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Abstract 
In this paper, an Adaptive Neuro Fuzzy Inference System 

(ANFIS) based control is proposed for the tracking of a 
Micro-Electro Mechanical Systems (MEMS) gyroscope 
sensor. The ANFIS is used to train parameters of the 
controller for tracking a desired trajectory. Numerical 
simulations for a MEMS gyroscope are looked into to check 
the effectiveness of the ANFIS control scheme. It proves 
that the system using the proposed ANFIS controller has 
better tracking performance than that using only a fuzzy 
control or Neural network approach to control over the 
existence of external perturbations1. 
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I. INTRODUCTION 

EMS gyroscopes have a broad application scope 
of the robotics, automotive and consumer-

electronics markets. This is by reason of their reduced 
costs, size and integration aptitude. A gyroscope is a 
regularly used sensor for measuring angular velocity 
in many fields of application, such as navigation, 
motion control. The performance of the MEMS 
gyroscope is affected by time‐varying parameters as 
well as noise sources, quadrature errors, parameter 
variations and external disturbances, which cause a 
frequency of oscillation mismatch between the two 
vibrating axes [1]. 

Advanced control approaches, such as intelligent 
control, are the effective methods for controlling 
MEMS gyroscopes. 

In the last years, several control approaches have 
been shown to control the MEMS gyroscope. Batur 
[2] build up a sliding mode control for a MEMS 
gyroscope. Park in [3] presented an adaptive controller 
of a MEMS gyroscope. Fei in [1], [4]–[6] developed 
an adaptive sliding mode controller and a robust 
adaptive controller for a MEMS gyroscope. Recently 
much research has been done to apply intelligent 
control approaches such as neural nets and fuzzy 
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controls. Fei in [5] developed an adaptive Fuzzy 
control approach and in [1] he applied a robust 
adaptive neural sliding mode approach on a MEMS 
gyroscope. 

In this paper, we align with the design of an ANFIS 
control. By applying ANFIS approach with 
considering system uncertainties. The proposed 
method is developed by combining feed forward 
techniques and ANFIS properties. We use this method 
to obligate the gyroscope to follow any arbitrary 
trajectory. In comparison to the past studies, many of 
them uses the sliding mode control besides the fuzzy 
control or neural network control, but because of the 
existence of the disturbance, system have chattering 
and the time to reach to the steady state is not 
desirable.  In this proposed method, the response of 
the system is fast and almost has no chattering. 

II. DYNAMICS OF THE MEMS GYROSCOPE 

The dynamics of the MEMS gyroscope are shown 
in Figure 1. A typical MEMS gyroscope structure 
includes a proof mass suspended from spring beams, 
sensing mechanisms for forcing an oscillatory motion, 
electrostatic actuations and sensing the position and 
velocity of the proof mass, also a rigid frame which is 
rotated around the rotation axis. Newton’s law in the 
rotating frame determines the dynamics of a MEMS 
gyroscope [4]. 

Respect to an inertial system of reference the 
gyroscope is moving with a constant linear speed; 
also, the gyroscope is rotating at a constant angular 
velocity; and the centrifugal forces are accepted to be 
negligible. The nonlinear motion equations of such a 
Triaxial gyroscope that rotates on the x, y and z axis 
can be derived as [1]: 
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Fig. 1.  Simplified model of a z-axis MEMS gyroscope [6]. 
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(1) 

 

where  m  is the mass of proof mass fabrication faults 
inducing essentially from the asymmetric spring terms 
kxy , kxz and kyz and asymmetric damping terms  dxy , dyz 
and  dxz; Spring terms are kxx , kyy  and kzz;  Damping 
terms are dxx , dyy and dzz ;  Angular velocities are Ωx , Ωy 
and Ωz and finally  ux , uy  and  uz are the control forces  
in the  x, y and z directions consequently [1]. 

Dividing the equation (1) by the reference mass, 
and with considering about the non‐dimensional time

0t t  , and after that with dividing two sides of 

the equation by the reference frequency 
2
0  and also 

the reference length q0 we will rewrite the dynamic 
equation in vector form: 
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We define the new parameters as follows: 
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With these definitions, we achieve to the ultimate 
form of the non‐dimensional equation [1]: 
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III. NEUROFUZZY MODELING 

We use a neural network to model a dynamic plant 
by a nonlinear regression in the discrete time domain. 
The output is a network, with adapted weights, which 
resembles the plant. It is an issue that the learning 
results in a broad set of parameter values which makes 
it almost impossible to clarify in words. Contrarily, a 
fuzzy rule base consists of an if-then statement that is 
approximately our lingual words and are readable, 
Again, the problem here is that it cannot learn the 
rules by itself; so the solutions is to combine neural 
network with fuzzy logic in neurofuzzy systems in 
order to achieve readability and learning ability 
concurrently [7]. The rules usually are set up by a 
human expert and the neurofuzzy controller has to 
learn and achieve an optimal rule [8]. The main part of 
neurofuzzy cooperation comes from a common 
scheme called adaptive networks, which consolidate 
both neural networks and fuzzy models. The fuzzy 
model within the scheme of adaptive networks is 
called ANFIS, which acquire certain advantages over 
neural networks [9]. ANFIS, which can provides a set 
of fuzzy if-then statements as the rules with suitable 
tuning of membership functions to generate the 
customary input output data pairs. It can take on a 
greatly nonlinear mapping. Therefore, it is well suited 
for nonlinear dynamics. ANFIS consists of fuzzy 
rules, which are absolutely local mappings that after 
the adaptation should reduce the output error for the 
current training practice and also minimize 
disturbances to the response already learned. ANFIS 
requires defining membership functions and fuzzy 
rules before the training. Here, the goal is to attain an 
appropriate control action with the ANFIS model. 
Membership functions and rules affect the output of 
the control network, which is used to minimize error 
with adapting the structure and/or membership 
function parameters of the neurofuzzy control 
network. In this current usage, the structure of the 
fuzzy control network is kept constant and only 
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membership function parameters are set to deliver the 
desired control action [10]. 

Fig. 2 demonstrates the basic 2-input 1-output 
structure of the ANFIS network for a first order 
Sugeno fuzzy system. The Layer-1 lies in membership 
functions depicted by the generalized bell function 
[11]: 

2 1( ) (1 (( ) / ) )bc a       (4) 

 

Where adaptable parameters are a, b and c. Layer-2 
applies the fuzzy intersection operator, and Layer-3 
regulates the firing strengths. The output after crossing 
the Layer-4 consists of a linear aggregation of the 
firing strength w which is normalized multiplied by 
inputs [10]: 

 

( )Y w pX r   (5) 

 

Where adaptable parameters are p and r. Layer-5 
acts as a summation on the outputs of Layer-4. The 
adoption of modifiable parameters has two steps. 
First, data are propagated forward in the network 
structure until it reaches to Layer-4 where the 
parameters are identified by a least-squares estimator 
(LMS) [12].Then the parameters in Layer-2 are adapted 
using gradient descent. 

Back propagation is the method which ANFIS uses 
to determine the parameters of membership functions 
and least mean square estimation is the means to 
modify the consequent parameters. 

The designer should perform the following steps for 
using the ANFIS: 
1. Design a Sugeno Fuzzy inference system (FIS) 
according to conditions of the problem. 
2. Optimize the FIS with actual input data. 
3. Set up training and testing data in matrices which 
determine the inputs and outputs. 
4. Train the FIS using training data with ANFIS 
algorithm. 
5. Test the trained system using the testing data [11]. 

IV. ANFIS BASED CONTROLLER 

In this section, an ANFIS based controller can be 
designed for the MEMS gyroscope with unknown 
system nonlinearities. The proposed controller is 
basically a fuzzy controller that uses the tracking error 
to change adaptively using neural network training 

algorithms. The tracking error has classifies in 7 
classes: Negative Big (NB), Negative Medium (NM), 
Negative Small (NS), Zero (ZE), Positive Small (PS), 
Positive Medium (PM) and Positive Big (PB). The 
second output for the fuzzy system is derivative of the 
tracking error. This input is classified as the first 
input. The output of the Sugeno FIS is Negative, Zero, 
Positive. The rule base of the FIS is a rule base which 
is used for a Fuzzy PI controller which is omitted for 
brevity. After defining the fuzzy controller, the real 
data are used to train the FIS using ANFIS algorithms. 

Consider the dynamics with parametric 
uncertainties and external disturbance as: 

( 2 ) ( )b b bq D D q k k q q u d            (6) 

where  ∆D is the unknown parameter uncertainty of the 
matrix, D+2Ω, ∆kb is the unknown parameter 
uncertainty of the matrix kb and d is the external 
disturbance of the system. Rewriting (6) as: 
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where d1 expresses the lumped model uncertainties 
and external disturbances which are given by 

1 bd d Dq k q     . 

Rewriting (7) as: 
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Define [1]: 
 

1(q, q, t) ( 2 ) b bf D q k q q d          (9) 

 

where (q,q, t)f  is an unknown nonlinear function. 

Therefore, (8) becomes: 
 

(q, q, t) uq f    (10) 

 
The control goal for the MEMS gyroscope is to 

obligate the proof mass to oscillate in the x, y and z 
directions at a desired frequency and amplitude 

1 1sin( )mx A t , 
2 2sin( )my A t , and 

3 3sin( )mz A t . 

Then, the reference model can be defined as: 
 

0m m mq k q   (11) 

 
where  

 Tm m m mq x y z ,  2 2 2
1 2 3, ,mk diag    . 

Define the tracking error as follows [1]: 

me q q    (12) 

 

Fig. 2.  The structure of the ANFIS network. 
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The block diagram of the control system is depicted 
in Fig. 3. As it is shown in the Fig. 3 the input of the 
ANFIS controller is the tracking error and also the 
ANFIS adaptive law and the end product of the 
ANFIS controller is u which directly effects on the 
MEMS gyroscope. 

V. A Simulation Study 

In this section, we will assess the considered 
ANFIS approach on the lumped MEMS gyroscope 
sensor model. The parameters of the MEMS 
gyroscope sensor are as follows [1]: 

0 .5 7 8m e k g  ,  
0 1k H z  ,   6

0 1 0q m , 

0 .429 6 / mx xd e N s  ,

0 .0 4 2 9 6 / myyd e N s  ,

0 .895 6 / mz zd e N s  ,

0 .0429 6 / mx yd e N s  ,

0 .0687 6 / mx zd e N s  ,

0 .0 8 9 5 6 / my zd e N s   ,   80 .98 /x xk N m ,

5 /x yk N m , 71.62 /y yk N m ,

71.62 /z zk N m , 6 /x zk N m ,

7 /y zk N m . 

 

Fig. 3. The block diagram of the control system 

Since the general displacement range of the MEMS 
gyroscope sensor in each axis is at the sub‐micrometer 
level, it is acceptable to choose 1 µm as the reference 
length q0.  Because the usual natural frequency of each 
axis of a vibratory MEMS gyroscope sensor is in the 
KHz level, �� is chosen as 1 kHz. The unknown angular 
velocity is assumed to be 5.0 /z rad s  , 

3.0 /x rad s   and 2.0 /y rad s  . The desired 

motion trajectories are 
1sin( )mx t ,

21.2 sin( )my t  and, 
31.5 sin( )mz t  

where 

1 6.71k H z  , 
2 5 .11k H z  , 

3 4 .17 kH z  . The 

initial values of the rules weight in the ANFIS network is 
assumed to be  0 0 .1 0 .1 0 .1 0 .1 0 .1

T
  . 

The initial states of the MEMS dynamics are 

 0 0 0 0 0 0
T  .  Notice that we calculated 

the disturbances (external disturbances is d(t) =100sin 
(2πt) in this case) in the unknown (q, q, t)f   function. 

After figuring out the equation figures 4-6 will be 
generated. Figures 7-8 depicts the position tracking error 
of the x and y directions using testing data of ANFIS 
controller. It is clear to the nonlinear differential equation 
that we need to solve it Rewriting the equation 5 with the 
real parameters, we access using numerical methods. 
From figures 7-8 it is clear that the trained motions 
follow the desired motion in just one training process 
with maximum error of 0.3. Put differently, the MEMS 
gyroscope can maintain the proof mass to vibrate in the 
x, y and z directions at a given frequency and amplitude 
by using the ANFIS control. The advantage of the 
proposed ANFIS controller is that it does not depend on 
accurate mathematical models, which are difficult to 
obtain and may not yield satisfactory performance under 
parameter variations. The simulation results show that 
the system is capable of tracking the desired vibration 
trajectory determined by the reference model output; the 
execution of the ANFIS control is satisfactory in the 
existence of unknown system nonlinearities. 

 
Fig. 4.  The numerical solve for equation 5 in x axis. 
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VI. Conclusion 

An ANFIS control approach is proposed for the 
Triaxial angular velocity sensor. Numerical simulation 
demonstrated the satisfactory performance of the 
proposed ANFIS control scheme in the presence of 
model uncertainties and external disturbances. We 

could show that ANFIS try to train the input signals to 
follow our desired motions trajectory in a very short 
time. In comparison with the other studies have done 
before with neural network or fuzzy control for the 
MEMS gyroscope that is provided in the referenced 
papers and other researches, ANFIS has better and 
faster performance. 

 

 
Fig. 5.  The numerical solve for equation 5 in y axis. 
 
 

 
 
Fig. 6.  The numerical solve for equation 5 in z axis. 
 
 

  

Fig. 7.  Tracking error using the ANFIS control in x axis. Fig. 8.  Tracking error using the ANFIS control in y axis. 
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