A Study of Investigation and Experimental Comparison Result of the Incompressible Turbulent Flow Pressure Drop through the Multistage Industrial orifices | ||
| مدل سازی در مهندسی | ||
| Article 9, Volume 15, Issue 48, June 2017, Pages 99-109 PDF (747.65 K) | ||
| Document Type: Research Paper | ||
| DOI: 10.22075/jme.2017.2438 | ||
| Authors | ||
| Majid Moradi bastani* ; Ghanbar Ali Sheikhzadeh | ||
| Receive Date: 08 June 2014, Revise Date: 16 April 2015, Accept Date: 22 April 2015 | ||
| Abstract | ||
| This research has been investigated water pressure drop through the multistage industrial orifices that are installed into a pipe in 1300 MW Arak-Shazand Thermal Power Plant. Whereas having turbulence flow done simulating model was standard . In order to reach a specific water pressure drop with a specific water flow rate, the optimum design is implemented based on the composition of orifice stageâs number along with changing the diameter of the holes and numberâs. Finally to verification of simulationâs results, it will be compared with results of experimental test that is done with multistage orifices installed into a pipe. That could be illustrated good adjustment with together. Also this pressure drop lead to increase the percentageâs opening spray control valves that has extreme influence to decrease corrosion and better work of control valves. | ||
| Keywords | ||
| Numerical simulation; Multistage Industrial orifices; Incompressible Turbulent Flow; Pressure drop | ||
| References | ||
|
[1] Oliveira, P.J., Pinho, F.T. (1997). “Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions”, Int. J. Heat Fluid Flow Vol. 18 (5), pp. 518–529.
[2] Borutzky, W., Barnard, B., Thoma, J. (2002) “An orifice flow model for laminar and turbulent conditions”, Simul. Model. Practice Theory Vol. 10 (3–4), pp. 141–152.
[3] Moraczewski, T., Shapley, N.C. (2007). “Pressure drop enhancement in a concentrated suspension flowing through an abrupt axisymmetric contraction–expansion”, Phys. Fluids Vol. 19.
[4] Wu, D., Burton, R., Schoenau, G., Bitner, D. (2003). “Modelling of orifice flow rate at very small openings”, Int. J. Fluid Power Vol. 4 (1), pp. 31–39.
[5] Wang, H., Xie, Sh., Sai Q., Zhou C., Lin H. and Chen E. (2013). "Experiment study on pressure drop of a multistage letdown orifice tube ", Nuclear Engineering and Design, Vol. 265, pp. 633– 638.
[6] Eiamsa-ard, S. (2008). “Numerical investigation of turbulent flow through a circular orifice”, KMITL Sci. Technol. J. Vol. 18 (1), 8.
[7] Oliveira, N.M.B., Vieira, L.G.M., Damasceno, J.J.R. (2010). “Numerical methodology for orifice meter calibration”, In: Salgado, L., Ambrozio, F. (Eds.), Advanced Powder Technology Vii, Vol. 660–661, pp. 531–536.
[8] Shah, M.S., Joshi, J.B., Kalsi, A.S., Prasad, C.S.R., Shukla, D.S. (2012). “Analysis of flow through an orifice meter”, CFD simulation. Chem. Eng. Sci. Vol. 71, pp. 300–309.
[9] Abou El-Azm Aly, A., Chong, A., Nicolleau, F., Beck, S. (2010). “Experimental study of the pressure drop after fractal-shaped orifices in turbulent pipe flows”, Exp. Therm. Fluid Sci. Vol. 34 (1), pp. 104–111.
[10] Hurst, D., Vassilicos, J.C. (2007). “Scalings and decay of fractal-generated turbulence”, Phys. Fluids Vol. 19 (3).
[11] Seoud, R.E., Vassilicos, J.C. (2007). “Dissipation and decay of fractal-generated turbulence”, Phys. Fluids Vol. 19 (10).
[12] Filho, J.A., Santos, A.C., Navarro, M.A. and Jordão, E. (2015). "Effect of chamfer geometry on the pressure drop of perforated plates with thin orifices", Nuclear Engineering and Design, Vol. 284, pp. 74– 79.
[13] Jankowski, T.A., Schmierer, E.N., Prenger, F.C., Ashworth, S.P. (2008). “A series pressure drop
[14] Mills, R. D. (1968). “Numerical Solutions of Viscous Flow Through a Pipe Orifice at Low Reynolds
[15] Johansen, F. C. (1930). “Flow Through Pipe Orifices at Low Reynolds Numbers”, Proc R Soc, Vol. 126 (Series A), 231.
[16] Coder, D. A., Buckley, F. T. (1974) “Implicit Solutions of the Unsteady Navier-Stockes Equation For
[17] Davis, R.W. and Mattingly, G.E. (1977). “Numerical Modelling of Turbulent Flow Through Thin Orifice
[18] Gan, G. and Riffat, S. B. (1997). “Pressure Loss Characteristics of Orifice and Perforated Plates”,
[19] Ramamurthi, K. and Nandakumar, K. (1999). “Characteristics of flow through small sharp-edged
[20] Tunay, T. (2002). “Investigation of Laminar and Turbulent Flow Characteristics through Orifice with
[21] Tunay, T., Sahin, B. and Akıllı, H. (2004). "Investigation of Laminar and Turbulent Flow Through an
[22] Tunay, T., Kahraman, A. and Şahin, B. (2002). "Orifis Yerleştirilmiş Borudaki Akışın Sayısal Çözümüne
[23] Tunay, T., Kahraman, A. and Şahin, B. (2011). "Effects of the Boundary Conditions on the Numerical
[24] Ushida, A., Hasegawa, T. and Narumi, T. (2014). "Anomalous phenomena in several types of liquid flows through small orifices in a range of low Reynolds numbers", Experimental Thermal and Fluid Science, Vol. 52, pp. 191– 196.
]25[ صنیعی نژاد، مهدی. (1388)، مبانی جریانهای آشفته و مدلسازی آنها (از مفاهیم مقدماتی تا اصول کاربردی)، انتشارات دانش نگار.
| ||
|
Statistics Article View: 1,126 PDF Download: 531 |
||