
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,815 |
تعداد دریافت فایل اصل مقاله | 7,656,334 |
بررسی بازدهی جذب متیلن بلو بر روی لوفا سیلندریکای ایرانی: تاثیر دما و pH | ||
شیمى کاربردى روز | ||
مقاله 14، دوره 12، شماره 43، تیر 1396، صفحه 193-212 اصل مقاله (901.47 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2017.2371 | ||
نویسندگان | ||
عاطفه بهارلویی؛ الهام جلیل نژاد* ؛ محمد سیروس آذر | ||
دانشگاه صنعتی ارومیه | ||
تاریخ دریافت: 21 خرداد 1395، تاریخ بازنگری: 29 فروردین 1396، تاریخ پذیرش: 12 مرداد 1395 | ||
چکیده | ||
فاضلابهای صنعتی حاوی رنگهای سنتزی، از عوامل مهم آلاینده محیطزیست میباشد. فرآیند جذب سطحی با جاذبهای زیستی به دلیل ارزانی، دسترسی زیاد و نداشتن خطرات زیستمحیطی گزینه خوبی برای حذف رنگ از پساب میباشد. هدف از این تحقیق، بررسی جذب سطحی رنگ کاتیونی متیلنبلو با جاذب طبیعی لوفای سیلندریکای ایرانی در سیستم ناپیوسته میباشد. متغیرهای زمان تماس، pH و دما بهعنوان پارامترهای عملکردی مؤثر در حذف رنگ متیلن بلو با لوفای ایرانی در شرایط ثابت mg/L 25 غلظت اولیه رنگ وg 5/0 از جاذب موردبررسی قرار گرفت. درنهایت، نتایج توسط 4 مدل سینتیکی و پارامترهای ترمودینامیکی تحلیل گردید. نتایج نشان داد که در مدتزمان 100 دقیقه فرآیند جذب به تعادل رسید. کمترین جذب در محیط اسیدی بوده و ماکزیمم میزان جذب در pH برابر 7-8 به دست آمد که با توجه به تفاوت ناچیز بازدهی جذب در این دو pH و صرفه اقتصادی فرآیند بهویژه در مقیاسهای بزرگ، pH برابر 7 (بدون نیاز به تنظیم pH) بهعنوان مقدار بهینه pH تعیین گردید. با افزایش دما کارایی جذب بهوضوح افزایش یافت. نتایج حاصل از مطالعات سینتیکی نشان داد که فرآیند جذب از مدل سینتیک شبه مرتبه دوم تبعیت میکند. مقادیر بهدستآمده برای پارامترهای ترمودینامیکی، جذب متیلنبلو بر سطح لوفا را واکنشی خودبهخودی، گرماگیر و فیزیکی معرفی میکند. طبق نتایج حاصل از این مطالعه، استفاده از لوفای ایرانی بدون نیاز به پیشتیمار بهعنوان یک جاذب طبیعی باراندمان بالا، ارزانقیمت و دوستدار محیطزیست جهت حذف رنگ متیلنبلو، توصیه میشود. | ||
کلیدواژهها | ||
متیلن بلو؛ لوفای ایرانی؛ جذب زیستی؛ pH؛ دما؛ مدلهای سینتیکی؛ پارامترهای ترمودینامیکی | ||
عنوان مقاله [English] | ||
Investigation of the adsorption efficiency of methylene blue on Iranian Luffa Cylindrica: Effects of temperature and pH | ||
نویسندگان [English] | ||
Atefeh Baharlouei؛ Elham Jalilnejad؛ Mohammad Sirousazar | ||
چکیده [English] | ||
Industrial wastewater containing synthetic dyes is an important factor in environmental pollution. Among the numerous methods that have been investigated to remove dyes, adsorption process using biosorbents is a good option for the removal of dyes from wastewater due to low cost, availability and lack of environmental risk. The aim of this study is to investigate the adsorption of cationic dye methylene blue using Iranian Luffa Cylindrica in a batch system. The effect of operational parameters including: contact time, pH and temperature on removal of methylene blue with Iranian Luffa in same condition, i.e, initial dye concentration 25 mg/L and adsorbent dose 0/5 g was investigated. Finally, data was analyzed using four kinetic and thermodynamic parameters. Results showed that equilibrium was reached at 100 min. Solution with the lowest pH has the low setup take. The maximum absorption was achieved at pH 7 and 8. That due to the insignificant difference of absorption efficiency in the two pH, by considering the economical aspect especially in large scales, pH=7 was chosen as the optimum condition. Also, adsorption efficiency increases with increasing temperature. Results from studying the kinetics of adsorption indicated that adsorption process follows kinetic model of pseudo second-order. the calculated values from thermodynamic parameters showed that the adsorption of methylene blue on Luffa Cylindrica is spontaneous, endothermic and Physical. According to this study Iranian Luffa is proposed as a natural, environmental friendly adsorbent with high efficiency, low cost for effective removal of Methylene Blue from industrial wastewaters (without any pretreatment on Luffa). | ||
کلیدواژهها [English] | ||
Methylene blue, Iranian Luffa, Biosorption, pH, Temperature, Kinetics models, Thermodynamic parameters | ||
مراجع | ||
[1] T. Pekdemir, B. Keskinler, E. Yildiz, G. Akay, Journal of Chemical Technology and Biotechnology, 78 (2003) 773–780.
[2] E. J. Weber, V. C. Stickney, Water Research, 27 (1993) 63-67.
[3] M. M. Nassar, M. S. ElGeundi, Journal of Chemical Technology and Biotechnology, 50 (1991) 257-264.
[4] C. Ram, P. K. Pareek, V. Singh, International Journal of Theoretical & Applied Sciences, 4 (2012) 82-88.
[5] K. T. Chung, G. E. Fulk, A. W. Andrews, Applied and Environmental Microbiology, 42 (1981) 641-648.
[6] M. Dogan, M. Alkan, O. Demirbas, Y. Ozdemir, C. Ozmetin, Chemical Engineering Journal, 124 (2016) 89-101.
[7] D. Shen, J. Fan, W. Zhou, B. Gao, Q. Yue, Q. Kang, Journal of Hazardous Materials, 172 (2009) 99-107.
[8] M. T. Yagub, T. K. Sen, S. Afroze, H. M. Ang, Advances in Colloid and Interface Science, 209 (2014) 172-187.
[9] B. Mounir, M. N. Pons, O. Zahraa, A. Yaacoubi, A. Benhammou, Journal of Hazardous Materials, 148 (2007)513–520.
[10] M. Bhaskar, A. Gnanamani, R. J. Ganeshjeevan, R. Chandrasekar, S. Sadulla, G. Radhakrishnan, Journal of ChromatograpHy A, 1018 (2003) 117-123.
[11] B. Neumann, Dyes and Pigments, 52 (2002) 47-53.
[12] K. S. Low, C. K. Lee, B. F. Tan, Applied Biochemistry and Biotechnology, 87 (2002) 2273-2289.
[13] C. Namasivayam, D. Prabha, M. Kumutha, Bioresource Technolog, 64 (1998) 77-79.
[14] V. C. Srivastava, I. D. Mall, I. M. Mishra, Chemical Engineering Journal, 132 (2007) 267–278.
[15] X. Han, X. Niu, X. Ma, KoreanJournal Chemical Engineering, 29 (2012) 494-502.
[16] W. Zou, H. Bai, S. Gao, K. Li, Korean Journal Chemical Engineering, 30 (2013) 111-122.
[17] F. Kallell, F. Chaari, F. Bouaziz, F. Bettaieb, R. Ghorbel, S. E. Chaabouni, Journal of Molecular Liquids, 219 (2016) 279–288.
[18] A. E. Ofomaja, Y. S. Ho, Dyes and Pigments, 74 (2007) 60-66.
]19[ج. موسوی، م. پروینی، دانشگاه سمنان، مجله علمی- پژوهشی شیمی کاربردی، شماره 36 (1394) ص 96-79. [20] A. Saeed, M. Iqbal, Biotechnology Progress, 29 (2013) 573–600.
[21] L. M. Hasan, Journal of Applied Polymer Science, 101 (2006) 2495–2503.
[22] B. N. Sastri, Council of Scientific and Industrial Research, India, (1962) pp 483.
[23] A. Zampieri, G. T. P. Mabande, T. Selvam, W. Schwieger, H. A. Rudolp, R. Hermann, et al, Materials Science and Engineering C, 26 (2006) 130-135.
[24] V. O. A. Tanobe, T. H. D. Sydenstricker, M. Munaro, S. C. Amico, Polymer Testing, 24 (2005)474–482.
[25] X. Tang, Q. Zhang, Z. Liu, K. Pan, Y. Dong, Y. Li, Journal of Molecular Liquids, 199 (2014) 401-407.
[26] S. Banerjee, M. C. Chattopadhyaya, V. Srivastava, Y. C. Sharma, Environmental Progress & Sustainable Energy, 33 (2014) 790-799.
[27] F. C. Wu, R. L. Tseng, R. S. Juang, Water Research, 35 (2001) 613-618.
[28] Y. S. Ho, G. Mckay, Process Biochemistry, 34 (1999) 451–465.
[29] M. Doğan, H. Abak, M. Alkan, Journal of Hazardous Materials, 164 (2009) 172–181.
[30] W. J. Weber, J. C. Morris, Journal of the Sanitary Engineering Division, 89 (1963) 31-60.
[31] C. Gerente, V. K. C. Lee, P. Le Cloirec, G. Mckay, Critical Reviews in Environmental Science and Technology, 37 (2007) 41-127.
[32] M. Hasan, A. L. Ahmad, B. H. Hameed, Chemical Engineering Journal, 136 (2008) 164–172.
[33] M. T. Yagub, T. K. Sen, H. M. Ang, Water, Air, & Soil Pollution, 223 (2012) 5267-5282.
[34] N. K. Amin, Journal of Hazardous Materials, 165 (2009) 52–62.
[35] M. Yazdanbakhsh, H. Tavakkoli, S. M. Hosseini, Desalination, 281 (2011) 388–395.
[36] F. A. Pavan, E. C. Lima, S. L. P. Dias, A. C. Mazzocato, Journal of Hazardous Materials, 150 (2008) 703–712.
[37] S. Dawood, T. K. Sen, Water Research, 46 (2012) 1933–1946.
[38] T. K. Sen, S. Afroze, H. M. Ang, Equilibrium, Water Air Soil Pollut, 218 (2011) 499-515.
[39] M. E. Argun, S. Dursun, M. Karatas, M. Gürü, Bioresource Technology, 99 (2008) 8691–8698.
[40] G. Crini, F. Gimbert, C. Robert, B. Martel, O. Adama, N. Morin-Crini, et al, Journal of Hazardous Materials, 153 (2008) 96–106.
[41] M. Al-Ghouti, M.A.M. Khraisheh, M. N. M. Ahmad, S. Allen, Journal of Colloid and Interface Science, 287 (2005) 6-13.
[42] L. Lin, S. R. Zhai, Z. Y. Xiao, Y. Song, Q. D. An., X. W. song, Bioresource Technology, 136 (2013) 437–443.
[43] S. sadaf, H. N. Bhatti, Desalination and Water Treatment, 52 (2014) 4492-4507.
[44] Y. Khambhaty, K. Mody, S. Basha, B. Jha, Chemical Engineering Journal, 145 (2009) 489–495.
[45] T. Kanti Sen, S. Afroze, H. M. Ang, Water Air Soil Pollut, 218 (2011) 499-515.
]46[ د. بلارک، ف. مصطفی پور، ع. جغتایی، دانشگاه علوم پزشکی زاهدان، مجله علمی- پژوهشی شیمی کاربردی، شماره 38 (1395) ص 138-123. [47] F. Ferrero, Journal of Hazardous Materials, 142 (2007) 144-152.
[48] E. Bulut, M. Ozacar, I. Ayhan, Microporous and Mesoporous Materials, 115 (2008) 234-246.
[49] C. Rill, Z.I. Kolar, G. Kickelbick, H.T. Wolterbeek, J.A. Peters, Langmuir, 25 (2009) 2294-2301.
[50] Z. Shahryari, A. Soltani Goharrizi, M. Azadi, International Journal of Water Resources and Environmental Engineering, 2 (2010) 016-028.
[51] M. Özacar , I. Ayhan Sengil, Process Biochemistry, 40 (2005) 565–572.
[52] E. Andreoli, L.Cullum , A.R. Barron, Industrial & Engineering Chemistry Research, 54 (2015) 878−889.
[53] A. Mittal, J. Mittal, A. Malviya, V. K. Gupta, Journal of Colloid and Interface Science, 340 (2009) 16-26. | ||
آمار تعداد مشاهده مقاله: 1,320 تعداد دریافت فایل اصل مقاله: 3,877 |