧 = 0 

 𝜀𝑦𝑦 =
𝜕𝑣0
𝜕𝑦

− 𝑧
𝜕2𝑤0
𝜕𝑦2

 

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥
) − 𝑧

𝜕2𝑤0
𝜕𝑥𝜕𝑦

 

(4) 

Note that the transverse strains are identically zero 
in classical plate theory. The first three strains have the 
form 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

} = {

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝜀𝑥𝑦
0

} + 𝑧 {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝜀𝑥𝑦
1

} (5) 

 
2.1.2 Equilibrium equations 

By using Eqs. (4) and (5), the constitutive equations 
are obtained. Equations of equilibrium can be derived 
using the variational principle, which is not explained in 
detail here (see [23]). The Euler-Lagrange equations of 
the theory are obtained as follows, 

𝛿𝑢0 : 
𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

− 𝐼1
𝜕2

𝜕𝑡2
(
𝜕𝑤0
𝜕𝑥

) (6) 

𝛿𝑣0 : 
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑣0
𝜕𝑡2

− 𝐼1
𝜕2

𝜕𝑡2
(
𝜕𝑤0
𝜕𝑦

) (7) 

𝛿𝑤0 : 
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦𝑦

𝜕𝑦2
+ 𝑁(𝑤0) + 𝑞

= 𝐼0
𝜕2𝑤0
𝜕𝑡2

− 𝐼2
𝜕2

𝜕𝑡2
(
𝜕2𝑤0
𝜕𝑥2

+
𝜕2𝑤0
𝜕𝑦2

)

+ 𝐼2
𝜕2

𝜕𝑡2
(
𝜕𝑢0
𝜕𝑥

+
𝜕𝑣0
𝜕𝑦
) 

(8) 

𝑁(𝑤0) =
𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤0
𝜕𝑥

+ 𝑁𝑥𝑦
𝜕𝑤0
𝜕𝑦

)

+
𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝜕𝑤0
𝜕𝑥

+ 𝑁𝑦𝑦
𝜕𝑤0
𝜕𝑦

) 
(9) 

where, the quantities Nij are called the in-plane force 
resultants and Mij are called the moment resultants and 
(I0, I1, I2) are the mass moments of inertia. 
 
2.1.3 Navier solution methodology 

The displacement fields are assumed by the follow-
ing form: 

      𝑢0(𝑥, 𝑦, 𝑡) = ∑∑ 𝑈𝑚𝑛(𝑡) cos 𝛼𝑥 sin 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 (10) 

𝑣0(𝑥, 𝑦, 𝑡) = ∑∑ 𝑉𝑚𝑛(𝑡) sin 𝛼𝑥 cos 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 (11) 

𝑤0(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑚𝑛(𝑡) sin 𝛼𝑥 sin 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 (12) 

where Umn, Vmn and Wmn are the coefficients that 
should be determined and am /   and ./ bn   

The consideration of Eqs. (10) – (12), shows that the 
mechanical transverse load q should also be expanded 
in a double sine series. Thus, 

𝑞(𝑥, 𝑦, 𝑡) = ∑∑ 𝑄𝑚𝑛(𝑡) sin 𝛼𝑥 sin 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 (13) 

𝑄𝑚𝑛(𝑡)

=
4

𝑎𝑏
∫ ∫ 𝑞(𝑥, 𝑦, 𝑡) sin 𝛼𝑥 sin 𝛽𝑦

𝑏

0

𝑎

0

 𝑑𝑥 𝑑𝑦 
(14) 

 

 
Figure 1. The geometry of simply supported rectangular laminated 
plates used in the analytical solutions. 
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Substituting expansions (10–12) into expressions 
given in Eqs. (6-8) without thermal loads yields 

∑∑[−(𝐴11𝛼
2 + 𝐴66𝛽

2)𝑈𝑚𝑛(𝑡)

∞

𝑚=1

∞

𝑛=1

− (𝐴12 + 𝐴66)𝛼𝛽𝑉𝑚𝑛(𝑡)

+ (𝐵11𝛼
3 + �̃�12𝛼𝛽

2)𝑊𝑚𝑛(𝑡)

− 𝐼0�̈�𝑚𝑛
+ 𝐼1𝛼�̈�𝑚𝑛] cos 𝛼𝑥 sin 𝛽𝑦 = 0 

∑∑[−(𝐴12 + 𝐴66)𝛼𝛽𝑈𝑚𝑛(𝑡)

∞

𝑚=1

∞

𝑛=1

− (𝐴66𝛼
2 + 𝐴22𝛽

2)𝑉𝑚𝑛(𝑡)

+ (𝐵22𝛽
3 + �̃�12𝛽𝛼

2)𝑊𝑚𝑛(𝑡)

− 𝐼0�̈�𝑚𝑛
+ 𝐼1𝛽�̈�𝑚𝑛] sin 𝛼𝑥 sin 𝛽𝑦 = 0 

∑∑[(𝐵11𝛼
3 + �̃�12𝛼𝛽

2)𝑈𝑚𝑛(𝑡)

∞

𝑚=1

∞

𝑛=1

+ (�̃�12𝛽𝛼
2 + 𝐵22𝛽

3)𝑉𝑚𝑛(𝑡)

− (𝐷11𝛼
4 + 2�̃�12𝛼

2𝛽2

+ 𝐷22𝛽
4)𝑊𝑚𝑛(𝑡)

− (�̂�𝑥𝑥𝛼
2 + �̂�𝑦𝑦𝛽

2)𝑊𝑚𝑛(𝑡)

+ 𝐼1𝛼�̈�𝑚𝑛 + 𝐼1𝛽�̈�𝑚𝑛 − (𝐼0
+ 𝐼2(𝛼

2

+ 𝛽2)�̈�𝑚𝑛] sin 𝛼𝑥 sin 𝛽𝑦

= −𝑞(𝑥, 𝑦) 

(15) 

where Aij, Dij and Bij are called extensional, bending 
and bending-extensional coupling stiffness, respectively 
[23]. Also, �̂�12 = 𝐵12 + 2𝐵66 and �̂�12 = 𝐷12 + 2𝐷66. Note 
that the edge shear force is necessarily zero. 

Substituting the expansion (13) into (15), we obtain 
expressions of the form 

∑∑ 𝑎𝑚𝑛(𝑡) cos 𝛼𝑥 sin 𝛽𝑦 = 0

∞

𝑚=1

∞

𝑛=1

 

∑∑ 𝑏𝑚𝑛(𝑡) sin 𝛼𝑥 cos𝛽𝑦 = 0

∞

𝑚=1

∞

𝑛=1

 

∑∑ 𝑐𝑚𝑛(𝑡) sin 𝛼𝑥 sin 𝛽𝑦 = 0

∞

𝑚=1

∞

𝑛=1

 

(16) 

where amn, bmn and cmn are coefficients whose explic-
it form will be given shortly. Since Eq. (16) must hold 
for any m, n, x and y, it follows that amn=0, bmn=0 and 
cmn=0 for every m and n. The explicit forms of these co-
efficients are given by: 

𝑎𝑚𝑛 ≡ −(𝐴11𝛼
2 + 𝐴66𝛽

2)𝑈𝑚𝑛
− (𝐴12 + 𝐴66)𝛼𝛽𝑉𝑚𝑛
+ (𝐵11𝛼

3 + �̃�12𝛼𝛽
2)𝑊𝑚𝑛

− 𝐼0�̈�𝑚𝑛 + 𝐼1𝛼�̈�𝑚𝑛 = 0 
𝑏𝑚𝑛 ≡ −(𝐴12 + 𝐴66)𝛼𝛽𝑈𝑚𝑛

− (𝐴66𝛼
2 + 𝐴22𝛽

2)𝑉𝑚𝑛
+ (𝐵22𝛽

3 + �̃�12𝛽𝛼
2)𝑊𝑚𝑛

− 𝐼0�̈�𝑚𝑛 + 𝐼1𝛽�̈�𝑚𝑛 = 0 

(17) 

𝑐𝑚𝑛 ≡ [(𝐵11𝛼
3 + �̃�12𝛼𝛽

2)𝑈𝑚𝑛
+ (�̃�12𝛽𝛼

2 + 𝐵22𝛽
3)𝑉𝑚𝑛

− (𝐷11𝛼
4 + 2�̃�12𝛼

2𝛽2

+ 𝐷22𝛽
4)𝑊𝑚𝑛 + 𝑄𝑚𝑛 + 𝐼1𝛼�̈�𝑚𝑛

+ 𝐼1𝛽�̈�𝑚𝑛 − (𝐼0
+ 𝐼2(𝛼

2 + 𝛽2))�̈�𝑚𝑛] = 0 

or in matrix form 

[

�̂�11 �̂�12 �̂�13
�̂�12 �̂�22 �̂�23
�̂�13 �̂�23 �̂�33 + �̃�33

] {

𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛

}

+ [

�̂�11 0 −𝐼1𝛼
0 �̂�22 −𝐼1𝛽

−𝐼1𝛼 −𝐼1𝛽 �̂�33

] {

�̈�𝑚𝑛
�̈�𝑚𝑛
�̈�𝑚𝑛

}

= {
0
0
𝑄𝑚𝑛

} 

(18) 

where ijĉ is 

�̂�11 = (𝐴11𝛼
2 + 𝐴66𝛽

2) 
�̂�12 = (𝐴12 + 𝐴66)𝛼𝛽 

�̂�13 = −𝐵11𝛼
3 − (𝐵12 + 2𝐵66)𝛼𝛽

2 
�̂�22 = (𝐴66𝛼

2 + 𝐴22𝛽
2) 

�̂�23 = −𝐵22𝛽
3 − (𝐵12 + 2𝐵66)𝛽𝛼

2 
�̂�33 = 𝐷22𝛽

4 + 2(𝐷12 + 2𝐷66)𝛽
2𝛼2 + 𝐷11𝛼

4 
�̃�33 = 𝛼

2�̂�𝑥𝑥 + 𝛽
2�̂�𝑦𝑦 

�̂�11 = �̂�22 = 𝐼0 
�̂�33 = (𝐼0 + 𝐼2(𝛼

2 + 𝛽2)) 

(19) 

Eqs. (18) provide three second-order differential 
equations among the three variables Umn, Vmn and Wmn 
for any fixed values of m and n.  

For free vibration, all applied loads and the in-plane 
forces are set to zero, and we assume a periodic solu-
tion of the form: 
𝑈𝑚𝑛(𝑡) = 𝑈𝑚𝑛

0 𝑒𝑖𝜔𝑡 , 
 𝑉𝑚𝑛(𝑡) = 𝑉𝑚𝑛

0 𝑒𝑖𝜔𝑡 ,𝑊𝑚𝑛(𝑡) = 𝑊𝑚𝑛
0 𝑒𝑖𝜔𝑡  

(20) 

where i = √−1 and ω is the frequency of natural vi-
bration. Then Eq. (18) reduces to the eigenvalue prob-
lem: 

([

�̂�11 �̂�12 �̂�13
�̂�12 �̂�22 �̂�23
�̂�13 �̂�23 �̂�33

] −

𝜔2 [

�̂�11 0 0
0 �̂�22 0
0 0 �̂�33

]) {

𝑈𝑚𝑛
0

𝑉𝑚𝑛
0

𝑊𝑚𝑛
0

} = {
0
0
0
} 

(21) 

For a nontrivial solution, the determinant of the co-
efficient matrix in (21) should be zero, which yields the 
characteristic polynomial 

−𝑝𝜆3 + 𝑞𝜆2 − 𝑟𝜆 + 𝑠 = 0 , (22) 
where λ = ω2 is the eigenvalue and 

𝑝 = [

�̂�11 0 0
0 �̂�22 0
0 0 �̂�33

] , 𝑠 = [

�̂�11 �̂�12 �̂�13
�̂�12 �̂�22 �̂�23
�̂�13 �̂�23 �̂�33

] (23) 
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𝑞 = [

�̂�11 0 0
�̂�12 �̂�22 0
�̂�13 0 �̂�33

] + [

�̂�11 �̂�12 0
0 �̂�22 0
0 �̂�23 �̂�33

]

+ [

�̂�11 0 �̂�13
0 �̂�22 �̂�23
0 0 �̂�33

] 

𝑟 = [

�̂�11 �̂�12 0
�̂�12 �̂�22 0
�̂�13 �̂�23 �̂�33

] + [

�̂�11 0 �̂�13
�̂�12 �̂�22 �̂�23
�̂�13 0 �̂�33

]

+ [

�̂�11 �̂�12 �̂�13
0 �̂�22 �̂�23
0 �̂�23 �̂�33

] 

The real positive roots of this cubic equation give the 
square of the natural frequency ωmn associated with 
mode (m,n). The smallest of the frequencies is called the 
fundamental frequency. In general, ω11 is not the fun-
damental frequency; the smallest frequency might occur 
for values other than m = n = 1. 

If the in-plane inertias are neglected (i.e., m̂11 =
m̂22 = 0), and irrespective of whether the rotary inertia 
is zero, Eq. (22) will be 

ω2 =
1

�̂�33
(�̂�33 −

�̂�13�̂�22 − �̂�23�̂�12
�̂�11�̂�22 − �̂�12�̂�12

�̂�13

−
�̂�11�̂�23 − �̂�12�̂�13
�̂�11�̂�22 − �̂�12�̂�12

�̂�23) 
(24) 

Note that if the in-plane inertias are not neglected, 
the eigenvalue problem cannot be simplified to a single 
equation, even if the rotary inertia is zero. 

 
2.2. First-order shear deformation theory (FSDT) 
2.2.1 Displacement and strains 
Under the same assumptions and restrictions as in the 
classical laminate theory, the displacement field of the 
first-order theory is of the form: 
𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜙𝑥(𝑥, 𝑦, 𝑡) 
𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜙𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡)  
(25) 

Where  

𝜙𝑥 =
𝜕𝑢

𝜕𝑧
, 𝜙𝑦 =

𝜕𝑣

𝜕𝑧
 (26) 

which indicate that x and y are the rotations of a 

transverse normal about the y- and x- axes, respectively. 
The nonlinear strains associated with the displacement 
field (25) are obtained as 
 
 
 
 
 
 
 
 
 
 
 
 

𝜀𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

+
1

2
(
𝜕𝑤0
𝜕𝑥

)2 + 𝑧
𝜕𝜙𝑥
𝜕𝑥

 

 𝜀𝑦𝑦 =
𝜕𝑣0
𝜕𝑦

+
1

2
(
𝜕𝑤0
𝜕𝑦

)2 + 𝑧
𝜕𝜙𝑦

𝜕𝑦
 

𝛾𝑥𝑦 = (
𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑥

𝜕𝑤0
𝜕𝑦

) + 𝑧(
𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥
) 

𝛾𝑥𝑧 =
𝜕𝑤0
𝜕𝑥

+ 𝜙𝑥, 𝛾𝑦𝑧 =
𝜕𝑤0
𝜕𝑦

+ 𝜙𝑦 , 𝜀𝑧𝑧 = 0 

(27) 

Note that the strains ),,( xyyyxx  are linear through 

the laminate thickness, whereas the transverse shear 
strains ),( yzxz  are constant through the thickness of 

the laminate in the first-order laminated theory. These 
strains have the fo 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}
 
 

 
 

=

{
 
 

 
 
𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑦𝑧
0

𝛾𝑥𝑧
0

𝛾𝑥𝑦
0
}
 
 

 
 

+ 𝑧

{
 
 

 
 
𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑦𝑧
1

𝛾𝑥𝑧
1

𝛾𝑥𝑦
1
}
 
 

 
 

 (28) 

 
2.2.2 Equilibrium equations 
The governing equations of the first-order theory will 
be derived using the dynamic version of the principle of 
virtual displacements. The Euler-Lagrange equations 
are obtained as follows 

𝛿𝑢0 : 
𝜕𝑁𝑥𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑢0
𝜕𝑡2

+ 𝐼1
𝜕2𝜙𝑥
𝜕𝑡2

 

𝛿𝑣0 : 
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑣0
𝜕𝑡2

+ 𝐼1
𝜕2𝜙𝑦

𝜕𝑡2
 

𝛿𝑤0 : 
𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑁(𝑤0) + 𝑞 = 𝐼0

𝜕2𝑣0
𝜕𝑡2

 

𝛿𝜙𝑥 : 
𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 𝐼2

𝜕2𝜙𝑥
𝜕𝑡2

+ 𝐼1
𝜕2𝑢0
𝜕𝑡2

 

𝛿𝜙𝑦 : 
𝜕𝑀𝑥𝑦

𝜕𝑥
+

𝜕𝑀𝑦𝑦

𝜕𝑦
− 𝑄𝑦 = 𝐼2

𝜕2𝜙𝑦

𝜕𝑡2
+ 𝐼1

𝜕2𝑣0

𝜕𝑡2
, 

(29) 

where Qx and Qy are called transverse force resultants 
and 

{
𝑄𝑥
𝑄𝑦
} = 𝐾∫ {

𝜎𝑥𝑧
𝜎𝑦𝑧

}
ℎ/2

−ℎ/2

𝑑𝑧 (30) 

Parameter K is called a shear correction coefficient and 
is used because of a discrepancy between the actual 
stress state and the constant stress state predicted by 
the first-order theory. 
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2.2.2 Boundary condition 
The natural boundary conditions are obtained by 

setting the coefficients of 𝛿𝑢𝑛, 𝛿𝑢𝑠, 𝛿𝑤0, 𝛿𝜙𝑛 and 𝛿𝜙𝑠 to 
zero separately: 
𝑁𝑛𝑛 − �̂�𝑛𝑛 = 0,𝑁𝑛𝑠 − �̂�𝑛𝑠 = 0, 𝑄𝑛 − �̂�𝑛

= 0,𝑀𝑛𝑛 − �̂�𝑛𝑛

= 0,𝑀𝑛𝑠 − �̂�𝑛𝑠 = 0 

(31) 

where 
𝑄𝑛 ≡ 𝑄𝑥𝑛𝑥 + 𝑄𝑦𝑛𝑦 + 𝑃(𝑤0) (32) 

Thus, the primary and secondary variables of the 
theory are 
primary variables: 𝑢𝑛, 𝑢𝑠, 𝑤0, 𝜙𝑛, 𝜙𝑠  
secondary variables :𝑁𝑛𝑛, 𝑁𝑛𝑠, 𝑄𝑛 , 𝑀𝑛𝑛, 𝑀𝑛𝑠  

(33) 

The initial conditions of the theory involve specify-
ing the values of the displacements and their first deriv-
atives with respect to time at t = 0. 

2.2.3 Equations of motion 
The boundary conditions are satisfied by the follow-

ing expansions 

𝑢0(𝑥, 𝑦, 𝑡) = ∑∑ 𝑈𝑚𝑛(𝑡) cos 𝛼𝑥 sin 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 

𝑣0(𝑥, 𝑦, 𝑡) = ∑∑ 𝑉𝑚𝑛(𝑡) sin 𝛼𝑥 cos 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 

𝑤0(𝑥, 𝑦, 𝑡) = ∑∑𝑊𝑚𝑛(𝑡) sin 𝛼𝑥 sin 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 

𝜙𝑥(𝑥, 𝑦, 𝑡) = ∑∑ 𝑋𝑚𝑛(𝑡) cos 𝛼𝑥 sin 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 

𝜙𝑦(𝑥, 𝑦, 𝑡) = ∑∑ 𝑌𝑚𝑛(𝑡) sin 𝛼𝑥 cos 𝛽𝑦

∞

𝑚=1

∞

𝑛=1

 

(34) 

The Navier solution can be calculated from 

[
 
 
 
 
�̂�11 �̂�12
�̂�12 �̂�22
0 0

�̂�14 �̂�24
�̂�15 �̂�25

0
0

�̂�33 + �̃�33
�̂�34
�̂�35

�̂�14
�̂�24
�̂�34
�̂�44
�̂�45

�̂�15
�̂�25
�̂�35
�̂�45
�̂�55]
 
 
 
 

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝑋𝑚𝑛
𝑌𝑚𝑛 }

 
 

 
 

+

[
 
 
 
 
�̂�11 �̂�12
�̂�12 �̂�22

0 0
�̂�14 �̂�24
�̂�15 �̂�25

0
0
�̂�33

�̂�34
�̂�35

�̂�14
�̂�24
�̂�34
�̂�44

�̂�45

�̂�15
�̂�25
�̂�35
�̂�45
�̂�55]

 
 
 
 

{
 
 

 
 
�̈�𝑚𝑛
�̈�𝑚𝑛
�̈�𝑚𝑛
�̈�𝑚𝑛
�̈�𝑚𝑛 }

 
 

 
 

=

{
 
 

 
 0
0
𝑄𝑚𝑛
0
0 }
 
 

 
 

−

{
 
 

 
 
𝑈𝑚𝑛
𝑉𝑚𝑛
𝑊𝑚𝑛
𝑋𝑚𝑛
𝑌𝑚𝑛 }

 
 

 
 

{
 
 

 
 
𝛼𝑁𝑚𝑛

1

𝛽𝑁𝑚𝑛
2

0
𝛼𝑀𝑚𝑛

1

𝛽𝑀𝑚𝑛
2 }
 
 

 
 

(35) 

where 
�̂�11 = (𝐴11𝛼

2 + 𝐴66𝛽
2), �̂�12 = (𝐴12 + 𝐴66)𝛼𝛽

�̂�14 = (𝐵11𝛼
2 + 𝐵66𝛽

2), �̂�15 = (𝐵12 + 𝐵66)𝛼𝛽
�̂�22 = (𝐴66𝛼

2 + 𝐴22𝛽
2), �̂�24 = �̂�15

�̂�25 = (𝐵66𝛼
2 + 𝐵22𝛽

2), �̂�34 = 𝐾𝐴55𝛼
�̂�33 = 𝐾(𝐴55𝛼

2 + 𝐴44𝛽
2), �̂�35 = 𝐾𝐴44𝛽

(36) 

�̃�33 = �̂�𝑥𝑥𝛼
2 + �̂�𝑦𝑦𝛽

2, �̂�11 = 𝐼0, �̂�55 = 𝐼2
�̂�44 = 𝐷11𝛼

2 + 𝐷66𝛽
2 + 𝐾𝐴55, �̂�22 = 𝐼0

�̂�45 = (𝐷12 + 𝐷66)𝛼𝛽, �̂�33 = 𝐼0, �̂�44 = 𝐼2 
�̂�55 = 𝐷66𝛼

2 + 𝐷22𝛽
2 + 𝐾𝐴44

For free vibration, all thermal and mechanical loads 
are set to zero and substitute to Eq. (29) and obtain 

([�̂�] − 𝜔2[�̂�]){Δ} = {0} (37) 

where 

[�̂�] =

[
 
 
 
 
�̂�11 �̂�12
�̂�12 �̂�22
0 0

�̂�14 �̂�24
�̂�15 �̂�25

0
0
�̂�33
�̂�34
�̂�35

�̂�14
�̂�24
�̂�34
�̂�44
�̂�45

�̂�15
�̂�25
�̂�35
�̂�45
�̂�55]
 
 
 
 

, 

[�̂�] =

[
 
 
 
 
�̂�11 0
0 �̂�22

0 0
0 0
0 0

0
0
�̂�33

0
0

0
0
0
�̂�44

0

0
0
0
0
�̂�55]

 
 
 
 

(38) 

and {Δ}T = {𝑈𝑚𝑛
0  𝑉𝑚𝑛

0  𝑊𝑚𝑛
0  𝑋𝑚𝑛

0  𝑌𝑚𝑛
0 }. When rotary

inertia is omitted, Eq. (37) can be simplified by eliminat-
ing Xmn and Ymn (i.e., using the static condensation 
method) as follows 

 ([

�̅�11 �̅�12 �̅�13
�̅�12 �̅�22 �̅�23
�̅�13 �̅�23 �̅�33

]

− 𝜔2 [

�̂�11 0 0
0 �̂�22 0
0 0 �̂�33

]) {

𝑈𝑚𝑛
0

𝑉𝑚𝑛
0

𝑊𝑚𝑛
0

} = {
0
0
0
} 

(39) 

where 

�̅�11 = �̂�11 −
(�̂�14�̂�55 − �̂�15�̂�45)�̂�14

�̅�00

−
(�̂�15�̂�44 − �̂�14�̂�45)�̂�15

�̅�00

�̅�12 = �̂�12 −
(�̂�24�̂�55 − �̂�25�̂�45)�̂�14

�̅�00

−
(�̂�25�̂�44 − �̂�24�̂�45)�̂�15

�̅�00

�̅�13 = −
(�̂�34�̂�55 − �̂�35�̂�45)�̂�14

�̅�00

−
(�̂�33�̂�44 − �̂�34�̂�45)�̂�15

�̅�00

�̅�22 = �̂�22 −
(�̂�24�̂�55 − �̂�25�̂�45)�̂�24

�̅�00

−
(�̂�25�̂�44 − �̂�24�̂�45)�̂�25

�̅�00

�̅�23 = �̂�23 −
(�̂�34�̂�55 − �̂�35�̂�45)�̂�24

�̅�00

−
(�̂�35�̂�44 − �̂�34�̂�45)�̂�25

�̅�00

�̅�33 = �̂�33 −
(�̂�34�̂�55 − �̂�35�̂�45)�̂�34

�̅�00

−
(�̂�35�̂�44 − �̂�34�̂�45)�̂�35

�̅�00
�̅�00 = �̂�44�̂�55 − �̂�45�̂�45 

(40) 



M.A. Torabizadeh & A. Fereidoon / Mechanics of Advanced Composite Structures 4 (2017) 75-87 81 

If the in-plane and rotary inertias are omitted (i.e., 

0ˆˆˆˆ
55442211  mmmm ), we have 

ω2 =
1

m̂33

(s̅33 −
s̅13s̅22 − s̅23s̅12
s̅11s̅22 − s̅12s̅12

s̅13

−
s̅11s̅23 − s̅12s̅13
s̅11s̅22 − s̅12s̅12

s̅23) 
(41) 

3. Finite Element Method

     The finite element method (FEM), known as a power-
ful tool for many engineering problems, has been used 
to compute such matters as elastic-plastic, residual and 
thermal stresses, and buckling and vibration analysis. 
Because of this, ANSYS software that is a commercial 
FEM program was preferred for the vibration analysis 
of the laminated composite plates. The Shell 99 element 
type was selected for the 2D modeling of solid struc-
tures in ANSYS. Initially, the plates are to get an initial 
estimate of the undamped natural frequencies ωn and 
mode shape n. The element type of Shell 99 may be used 
for layered applications of a structural shell model. The 
element has six degrees of freedom at each node; and 
translations in the nodal x and y directions and rota-
tions about the nodal z-axis. This element is constituted 
by layers designated by numbers (LN-layer number), 
increasing from the bottom to the top of the laminate; 
the last number quantifies the existing total number of 
layers in the laminate (NL-total number of layers).     
The boundary conditions have been applied to the 
nodes, i.e., the dimensions in the x and y are 400 mm for 
2D, and the displacements and rotations of all nodes 
about the y–z plane are also taken as zero. The model of 
the laminated plate is generated with a different num-
ber of layers (based on different side-to-thickness ra-
tio). The boundary conditions and mesh shape are 
shown in Fig. 2. It is mentioned that for a free- vibration 
analysis, the subspace method is applied. The subspace 
iteration method was described in detail by Bathe [24].  

Figure 2: View of a laminated composite plate with boundary condi-
tions and mesh shape.  

     After the mesh generation process, a laminated com-
posite plate with six layers has 500 elements and 1,488 
nodes. By increasing the number of layers, the numbers 

of elements and the nodes of the plates increase. The 
normal penalty stiffnesses of the contact element are 
chosen between 104 and 109. 

4. Results and Discussions

     The nondimensionalized frequencies  �̅̅̅�𝑛𝑛 =

𝜔𝑚𝑛(𝑏
2 𝜋2⁄ )√𝜌ℎ 𝐷22⁄ , of specially orthotropic and anti-

symmetric cross-ply square laminates are presented in 
Table 1 for modulus ratios 𝐸1 𝐸2 = 10⁄  and 20 (G12 = G13

= 0.5E2, G23 = 0.2E2, ʋ12 = 0.25). All layers are of equal 
thickness. Results are presented for m,n = 1,2,3 and for 
when the rotary inertia is neglected.  
     The fundamental frequency increases with the modu-
lar ratio. The effect of including rotary inertia is to de-
crease the frequency of vibration. Note that the first 
four frequencies for an antisymmetric cross-ply plates 
are (m,n) = (1,1), (1,2), (2,1) and (2,2) and 𝜔𝑚𝑛 = 𝜔𝑛𝑚  
for antisymmetric laminates. Also, good agreement was 
found between the analytical solution and the FEM 
analysis.  
     Fig. 3 shows a plot of fundamental frequency �̅� ver-
sus aspect ratio a/b for symmetric (0/90)s cross-ply and 
antisymmetric (0/90)2 cross-ply laminates. The materi-
al properties used are 𝐸1 𝐸2 = 40⁄ , G12 = G13 = 0.6E2, G23 = 
0.2E2, ʋ12 = 0.25). Fig. 4 shows the effect of coupling be-
tween bending and extension on the fundamental fre-
quencies of antisymmetric cross-ply laminates. The ma-
terial properties used are 𝐸1 𝐸2 = 25⁄ , G12 = G13 = 0.5E2, 

G23 = 0.2E2, ʋ12 = 0.25). With an increase in the number of 
layers, the frequencies approach those of the ortho-
tropic plate. The bending-stretching coupling lowers the 
vibration frequencies. For example, the two-layer plate 
has vibration frequencies about 40 percent lower than 
those of an eight-layer antisymmetric laminate or ortho-
tropic plate with the same total thickness. 

Figure 3: The nondimensionalized fundamental frequency versus 
the plate aspect ratio (a/b) for cross-ply laminates.
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Table 1. The nondimensionalized frequencies of cross-ply laminates, according to the classical plate theory 

m n 

Layup (0/90) (0/90)2 (0/90)3 

Method 
𝐸1
𝐸2
= 10 

𝐸1
𝐸2
= 20 

𝐸1
𝐸2
= 10 

𝐸1
𝐸2
= 20 

𝐸1
𝐸2
= 10 

𝐸1
𝐸2
= 20 

1 1 

Analytical 1.066 0.977 1.359 1.257 1.445 1.321 
FEM 1.254 1.098 1.536 1.478 1.613 1.528 

Reddy [23] 1.183 0.990 1.479 1.386 1.545 1.469 

1 2 

Analytical 3.090 2.697 3.987 3.851 4.136 4.087 

FEM 3.265 2.861 4.182 4.023 4.351 4.295 

Reddy [23] 3.174 2.719 4.077 3.913 4.274 4.158 

2 1 

Analytical 3.090 2.697 3.987 3.851 4.136 4.087 

FEM 3.265 2.861 4.182 4.023 4.351 4.295 

Reddy [23] 3.174 2.719 4.077 3.913 4.274 4.158 

2 2 

Analytical 4.266 3.911 5.812 5.449 5.985 5.774 

FEM 4.882 4.078 6.081 5.631 6.227 5.937 

Reddy [23] 4.733 3.959 5.918 5.547 6.179 5.877 

3 1 

Analytical 6.542 5.747 8.537 8.329 8.989 8.778 

FEM 6.741 5.829 8.773 8.546 9.231 9.097 

Reddy [23] 6.666 5.789 8.698 8.456 9.136 8.998 

3 2 

Analytical 7.386 6.014 9.894 9.423 10.398 9.997 

FEM 8.011 6.271 10.125 9.696 10.553 10.201 

Reddy [23] 7.927 6.193 10.034 9.507 10.494 10.088 

Figure 4: The nondimensionalized fundamental frequency versus 
the plate aspect ratio (a/b) for antisymmetric cross-ply 
laminates.

Fig. 5 shows a plot of fundamental frequency �̅� 
versus the modulus ratio E1/E2 for antisymmetric 
(0/90) cross-ply laminates for various values of 
plate aspect ratios. The plate aspect ratio lowers the 
vibration frequencies. The rectangle plate has vibra-
tion frequencies about 50 percent lower than those 
of a square plate with the same total thickness. 

Figure 5: The nondimensionalized fundamental frequency versus 
the modulus ratio for antisymmetric cross-ply laminates for 
various plate aspect ratios.

The nondimensionalized fundamental frequen-

cies �̅�𝑛𝑛 = 𝜔𝑚𝑛(𝑏
2 𝜋2⁄ )√𝜌ℎ 𝐷22⁄  of graphite-epoxy

composites with 𝐸1 𝐸2 = 40⁄ , G12/E2 = 0.5, ʋ12 = 0.25 
and a/b = 1 are shown as a function of the lamina-
tion angle in Fig. 6. The bending-stretching coupling 
due to the presence of B16 and B26 lowers the fre-
quencies. The coupling is the maximum for two-
layer plates, and it rapidly decreases with increasing 
number of layers. At θ = 45°, the fundamental fre-
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quency of the two-layer plate is about 40 percent 
lower than that of the eight-layer laminate.  

The nondimensionalized fundamental frequen-
cies of graphite-epoxy composites with 𝐸1 𝐸2 = 40⁄ , 

G12/E2 = 0.5, ʋ12 = 0.25 are shown as a function of 
plate aspect ratios in Fig. 7. With an increase in the 
number of layers, the frequencies approach those of 
the orthotropic plate. The bending-stretching cou-
pling lowers the vibration frequencies. For example, 
the two-layer plate has vibration frequencies about 
40 percent lower than those of a four-layer anti-
symmetric angle-ply laminate or orthotropic plate 
with the same total thickness and aspect ratio. Also, 
effects of an aspect ratio on the fundamental fre-
quencies of a laminated composite with same total 
thickness are more significant for values less than 1.  

Figure 6: The nondimensionalized fundamental frequency versus 
the lamination angle of antisymmetric angle-ply square 
laminates. 

Figure 7: The nondimensionalized fundamental frequency versus 
the plate aspect ratio of antisymmetric angle-ply laminates.

Figure 8: The nondimensionalized fundamental frequency versus 
the modulus ratio of antisymmetric angle-ply square laminates.

Fig. 8 shows a nondimensionalized fundamental 
frequency versus a modulus ratio of antisymmetric 
angle-ply square laminates. The effect of coupling is 
significant for all modulus ratios and the difference 
between the two-layer solution and orthotropic so-
lution increases with the modulus ratio. 

Table 2 and 3 contain the nondimensionalized 

fundamental frequencies �̅�𝑛𝑛 = 𝜔𝑚𝑛(𝑎
2 ℎ⁄ )√𝜌 𝐸⁄

for symmetric cross-ply laminates using the FSDT. 
The effect of the shear correction factor is to de-
crease the frequencies. The smaller the K, the small-
er the frequencies are. The rotary inertia (RI) also 
decreases the frequencies. 

Fig. 9 shows the effect of transverse shear de-
formation and rotary inertia on the fundamental 
natural frequencies of orthotropic and symmetric 
cross-ply (0/90/90/0) square plates with the fol-
lowing lamina properties: 
𝐸1 𝐸2 = 25⁄ , G12 = G13 = 0.5E2, G23 = 0.2E2, ʋ12 = 0.25. 

The symmetric cross-ply plate behaves much like 
an orthotropic plate. The effect of rotary inertia is 
negligible in the FSDT and, therefore, is not shown 
in the figure. 

Fig. 10 shows the effect of transverse shear de-
formation, bending-extensional coupling and rotary 
inertia on the fundamental natural frequencies of 
two-layer and eight-layer antisymmetric cross-ply 
laminates (𝐸1 𝐸2 = 25⁄ , G12 = G13 = 0.5E2, G23 = 0.2E2, 

ʋ12 = 0.25). 

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

F
u

n
d

am
en

ta
l 

fr
eq

u
en

cy
, 
͞ω

Lamination angle,

All laminates have the same 

total thickness

orthotropic plate

0

50

100

150

200

250

300

0 1 2 3 4 5

F
u
n
d
am

en
ta

l 
fr

eq
u
en

cy
, ͞
ω

Plate aspect ratio, a/b

All laminates have the same 

total thickness

orthotropic plate

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

F
u

n
d

am
en

ta
l 

fr
eq

u
en

cy
, ͞
ω

Modulus ratio,

All laminates have the same 

total thickness

orthotropic plate



 

84 M.A. Torabizadeh and A. Fereidoon / Mechanics of Advanced Composite Structures 4 (2017) 75-87 

 

 

Table 2. The effect of shear deformation on the dimensionless natural frequencies of simply supported symmetric cross-ply plates. 
a/h  Theory  0o  Three-ply  Five-ply  Seven-ply  Nine-ply 

5 

 FSDT   8.388  8.094  8.569  8.673  8.713 

   9.019  8.698  9.197  9.312  9.357 

   9.534  9.196  9.706  9.829  9.877 

 FEM  9.643  9.234  9.857  9.997  10.017 

 CLPT  14.750  14.750  14.750  14.750  14.750 

10 

 FSDT  12.067  11.730  12.167  12.290  12.342 

   12.540  12.223  12.621  12.735  12.783 

   12.890  12.592  12.956  13.062  13.107 

 FEM  12.901  12.668  13.078  13.215  13.295 

 CLPT  15.104  15.104  15.104  15.104  15.104 

20 

 FSDT  14.220  14.042  14.229  14.288  14.312 

   14.411  14.254  14.412  14.461  14.461 

   14.542  14.402  14.538  14.580  14.598 

 FEM  14.568  14.523  14.638  14.705  14.712 

 CLPT  15.197  15.197  15.197  15.197  15.197 

25 

 FSDT  14.569  14.433  14.563  14.604  14.621 

   14.700  14.582  14.688  14.722  14.737 

   14.789  14.682  14.774  14.803  14.815 

 FEM  14.812  14.723  14.835  14.907  14.918 

 CLPT  15.208  15.208  15.208  15.208  15.208 

50 

 FSDT  15.079  15.015  15.052  15.063  15.068 

   15.115  15.057  15.086  15.096  15.100 

   15.139  15.085  15.110  15.117  15.121 

 FEM  15.238  15.128  15.262  15.236  15.240 

 CLPT  15.223  15.223  15.223  15.223  15.223 

100 

 FSDT  15.215  15.173  15.183  15.186  15.187 

   15.225  15.184  15.192  15.194  15.195 

   15.231  15.191  15.198  15.200  15.200 

   15.312  15.284  15.293  15.301  15.302 

 CLPT  15.227  15.227  15.227  15.227  15.227 

The first line corresponds to the shear correction coefficient of K=2/3 and the second and third lines correspond to the shear correction 
coefficient of K=5/6 and K=1.0, respectively. 
Table 3. The effect of shear deformation, rotary inertia and the shear correction coefficient on the dimensionless natural frequencies of simply 
supported symmetric cross-ply (0/90/0) plates 

 

a/h  m  n  CLPT w/o RI  CLPT with RI  FSDT w/o RI  FSDT with RI 

10  1  1  15.228  1.104  12.593   12.573 
          12.223  12.163 
  1  2  22.877  22.421  19.440  19.203 
          18.942  18.729 
  1  3  40.229  38.738  32.496  31.921 
          31.421  30.932 
  2  1  56.885  55.751  33.097  32.931 
          31.131  30.991 
  2  2  60.911  59.001  36.786  36.362 
          34.794  34.434 
  1  4  66.754  62.526  48.837  47.854 
          46.714  45.923 
  2  3  71.522  67.980  45.484  44.720 
          43.212  42.585 
             

100  1  1  15.228  15.227  15.192  15.191 
          15.185  15.183 
  1  2  22.877  22.873  22.831  22.827 
          22.822  22.817 
  1  3  40.299  40.283  40.190  40.147 
          40.169  40.153 
  2  1  56.885  56.874  56.330  56.319 
          56.221  56.210 
  2  2  60.911  60.891  60.342  60.322 
          60.230  60.211 
  1  4  66.754  66.708  66.466  66.421 
          66.409  66.364 
  2  3  71.522  71.484  70.919  70.882 
          70.801  70.764 

The first line corresponds to the shear correction coefficient of K=1.0 and the second line corresponds to the shear correction coefficient of 
K=5/6. 
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Figure 9: The nondimensionalized fundamental frequency versus 
the side-to-thickness ratio for simply supported orthotropic and 
symmetric cross-ply (0/90/90/0) laminates. 

. The eight-layer antisymmetric cross-ply plate 
behaves much like an orthotropic plate. The effect of 
rotary inertia is negligible in the FSDT and, there-
fore, is not shown in the figure.  

Table 4 contains numerical values of the funda-
mental frequencies of antisymmetric cross-ply lam-
inated plates for various modular ratios. The results 
for both two-layer and eight-layer laminated plates 
for square and rectangular geometries are present-
ed. 

Figure 10: The nondimensionalized fundamental frequency 
versus the side-to-thickness ratio for simply supported 
orthotropic and antisymmetric cross-ply (0/90) laminates.

Table 4. The effect of shear deformation on the nondimensionalized fundamental frequencies of simply supported antisymmetric cross-
ply plates. 

𝐸1 𝐸2 = 10 ⁄  𝐸1 𝐸2 = 25⁄  𝐸1 𝐸2 = 40⁄  

b/h Theory (0 90⁄ ) (0 90⁄ )4 (0 90⁄ ) (0 90⁄ )4 (0 90⁄ ) (0 90⁄ )4

Square plate (a/b=1) 

10 FSDT 7.530 9.507 8.990 12.683 10.122 14.611 
CLPT 7.832 10.268 9.566 14.816 11.011 18.265 

100 FSDT 7.927 10.345 9.688 14.913 11.152 18.366 
CLPT 7.931 10.354 9.695 14.941 11.163 18.419 

Rectangular plate (a/b=3) 

10 FSDT 4.780 6.341 5.988 8.824 6.884 10.290 
CLPT 4.930 6.772 6.324 10.201 7.437 12.738 

100 FSDT 4.962 6.798 6.367 10.231 7.487 12.763 
CLPT 4.964 6.804 6.372 10.249 7.493 12.798 

Rectangular plate (a/b=5) 

10 FSDT 4.631 6.209 5.863 8.707 6.769 10.170 
CLPT 4.825 6.612 6.332 10.200 7.582 12.729 

100 FSDT 4.806 6.657 6.236 10.108 7.364 12.640 
CLPT 4.809 6.667 6.243 10.117 7.371 12.643 
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5. Conclusions

     Analytical and numerical solutions for the free 
vibration of laminated polymeric composite plates 
with different layups are compaired based on differ-
ent plate theories. Also, the effects of some parame-
ters on the fundamental frequencies of laminated 
plate were performed. As a verification method, an 
FEM was applied with ANSYS to compare the results 
with those obtained from a closed-form solution. 
Based on the results observed, the following com-
ments are as such: 

 The fundamental frequency increases with the
modular ratio. The effect of including rotary in-
ertia is to decrease the frequency of vibration.

 The bending-stretching coupling lowers the
vibration frequencies.

 The plate aspect ratio lowers the vibration
frequencies. The rectangle plate has vibra-
tion frequencies about 50 percent lower
than those of a square plate with the same
total thickness.

 The effect of the shear correction factor is
to decrease the frequencies. The smaller the
K, the smaller the frequencies. The rotary
inertia (RI) also decreases frequencies.

 In all cases, results obtained from the FEM
are in good agreement with analytical out-
puts. Also, it is shown that the FEM predict-
ed higher values, which is reported in the
literature review presented [14, 18-19].

 The finite element model presented has an
acceptable accuracy for utilizing this model
for the analysis of more complicated cases.
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