
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,728 |
تعداد دریافت فایل اصل مقاله | 7,656,157 |
بررسی تأثیر طول و درصد وزنی الیاف بر مقاومت برشی خاک تثبیت شده با الیاف مصنوعی با توزیع تصادفی | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 7، دوره 3، شماره 1 - شماره پیاپی 9، اردیبهشت 1396، صفحه 99-110 اصل مقاله (2.36 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2017.1469.1118 | ||
نویسندگان | ||
احد اوریا* 1؛ سعید زرداری2 | ||
1دانشیار، گروه مهندسی عمران، دانشکده فنی دانشگاه محقق اردبیلی | ||
2گروه مهندسی عمران، دانشکده فنی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
تاریخ دریافت: 03 تیر 1395، تاریخ بازنگری: 31 فروردین 1396، تاریخ پذیرش: 18 اردیبهشت 1396 | ||
چکیده | ||
در بسیاری از پروژههای ساختمانی و راهسازی، خاک محل دارای خواص مهندسی مورد نیاز مانند مقاومت برشی یا سختی کافی نبوده و نیاز به اصلاح و بهبود مشخصات آن دارد. روشهای مختلف مکانیکی و شیمیایی برای تثبیت خاک وجود دارند که استفاده از المانهای مسلح کننده مانند ژئوتکستایلها، ژئوگریدها و الیافهای طبیعی یا مصنوعی از روشهای تثبیت مکانیکی خاک میباشد. در دهههای اخیر، استفاده از الیافهای مصنوعی منفصل با توزیع تصادفی برای بهبود خواص مکانیکی خاک، بهدلیل سهولت استفاده از این الیافها، هزینههای کم تولید و زمان کوتاه اجرا متداول گردیده است. در این تحقیق، مقاومت برشی ماسه سیلتدار تثبیت شده با الیاف مصنوعی منفصل شیشه با توزیع تصادفی بهصورت آزمایشگاهی مورد بررسی قرار گرفته است. تمرکز این تحقیق بیشتر روی تأثیر طول و درصد وزنی الیاف بر پارامترهای مقاومتی خاک شامل چسبندگی و زاویه اصطکاک داخلی بوده است. نمونههای خاک تثبیت شده با الیاف به طولهای 5، 10، 20 و 30 میلیمتر با درصدهای وزنی 1/0، 2/0، 3/0، 4/0، 5/0 و 6/0 در 28 حالت مختلف تهیه شده و مقاومت برشی آنها با استفاده از دستگاه برش مستقیم تعیین گردیده است. نتایج این تحقیق نشان میدهد که افزودن الیاف باعث افزایش مقاومت برشی خاک میگردد. افزایش مقاومت برشی خاک اصلاح شده با الیاف مصنوعی در اثر افزایش چسبندگی و زاویه اصطکاک داخلی خاک بوده است. با افزایش درصد وزنی و طول الیاف، ابتدا مقاومت برشی خاک افزایش یافته و سپس کاهش مییابد. ولی در هر حال، مقاومت برشی خاک تثبیت شده بیشتر از خاک غیر مسلح میباشد. مقادیر زاویه اصطکاک داخلی و چسبندگی خاک در شرایط بهینه به ترتیب حدود 30 و 40 درصد افزایش داشته است. با توجه به نتایج آزمایشها، مقدار بهینه درصد وزنی الیاف 4/0 درصد و طول بهینه آنها 10 میلیمتر بوده است. | ||
کلیدواژهها | ||
اصلاح خاک؛ الیاف مصنوعی شیشه؛ مقاومت برشی؛ برش مستقیم | ||
عنوان مقاله [English] | ||
Effect of the Length and Content of Fibers on the Shear Strength of Randomly Distribuated Fiber-Reinforced Soil | ||
نویسندگان [English] | ||
Ahad Ouria1؛ Saied Zardari2 | ||
1University of Mohaghegh Ardabili | ||
2Department of Civil Engg. University of Mohaghegh Ardabili, Iran | ||
چکیده [English] | ||
In the most of the construction and roading projects, the natural subsoil layers do not meet the mechanical requirements such as stiffness and shear strength and need soil improvement. There are several mechanical and chemical soil improvement methods that using reinforcement elements such as geotextiles, geogrids and natural or artificial fibers are among the mechanical methods. Because of the ease of application, low produce casts and short construction time, the use of randomly distributed discrete fibers are increasing in the recent decades. In this research, the shear strength of a silty sand reinforced by randomly distributed discrete glass fibers was studied in the laboratory. The study was focused on the effect of the length and content of the fibers on the shear strength parameters of the soil such as cohesion and internal friction angle. The shear strength of specimens of the improved soil prepared in 28 different configurations using fibers with 5, 10, 20 and 30 mm length and 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 % of weight contents were investigated using direct shear test device. the results of this study show that the inclusion of the fibers increases the shear strengths of the soil. The improvement of the shear strength of the soil resulted from improving of both cohesion and the internal friction angle. Increasing the length and the content of the fibers, increases the shear strength of the soil but further increment from optimum length and content of fibers reduces the shear strengths of the reinforced soil. The shear strength of the fiber reinforced soil is always more than that of unreinforced soil. The internal friction angle and cohesion of the fiber reinforced soil in the optimum condition increased about 30% and 40% respectively. The optimum length and content of the fibers to achieve the maximum shear strength were 10 mm and 0.4% respectively. | ||
کلیدواژهها [English] | ||
Soil improvement, Synthetic glass fibers, Shear strength, Direct shear test | ||
مراجع | ||
شاه نظری، ح.، غیاثیان، ح.، نورزاد، ع.، شفیعی، ع.، طبرسا، ع. و جمشیدی چناری، ع. 1388. "مدول برشی ماسه لایدار مسلح شده با تریشه موکت." زلزله شناسی و مهندسی زلزله، 11(3): 24-36. فروغی اصل، ع. و نادری زرنقی، و. 1391. "بررسی عملکرد الیاف پلیپروپیلنی در ساختار بتن غلتکی." مهندسی عمران و محیطزیست، 42(69): 2-15. Al-Adili, A., Azzam, R., Spagnoli, G. and Schrader, J. 2012. “Strength of soil reinforced with fiber materials (Papyrus) ”. Soil Mech. Found. Eng., 48(6), 241-247.
Al-Refeai, T. 1991. “Behavior of granular soils reinforced with discrete randomly oriented inclusions. Geotext. Geomebernas, 10(3): 319-333.
Al-Refeai, T. and Al-Suhaibani, A. 1998. “Dynamic and static characterization of polypropylene fiber-reinforced dune sand”. Geosynth. Int. 5(5): 443-458.
Anagnostopoulos, C. A., Papaliangas, T. T., Konstantinidis, D. and Patronis, C. 2013. “Shear strength of sands reinforced with polypropylene fibers”. Geotech. Geolog. Eng., 3: 401-423.
ASTM D1557-12. 2012. “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort”. ASTM International, West Conshohocken, PA, Available online: http://www.astm.org /Standards/D1557.htm.
ASTM D2487-11. 2011. “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)”. ASTM International, West Conshohocken, PA, Available online: http: // www.astm.org/Standards/D2487.htm.
ASTM D3080. 2004. “Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions”. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, Available online: https://www.astm.org/Standards/D3080.htm.
ASTM D854-14. 2014. “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer”. ASTM International, West Conshohocken, PA, Available online: http://www.astm.org/Standards/D854.
Chegenizadeh, A. and Nikraz, H. 2016. “Performance of fiber reinforced clayey sand composite”. Front. Struc. Civ. Eng., 6(2): 147-152.
Claria, J. J. and Vettorelo, P. V. 2016. “Mechanical behavior of loose sand reinforced with synthetic fibers.” Soil Mech. Found. Eng., 53(1): 12-18.
Consoli, N., Heineck, K., Casagrande, M. and Coop, M. 2007. “Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths”. J. Geotech. Geoenviron. Eng. 133(11): 1466-1469.
Gümüşer, C. and Şenol, A. 2014. “Effect of fly ash and different lengths of polypropylene fibers content on the soft soils”. Int. J. Civ. Eng., 12(2): 134-145.
Krishna Rao, S. V. and Nasr, A. M. A. 2014. “Laboratory study on the relative performance of silty-sand soils reinforced with linen fiber”. Geotech. Geolog. Eng., 30: 63-74.
Li, J., Tang, C., Wang, D., Pei, X. and Shi, B. 2014. “Effect of discrete fibre reinforcement on soil tensile strength”. J. Rock Mech. Geotech. Eng., 6(2): 133-137.
Lirer, S., Flora, A. and Consoli, N.C. 2011. “On the strength of fibre-reinforced soils”. Soils Found., 51(4): 601-609.
Noorzad, R. and Zarinkolaei, S. T. G. 2015. “Comparison of mechanical properties of fiber-reinforced sand under triaxial compression and direct shear”. Open Geosci., 1: 547-558.
Ouria, A., Toufigh, V., Desai, C. S., Toufigh, V. and Saadatmanesh, H. 2016. “Finite element analysis of a CFRP reinforced retaining wall”. Geomech. Eng., 10(6): 757-774.
Sadek, S., Najjar, S. and Freiha, F. 2010. “Shear strength of fiber-reinforced sands”. J. Geotech. Geoenviron. Eng., 136(3): 490-499.
Sariosseiri, F. and Muhunthan, B. 2009. “Effect of cement treatment on geotechnical properties of some Washington State soils”. Eng. Geolog., 104(1-2): 119-125.
Shukla, S. K., Shahin, M. A. and Abu-Taleb, H. 2015. “A note on void ratio of fibre-reinforced soils”. Int. J. Geosynth. Ground Eng., 1(29); 1-5.
Tang, C., Wang, D., Cui, Y., Shi, B. and Li, J. 2016. “Tensile strength of fiber-reinforced soil”. J. Mater. Civ. Eng., 28(7): 04016031-1-04016031-13.
Toufigh, V., Ouria, A., Desai, C. S., Javid, N., Toufigh, V. and Saadatmanesh, H. 2016. “Interface behavior between carbon-fiber polymer and sand”. J. Test. Eval., 44(1), 385-390.
Toufigh, V., Saeid, F., Toufigh, V., Ouria, A., Desai, C. S. and Saadatmanesh, H. 2012. “Laboratory study of soil-CFRP interaction using pull-out test”. Geomech. Geoeng., 9(3): 208-214.
Yetimoglu, T. and Salbas, O. 2003. “A study on shear strength of sands reinforced with randomly distributed discrete fibers”. Geotext. Geomembranes, 21: 103-110.
Wang, Y., Guo, P., Shan, S., Yuan, H. and Yuan, B. 2016. “Study on strength influence mechanism of fiber-reinforced expansive soil using jute”. Geotech. Geolog. Eng., 34: 1079. | ||
آمار تعداد مشاهده مقاله: 1,918 تعداد دریافت فایل اصل مقاله: 3,823 |