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Abstract 
Due to the changes which may occur in their parameters, 

systems are usually demonstrated by some subsystems for 
different conditions. This paper employs Modified Petri 
Nets (MPN) to model theses subsystems and makes it simple 
to analyze them. In this method, first, the continuous transfer 
function is converted to a discrete transfer function and then, 
by MPN, system is modeled and analyzed. All subsystems 
can be modeled and used in state control or cascade control 
loops. Here, the focus is mainly on the conception as well as 
the definitions of the new unified representation model for 
continuous control systems. Simulation results show that the 
new method for modeling continuous systems works 
effectively. 

 
Keywords—Petri Net, Modified Petri Nets, Transfer 

function, Continuous Petri Nets. 

I. INTRODUCTION 

n the past few years, due to great advances in 
technology and computer, modeling based on Petri 

Nets have attracted researchers’ attention. Automata 
and Petri Nets are the main modeling tools in the 
research area of control synthesis for discrete event 
system such as aviation, spaceflight, correspondence 
computer integrated manufacture system etc. 
Recently, many researchers study modeling based on 
Petri Nets because of the advantages of the graphical 
and distributed representations of the system states 
and the computational efficiencies [1]. 

Petri Nets were introduced in Carl A. Petri’s 1962 
Ph.D. dissertation [2]. Petri Nets have been used 
extensively as a tool for modeling, analysis and 
synthesis for discrete event systems [3]. It is usually 
interpreted as a control flow graph of the modeled 
system [4]. Petri Nets are an alternative tool for 
modeling of systems [5]. This tool is powerful and 
useful for study and analysis of discrete event systems. 
They are both a graphical and mathematical tool that 
can model deterministic or stochastic system 
behaviors and phenomena such as parallelism, 
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asynchronous behavior, conflicts, resource sharing and 
mutual exclusion [2].  

 Modeling based on Petri Nets can describe system 
behaviors by linear algebraic equations [5].  

The Continuous Petri Nets model is presented by R. 
David and H. Alla in [6]. These authors have obtained 
a continuous model by fluidization of a discrete Petri 
Net. Further Continuous Petri Nets constitute part of 
process modeling made by systematic procedure that 
is discussed in [7]. The continuous part can model 
systems with continuous flows. Autonomous 
Continuous Petri Nets and other models like 
Differential Algebraic Equations Petri Nets have been 
studied intensively since the advent of this research 
area [8, 9]. Digitized signals leaning on analogue 
signal and continuous approximated model is used in 
this paper and the important connection between 
mathematical transfer function and state event base 
model has been presented in [10]. This leads to 
mathematical model with very simple algorithm in 
contradiction to complexity of mathematical models. 

In many systems, differential equations of systems 
change due to condition variation. Hence, there are 
different transfer functions and system can be divided 
into some subsystems; for instance some hybrid 
aeronautic systems tend to switch between different 
dynamic equations as a result of parameter or 
operation environment changes. Modeling and control 
of these systems for control is difficult but very 
important. MPN can model these systems. In MPN 
method, continuous transfer function is modeled by 
Petri Nets approach. For use of MPN some definitions 
for modeling are presented. In all Petri Nets modeling, 
event is the base of Petri Nets but in modified theory, 
delay presents the rule of event. Connection between 
discrete and continuous Petri Nets and lead to MPN is 
the principal element of this paper [11]. Additionally, 
a Petri Nets model can be described by a linear 
algebraic equation, or other mathematical models 
reflecting the behavior of the system. This opens a 
possibility for the formal analysis of the model. By 
this, modeling is represented that all of features of 
system is preserved in incidence matrix. 

In this paper a continuous model has been derived 
from dynamics of system by this supposition that all 
signals are continuous and Petri Nets has been 
determined by a digitized transfer function. The goal 
of this document is to improve a new approach to 
continuous modeling. 
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The remainder of this paper is organized as follows: 
In Section 2, main concepts of discrete and continuous 
Petri Netsis presented. The basic definitions and 
method of MPN is explained in section 3.The 
advantage of continuous Petri Nets over MPN is also 
described in this section. To convince the reader about 
utility of MPN, basic examples are given in section 
4.Section 5 is dedicated to simulation results and 
finally the conclusion is stated in section 6. 

II. BASIC CONCEPTS AND NOTATION 

A. Ordinary Petri Nets 

Petri Net is a directed net consisting of place, 
transition, directed arc and token [12]. 

A Petri Net is a 5-tuple N = {P, T, W
-
(Pre), 

W
+
(Post), M0} where 

P= {p1, p2,…,pn }  is a finite set of places, and n>0 
is the number of places. 

T= {t1, t2,…, tm }  is a finite set of transitions, and  
m>0 is the number of transitions and P∩T=Ø, i.e. the 
sets P and T are disjointed. 

Pre or W
-: (P×T) →N is the input function, Post or 

W
+
: (T×P) →N is the output function. 

M0 is the initial marking. The incidence matrix W is 

calculated by W=W
+- W

-. 
A transition can only be fired if each of the input 

places of this transition contains at least one token.  
Here the following notations will be used [13]: 

= set of input places of 

Tj.  

  P , 0j i i jT P P ost P T   = set of output places 

of Tj.  

  Pr , 0i j i jP T T e P T   =set of input transitions 

of Pi.   P , 0i j i jP T T ost P T   = set of output 

transitions of Pi. 
 
The dynamic facets of Petri Net models are 

characterized by certain markings. These markings are 
projects of token to the places of a Petri Net. Markings 
may alter during the execution of a Petri Net, which is 
controlled by the number and distribution of tokens. A 
transition is enabled if and only if each of its input 
places includes certain number of tokens. When a 
transition is enabled, it may fire. As soon as a 
transition fires, all enabling tokens are removed from 
its input places and then a token is transferred to each 
of its output places [14]. 

B. Continues Petri Nets  

A marked Continuous Petri Nets is a set of 

0{ , ,Pr , , }R P T e Post M  

Such that P, T, Pre and Post are the same that 

mentioned in earlier section and M0 is the initial 

marking of all places knowing  that  M(t)  denotes  the  

marking  at  time  t.  It shall be mentioned that P is 

positive real number.  

The important difference between ordinary Petri 

Nets and Continuous Petri Nets (CPN) is enabling 

degree. Enabling degree of a transition Tj for marking 

denotes by q or q(Tj,m)  is the real number that is 

shown in the equation below [6]: 

 
 

 :

,
Pr ,

min
o

i j

i

j
i P T i j

m P
q T m

e P T

 
 
 
 

 
(1) 

 

If q > 0, transition  Tj is enabled; it is said to be q-

enabled. It is important to note that the marking of a 

Continuous Petri Nets can take real positive values, 

while in discrete Petri Nets only integer values are 

possible. In fact, this is the only difference between a 

continuous and a discrete Petri Nets [15]. 

Timed  Petri  Nets  with  constant  times  associated  

either  with  places  or  with  transitions  are  used  in  

order to  model  various  systems. A timed Continuous 

Petri Net is a pair (R, Spe) such that: R is a marked 

autonomous Continuous Petri Net; Spe is a function 

from the set T. For Tj, Spe(Tj)=Vj is the maximal speed 

associated with transition Tj. The values vj(t)is called, 

the instantaneous firing speed of the transition Tj. 

The concept of validation of a continuous transition 

is different from the traditional concept met in discrete 

Petri Nets. The fundamental equation for a timed 

Continuous Petri Nets between times (t and t+dt), the 

quantity of the firing  Tj being vj.dt is as follows [6]: 

     

     2

1
2

.

.
t

t

m t dt m t W v t dt

m t m t W v t dt

   

  
 (2) 

where W is the Petri Net incidence matrix, v(t) is the 

characteristic vector of s The characteristic vector s of 

a firing sequence S is a vector that each component is 

an integer corresponding to the number of firings of 

the corresponding transition. m(t+dt) and m(t) are the 

corresponding new markings and previous markings 

respectively. 

C. State Equation 

Dynamic behavior of the system represented by the 
Petri Net can be expressed using the Petri Net 
incidence matrix W in which W is an n×m matrix. 

It is desirable to have an equation to test if a given 
marking Mk is reachable from an initial marking M0. 
Suppose that Mk is reachable from M0 by successive 
firing of certain sequences. Then [16]: 

  Pr , 0j i i jT P P e P T  
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



 
(3) 

Using equations in (3) it is easy to show that the 
state equation is: 

0 .kM M W U   (4) 

here, U is the summation of all Ui (i=m,1,…,k-1). 

III. MODIFIED PETRI NETS (MPN) 

The transfer function of systems can be determined 
by system identification techniques. The transfer 
functions for continuous systems are demonstrated by 
differential equations. It is very difficult to show 
differential equations with Petri Nets model. 
Implementation of derivation function with Petri Nets, 
results a very giant and complex model that spoil all 
advantages of Petri Nets like series, visual 
presentation, comprehensible model etc. To overcome 
this problem, difference equations can be used, instead 
of differential equations. Continuous equation shall be 
digitized with adequate sample time. In difference 
equation recursive function with delays used instead 
of derivative function. 

In this method time delays will be implemented by 
transitions and places play the rule of input and output 
for systems and maybe its inner dynamics. 

For modeling there are some new definitions: 
Definition 1: Marking of places in Modified Petri 

Nets, can be negativeor non-negative real numbers at 
any time. 

Definition 2: Transitions are enabled always, if 
M(Pi)>0 or M(Pi)<0. 

Definition 3: Speeds associated with transitions are 
infinity. 

Definition 4: After firing the transitions the 
marking of placesreach zero.  

Consider a first-order transfer function with one 
pole and no zeros as  

 
A

F s
s B




 (5) 

Discrete-time model of the transfer function in (5) 
with sample time of TS is  

 
a

F z
z b




 (6) 

The relationship between input-output of the (6) can 
be described by 

     1 1y n ax n by n     (7) 

Petri Nets model of (7) is shown in Figure 1. In 
Figure 1 places P1 and P2 depict input variable and 
output variable respectively. Moreover, in this figure 
state equations can be written as follows 

  0 .m n m W v   (8) 

where 

0 0

1
W

a b

 
   

 

And 

  
  

1

2

1

1

m P n
v

m P n

 
  

  

 

IV. SIMULATION RESULTS 

In this section, performance of MPN for modeling 
continuous systems with differential equation is 
depicted. Simulation is carried out using 
MATLAB/SIMULINK version 7.12.0.635. Here, the 
start and end times of simulation are 0 and 100 (s) 
respectively.  Also the following transfer function is 
used in simulation. 

  2

1

2 10

s
G s

s s




 
 (9) 

After discretizing the system using the triangle 
(first-order hold) approximation with sample time 
Ts=0.1(S), the resulted transfer function is 

 
 

 
2 1

1 2

0.08479 0.09378

1 1.729 0.8187

Y z z z
g z

U z z z

 

 

 
 

 
 (10) 

Then difference equation of (10) can be expressed 
as follows 

     

   

0.08479 2 0.09378 1

0.8187 2 1.729 1

y k u k u k

y k y k

    

   
 (11) 

 

Fig. 1.  Petri Nets model of equation (7). 

Consequently, the state equation of (11) can be 
written 
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 
 

 
 

 

     

 

1 1

2 2

10 1 0
1

10.8187 1.729 1

0.08479 0.09378

0 1 0

0.8187 1.729 1

0.08479 0.09378 0

x k x k
u k

x k x k

y k x k

A B

C D

       
              


 

   
       

  

 

(12) 

 

Finaly, Petri Nets of this model has been 

demonstrated in Figure 2. 
In Figure 2P1 and P3 indicate input variable and 

output variable respectively. The incidence matrix W 
for Figure 2 can be obtained as follows  

 
1 0 0 0

1 0 0 0

0.09378 0.08479 1.729 0.8187

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1 1 0 0

0.09378 0.08479 0.729 0.8187

0 0 1 1

W

W

W W W





 

 
 
 
  
 
 

 
 
  
 
 
 

 
    
  
 

 

 

And state equation is obtained by (13) 

0m m Wv   (13)  

And here 

  
  
  
  

1

2

3

4

1

1

1

1

m P n

m P n
v

m P n

m P n

 
 

 
  

 
  

  
 

 

Fig. 2. Petri Nets Model of (11). 

Fig. 3. Zero state response for difference equation of (10) and Petri 
Nets model 

 
Fig. 4. Zero input response for difference equation of (10) and Petri 
Nets model. 
 

Furthermore, model is simulated in zero state and 
zero input. In the zero state, input is step. Figure 3 
shows zero state response for difference equation of 
(10) and Petri Nets model 

In Figure 4 shows a simulation for difference 
equation of (10) and Petri Nets model based on the 
zero input. 

Comparing responses in Figure 3 and 4 for 
difference equation and Petri Nets Model, it is obvious 
that Petri Nets model response is similar to difference 
equation. Therefore, the MPN can be substituted by 
difference equation. 

V. CONCLUSION  

Petri Nets makes it possible to model all continuous 
systems with very simple rules and prepare a visual 
model with its dynamics. Modified Petri Nets (MPN) 
can model systems with variable parameters or 
multiple subsystems easily. The system analysis and 
controller design using MPN is comfortable. In the 
resulted model, all eigenvalues can be extracted to be  
used in cascade control systems, although there is an 
error in calculation due to sample time selection an d 
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estimation of equalization P(n-1) and P(n). By using 
MPN, we present a visual and systematic method for 
dynamics system modeling. In hybrid systems with 
several dynamic behavior modes, the provided visual 
model gives a useful overview of the systems. Further 
works will focuses on controller design or fault 
detection that includes design; implement and analysis 
of controller for continuous system in Petri Nets 
environment. 
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