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Abstract 
In this paper a novel hybrid algorithm for harmonics 

estimation in power systems is proposed. The estimation of 
the harmonic components is a nonlinear problem due to the 
nonlinearity of phase of sinusoids in distorted waveforms. 
Most researchers implemented nonlinear methods to extract 
the harmonic parameters. However, nonlinear methods for 
amplitude estimation increase time of convergence. Hence, 
hybrid methods are used for the harmonics estimation. These 
methods use linear approaches for amplitude and nonlinear 
approaches for phase estimations. This paper focuses on 
introducing a fast and precise approach for harmonics 
estimation. This approach is based on a fast adaptive search 
method i.e., Adaptive Particle Swarm Optimization (APSO) 
for phase estimation and a linear estimator i.e., Least 
Squares (LS) for amplitude estimation. The speed of 
convergence and accuracy of estimation are the main 
contributions of the presented method. Obtained results by 
MATLAB codes indicate the accuracy and high-
performance of the APSO-LS. 

 

     Keywords— Harmonics estimation, Adaptive particle 
swarm optimization (APSO), Least squares (LS). 

I.  INTRODUCTION 

armonic can be defined as the undesirable 
components of distorted periodic waveform 

whose frequencies are the integral multiples of the 
fundamental frequency [1]. Nonlinear elements are the 
most common sources of harmonic distortion in a 
power system. Moreover, saturation phenomena in 
inductive elements and generation units with low 
quality increase original waveform distortions. Since 
quality of the delivered power has been one of the 
main requirements of power system, accurate 
recognition of voltage and current waveforms is 
essential for designing filters for eliminating or 
reducing the effects of harmonics in a power system 
[2]. Hence, estimation of harmonic parameters in a 
power waveform corrupted with noise has been 
attractive for researchers. Various methods of 
estimation of harmonic parameters have been 
examined in literature review. Time domain based 
methods show high quality in noise rejection 
compared to frequency domain methods. 
Consequently, they have better precision and more 
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speed in convergence compared to frequency domain 
harmonic analysis algorithms. The most well known 
frequency domain method is discrete Fourier 
transform (DFT) [3-4]. However, high frequency 
components cause undesirable oscillation in DFT 
performance [5]. Also DFT has high computation 
burden and its process will fail when amplitudes of 
harmonics have abrupt changes. Linear Kalman filter 
approach has been successfully implemented for 
harmonic parameters estimation. Because of the 
weakness of Kalman filter based method [6] in online 
tracking of a signal, KF with adaptive factors was 
introduced in [7]. Nevertheless, Adaptive factors 
should be exactly tuned to able the adaptive methods 
to track the signal. Adaptive KF needs tuning four free 
parameters and also requires a priori knowledge of the 
noise [7]. Artificial neural network (ANN) as another 
alternative for harmonic estimation has been proposed 
in [2, 8-10]. In spite of simplicity in implementation of 
ANN, if the parameters of ANN are not set properly, 
the estimation process will converge prematurely, 
leading to the decline of the accuracy of the estimation 
results [11]. Genetic algorithm (GA) with capability of 
random search has been use drepeatedly to optimize 
the nonlinear functions [12]. This method has 
acceptable results in estimating the harmonic 
components. However, GA has the following 
problems for harmonic estimation: 

1. Since amplitudes and phases are different 
quantitatively with different scales, units, and physical 
interpretation, it is difficult to get the homogenous 
genetic pool with respect to the final solution. One 
way could be normalizing both parameters, which 
even then, the magnitudes of phases and amplitudes 
would lie in very different regions on the number line 
[13].  

2. The efficiency of GA is significantly degraded 
when it is applied to a function where the parameters 
that are optimized are highly correlated (in harmonic 
estimation, the change of the phase of the fundamental 
harmonic may alter the phases of other harmonics) 
[14].  

3. The GA has difficulties in fine tuning of a local 
search; it spends most of the time competing between 
different hills, rather than improving the solution 
along a single hill on which the optimal point is 
located [15]. 

As another stochastic optimization technique, 
Particle swarm optimization (PSO) has been applied to 
harmonic estimation. PSO is much less dependent on 
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the initial values of the variables compared to GA 
[16]. The PSO based methods have been found to be 
robust in solving problems, featuring nonlinearity and 
no differentiability, multiple optimization, and high 
dimensionality through adaptation [17]. Since 
amplitudes and phases have different dimensions, the 
search space would be large and PSO algorithm 
performance decreases significantly. A particle swarm 
optimization with passive congregation (PSOPC) 
mixed with least squares estimator is presented in 
[14]. However, PSOPC has more operators compared 
to simple PSO. Thereby, number of tuned factors and 
also computational burden are increased. 

The paper presents an adaptive particle swarm 
optimization (APSO) to estimate the phases of 
harmonics. Amplitudes estimation is carried out using 
linear least squares. This approach is implemented in 
time domain and it is robust against DC offset. 
Different test cases are applied to evaluate the 
performance of presented method. In all studies, 
parameters used in the method are set to be fixed. The 
simulation results in MATLAB show that both the 
speed of dynamic tracking and estimation accuracy are 
fairly high. Furthermore, numeric indices are applied 
to demonstrate the improved performance of the 
proposed method in comparison with conventional 
discrete Fourier transform. 

II.  PROPOSED ALGORITHM 

Voltage and current signals in power systems 

consist of combination of fundamental frequency and 

harmonic components. Also, a decaying DC 

component can be added to the signal model.   

Generally  assumed waveform structure is based on [2, 

10] and [13]: 
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where 02 fnn   and )(tZ is the measured signal;

nA Amplitude of the nth harmonic; n the phase of nth 

harmonic; N the total number of harmonics;
0f the 

fundamental frequency, 
sk the factor of noise and 

exp( )DC DCA t  is the decaying dc component. 

The discrete time version of Eq. (1) can be 

represented as: 
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Where,
sT is sampling period. DC component can be 

approximated using first two terms of Taylor series as: 

sDCDCDCDCDC kTAAtA   )exp(
 

(3) 

Obviously, phases of sinusoids are the source of 
nonlinearity in the waveform structure. That is why 
hybrid methods are used to decouple the problem into 
linear and nonlinear parts [13, 14] and [18]. In 
proposed algorithm in this paper, phases are estimated 
using adaptive PSO. Thereby, the phase estimation 
problem is extracting a nonlinear relationship applying 
APSO. This relationship describes the mapping 
between phases and measured value. Squares of error 
between estimated and original waveforms are taken 
as index for evaluating objective function of APSO. 
The phases extracted by APSO are inserted to LS 
algorithm to estimate the amplitudes. In subsection 2.1 
the PSO algorithm is explained in more details. 

A. The principles of PSO Algorithm 

Intelligent systems have excellent performance in 
design of algorithmic models to solve complex 
problems. One category of the intelligent systems is 
swarm intelligence. PSO is a swarm intelligence based 
algorithm invented by Kennedy and Eberhart [19-22]. 
Its initial intent is to simulate the swarm behavior of 
birds within a flock to construct a stochastic 
optimization algorithm. A swarm can be defined as 
interacting individuals representing possible solutions 
that emulate the success of other individuals. Each 
individual within a swarm interact to others to obtain a 
global optimum in a more efficient performance than 
one single individual could [23]. In PSO, individuals 
referred to as particles, are updated to produce a better 
solution. Each particle in the swarm pursue its best 
(pbest) and the best value that is tracked by the 
particle swarm optimizer i.e. global best (gbest). 
Tracking of gbest is an information sharing 
mechanism to give out the information of overall best 
particle to other particles. PSO is an iterative method 
with a simple formulation. Particles are updated in the 
following procedure. Let us assume the N particles at 
the kth iteration are represented as: 

),...,( 1
k
N

kk
n xxX   (4) 

Where, [ , ]k
n n nX l u , nl and nu  are the lower and 

upper bound for the nth particle respectively. In the 
first iteration the values of particles are randomly 
selected. The velocity vector at the same iteration is 

represented by ),...,( 1
k
N

kk
n vvV  , which each particle is 

bounded by a maximum velocity max
k

nV   and a 

minimum velocity min
k

nV   to control the likelihood of 

particles leaving the search space for examining more 
solutions. The objective function J is given for PSO. 
In this paper, the objective function J is calculated in 
each iteration as follow: 

2( ) [ _ ( ) _ ( )]J k X est k X mea k   (5) 
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Where estX _  and meaX _  are estimated and 

measured values for signal X respectively. Then using 
the objective function value, position of each particle 
in the iteration k is updated by following equations: 

1
1 2( ) ( )k k k k k k

n n n n nV V C pbest X C gbest X       (6) 

11   k
n

k
n

k
n VXX  (7) 

Where, k
npbest is the best previous position of nth 

particle; gbest the best position among all the 

particles; 1r , 2r  the random variables in the range of 

(0,1); 1c , 2c the positive acceleration constants and 

  is the inertia weight. 

In this paper an adaptive inertia weight, thereby an 
adaptive particle swarm optimization (APSO) 
algorithm is used. A larger inertia weight facilitates 
global exploration and a smaller inertia weight tends 
to facilitate local exploration [17]. Therefore, adaptive 
inertia weight makes a balance between global and 
local exploration abilities. Hence, less number of 
iterations is needed for algorithm convergence. In each 
iteration step, the hybrid algorithm applies APSO for 
phase estimation and then calculates amplitude of 
harmonics using LS. Finally, with the values of the 
phases and amplitudes, the fitness value of each 
particle is calculated by Eq. (5) and then each particle 
position is updated by Eq. (6) and (7). The process 
repeats until an acceptable convergence is attained. 
Fig. 1 represents a flowchart for the formulation of 
PSOs. 

B. Amplitude estimation using LS 

The basic concept of least squares algorithm is 
introduced in [24-26]. The discrete linear model of 
waveform in Eq. (2) can be rewritten as: 

( ) ( ) ( ) ( )Z k H k k k    (8) 

Where )(kZ is the kth sample of the measured 

signal; )(kH is the system structure matrix; )(k  is the 

unknown parameters matrix (Amplitudes) to be 
estimated and )(k is unknown noise. Applying 

measurements )(kZ
, the LS estimation of i.e. 

e can 

be extracted by minimizing following function: 
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e e eJ k Z k H k k Z k H k k      (9) 

Estimating the phases by APSO, structure matrix is 

obtained and function ))(( kJ e is minimized that 

results in: 
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The output of LS is the estimated amplitude vector 
as follow: 

1 2( ) [ ( ) ( ) ... ( ) ]T
N DC DC DCk A k A k A k A A 

 
(12) 

The objective function of the APSO is obtained 
using (3). The estimation process until reaching an 
acceptable solution continues.  

The APSO-LS algorithm can be explained by 
following steps:  

1) Initialize swarm of PSO.    
2) Load the test signal.  
3) For each individual, extract the H(k) matrix 

from (11). 
4) Estimate the harmonic amplitudes according 

to each individual using (10).  
5) Construct the waveform corresponding to each 

individual using estimated parameters.  
6) Evaluate the performance of each individual 

using (3) to gbest and pbest appointment.  
7) Update the swarm using (6) and (7).  
8) Repeat steps two to seven until final 

convergence. 

III.  SIMULATION RESULTS  

Several papers have been applied on the same 

power system signal which is used in this paper. The 

test signal is a combination of a series of sinusoidal 

components. Each component has its own amplitude, 

phase and frequency.  

 
Fig. 1. Basic flowchart showing the sequence of operations in a PSO 
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The distorted waveform is represented by [2, 10]: 
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(13) 

The test signal is a distorted waveform sampled 
from the terminal of industrial load comprising power 
electronic converters and arc furnaces [2]. As can be 
seen, five harmonics are considered in the test signal. 
The additive Gaussian noise has a zero mean and 
variance of unity. Factor ks represent the amplitude of 
the noise whose value is chosen 0.05 in this study. 
This section shows the performance of the APSO-LS 
method. To investigate the performance of the 
proposed approach several tests are performed. 
Different types of this simulation tests are applied as 
follow: 

1) Static signal test  
2) Dynamic (time varying) signal test  
3) Test the frequency drift effect on signal  
4) Test the faulted power system 
To compare the performance of the proposed 

method with conventional DFT, the following indices 
are applied: 

a) Mean Square Error (MSE) of the estimated signal 
to show the estimation precision. 

b) Estimated waveform error variance, which can 
be interpreted as estimation robustness against random 
noise. 

A. Static signal test 

The static signal test is implemented using the 
discrete time version of distorted signal represented in 

Eq. (13). A simple adaptive inertia weight  is used 

for PSO. This parameter can be made by means of 
mathematics, the description is: 

max max min( ( ) / ) *iter k      (14) 

   The inertia weight is bounded by maximum value

max and minimum value min . iter  is the number of 

iterations for obtaining  an acceptable convergence 

and k is the current iteration times. The values of max

and min are chosen as 0.78 and 0.16 respectively. 

Large inertia weights cause larger exploration of the 
search space, while smaller inertia weights focus the 
search on a smaller region [23]. Acceleration constants 

1c and 2c control the movement of particle in each 

iteration. In this study 1c and 2c are set to be 2.7 and 

0.4 respectively. Nominal frequency of power system 
is 50 Hz and a sampling frequency 2.3 kHz is used for 
numerical computation. The number of parameters to 
be estimated is twelve.  The five amplitudes and five 
phases for the assumed harmonics and two terms of 
Taylor series of  DC component are estimated in each 
iteration. Phases are estimated using APSO and others 

with LS method. Figs. 2 and 3 show tracking results of 
fundamental and the 7th harmonic parameters with 
APSO-LS. These results are extracted for a test signal 
corrupted with random noise and decaying DC 
component. This method begins tracking of the 
amplitudes and phases of harmonics in less than one 
cycle. As can be seen an acceptable value for 
amplitudes is obtained after about 0.65 cycles (13ms). 
Convergence time for phases is about 0.85 cycles 
(17ms). APSO-LS approach shows almost the same 
tracking behavior in estimating the amplitudes and 
phases of other harmonics. The accuracy of this 
approach is observed from simulation results and 
specified points in figures. Using estimated 
parameters, the estimated waveform is reconstructed. 
For evaluating the overall tracking quality, estimated 
signal and original test signal are compared. Fig. 4 
represents results of this comparison. Also overall 
tracking error is represented in Fig. 5. To compare the 
APSO-LS method with DFT, numerical performance 
indices, as were described earlier, are calculated in 
table. 1. Table 1 shows that APSO-LS does the 
estimation with fewer errors and has less variation. As 
it was mentioned earlier, this shows the better noise 
rejection of APSO-LS method. 

B. Dynamic (time varying) signal test 

Electrical waveforms magnitude in a practical 
power system is always time varying. The shape of 
amplitudes depends on load that produces the 
disturbance. In this paper, dynamic signal with the 
same harmonics considered in the static signal is 
assumed. However the DC component is not 
eliminated, the APSO-LS provides an exact dynamic 
estimation of the harmonic parameters. To 
demonstrate the performance of APSO-LS method in 
abrupt changes tracking, following model is provided: 

1 3

5
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where 

1 1 5

3 3 5

5 1 5

0 . 1 5 s i n 2 0 . 0 5 s i n 2 ,

0 .0 5 s i n 2 0 .0 2 s i n 2 ,

0 .0 2 5 s i n 2 0 .0 0 5 s i n 2

a f t f t

a f t f t

a f t f t

 

 

 

 

 

         

and 
1 3 51 , 3 , 6f H z f H z f H z   .  

ks is set to be 0.05 . Figs. 6 and 7 show the 
estimation of the 3rd and the 5th harmonic parameters 
respectively. Estimated and measured signal 
waveforms are shown in Fig. 8. Characteristics of 
APSO are the same as in static signal. It causes the 
simplicity of use of adaptive parameters in proposed 
method. In spite of existence of DC component and 
random noise, this algorithm can track abrupt changes 
of signal. 
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Fig. 2. Tracking the fundamental harmonic’s parameters 
 

 

 
Fig. 3. Tracking the 7th harmonic’s parameters. 
 

 
Fig. 4. Measured and estimated waveforms. 
 

 
Fig. 5. Error of estimation. 

TABLE  I 
MSE AND VARIANCE INDICES OF PROPOSED METHOD COMPARED 

DFT (STATIC SIGNAL ESTIMATION). 

 APSO-LS DFT 

MSE 44*10-6 0.0122 

Variance 157*10-6 0.0244 

   
 

 

 
Fig. 6. Tracking the 3rd harmonic’s parameters. 
 
 

 

 
Fig. 7. Tracking the 5th harmonic’s parameters. 
 
 

 
Fig. 8. Measured and estimated waveforms. 
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From the Figs. 6 and 7, it can be seen that APSO-LS 
can converge to an acceptable value in less than one 
cycle. It also converges to final values with high 
accuracy. Fig. 9 shows the error of this tracking. The 
contents of table 2 prove the precision of the proposed 
algorithm in comparison with DFT. This table 
indicates better performance of APSO-LS in rejecting 
the noise. 

C.  Effects of frequency drift on harmonic estimation 

     Frequency drift widely exists in power systems. 
Estimating the harmonic parameters in the presence of 
frequency drift is a challenging problem in harmonic 
estimation. In this study the effects of frequency drift 
on the estimation procedure of proposed algorithm is 
tested. A large value of frequency drift Hzf 1  is 

set at the beginning of the second cycle. System 
frequency is restored to reference value after 33 ms. 
Since the frequencies of harmonics are the multiples 
of the fundamental frequency, harmonic drift is 
expanded to include higher harmonics. Results of 
amplitudes and phases estimation for fundamental and 
the 11th harmonic parameters are represented in Figs. 
10 and 11. However this results are obtained in 
presence of random noise )05.0( sk and DC 

component, the estimated values are quite close to 
their reference values. As can be seen, phase 
estimation by APSO does not have considerable 
variation. The reason of this behavior is that all the 
individuals are pulled toward optimum point of phases 
before the frequency drift be observed by APSO-LS. 
Figs. 12 and 13 show the overall tracking quality of 
APSO-LS. APSO-LS tracks the parameters without 
interval if small frequency drift of 0.1 Hz, or less is 
exerted to the signal. Computed performance indices 
are represented in table3. 
 

 
Fig. 9. Error of estimation. 

TABLE  II 
MSE AND VARIANCE INDICES OF PROPOSED METHOD 

COMPARED TO DFT (DYNAMIC SIGNAL ESTIMATION). 

 APSO-LS DFT 

MSE 43*10-5 0.0202 

Variance 98*10-5 0.0286 

D.  Test the faulted power system 

The proposed method is used to estimate the correct 
values of amplitudes and phases of harmonic 
components in a faulty power system. A single-line-
to-ground fault on the A-phase of a transmission line 
is applied for this purpose. The fault occurs at the 
beginning of the second cycle and the post fault 
waveform contains a considerable decaying dc 
component. A good harmonic estimation algorithm 
should yield precise estimates even for distorted and 
noisy signal and track abrupt changes in the 
parameters. To demonstrate the performance of 
APSO-LS in abrupt change tracking, change of test 
signal is boosted. The proposed algorithm show a 
good consistency with different condition which are 
exerted to the signal test. Hence, a set of constant 
parameters are used for APSO-LS in all test cases. 

 

 

 Fig. 10. Tracking of fundamental harmonic’s parameters. 

 

 Fig. 11. Tracking of 11th harmonic’s parameters. 
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Fig. 12. Measured and estimated waveforms. 

 
Fig. 13. Error of estimation. 

 
TABLE III 

MSE AND VARIANCE INDICES OF PROPOSED METHOD COMPARED 

TO DFT (SIGNAL ESTIMATION IN FREQUENCY DRIFT). 

 APSO-LS DFT 

MSE 38*10-6 0.0128 
Variance 102*10-6 0.0227 

 

 
Fig. 14. Tracking of 3rd harmonic’s parameters. 

Because tracking behavior for all harmonic 
components is almost the same, only tracking results 
of the 3rd and the 5th harmonic parameters are shown 
in Figs. 14 and 15.  These results are obtained in 
presence of random noise. Fig. 16 shows the estimated 
and measured signal together. Successful 
implementation of the proposed method is observed 
from overall tracking error represented in Fig. 17. The 
results shown in table 4 clearly indicate that APSO-LS 
obtain smaller error than DFT, which means that the 
proposed algorithm achieves an improved estimation 
accuracy in comparison with DFT. 

 

 

Fig. 15. Tracking of 5th harmonic’s parameters. 
 

 
Fig. 16. Measured and estimated waveforms. 

 
Fig. 17. Error of estimation. 
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TABLE  IV 
MSE AND VARIANCE INDICES OF PROPOSED METHOD COMPARED TO 

DFT (SIGNAL ESTIMATION IN FAULTED SYSTEM). 

 APSO-LS DFT 

MSE 46*10-6 0.0131 

Variance 143*10-6 0.0258 
 

IV.  CONCLUSION 

In this paper a new approach for estimating 
amplitudes and phases of the harmonics in a distorted 
waveform is proposed. This hybrid approach uses 
combination of adaptive PSO and LS estimator. In 
each iteration of the estimation algorithm, APSO is 
applied for estimating the phases. Using extracted 
phases, amplitude vector is estimated by LS. 
Furthermore, this method can track the DC component 
magnitude in different conditions, thereby; the 
proposed technique is immune to transient DC 
component and random noise, even in time-varying 
signal tracking. The advantages of APSO-LS 
technique are high convergence speed and precise 
estimation of harmonic parameters. The parameters 
converge to the true value in less than one cycle in all 
the test cases. Using a fast processor, the algorithm 
can be used in online signal tracking. Moreover, 
APSO-LS is enable to detect the harmonic parameters 
in other types of signals such as communication 
signals and other encrypted signals. Obtained results 
by MATLAB codes indicate the accuracy and high-
performance of APSO-LS in different case studies. 
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