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Abstract 
Anomaly Detection (AD) has recently become an 

important application of target detection in hyperspectral 
images. The Reed-Xialoi (RX) is the most widely used AD 
algorithm that suffers from “small sample size” problem. 
The best solution for this problem is to use Dimensionality 
Reduction (DR) techniques as a pre-processing step for RX 
detector. Using this method not only improves the detection 
performance of algorithm, but also significantly reduces its 
runtime. This paper presents a novel DR technique that uses 
the Fast Fourier Transform (FFT) to perform the band 
reduction for RX detector. We compared the proposed 
method, named FFT-RX, with several well-known detectors 
such as RX, RX-UTD, Kernel-RX, PCA-RX and DWT-RX. 
These algorithms applied to two hyperspectral datasets 
acquired by both the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) and Hyperspectral Mapper 
(HyMap) sensors. The evaluation of algorithms was based 
on Receiver Operation Characteristic (ROC) curve, visual 
investigation, and runtime of algorithms as well. 
Experimental results show that the proposed method 
improves the detection performance and runtime of RX 
detector significantly and has the best runtime and detection 
performance among all methods*. 
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I. INTRODUCTION 

yperspectral image data are very essential and 
useful in order to detect, recognize, quantify, and 

map many targets for various applications such as 
search-and-rescue operations, mine detection, and 
military usages [1]. 

Hyperspectral sensors are a powerful tool for 
distinguishing between different materials on the basis 
of each object's unique spectral signatures; these 
sensors are able to do this because they collect 
information about surfaces and objects in hundreds of 
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narrow contiguous spectral bands in the visible and 
infrared regions of the electromagnetic spectrum [1]. 

Anomaly Detection (AD) is a special kind of target 
detection (TD) techniques with no a priori information 
about the targets. The main purpose of these 
algorithms is to find the objects in a given image that 
are anomalous with respect to their surrounding 
background [1]. In other words, the point of anomaly 
detectors is to find the pixels whose spectra 
significantly differ from the background spectra [2]. 
The main advantage of these methods is that they 
don’t need a priori information about the target 
signature, nor do they need any form of atmospheric 
or radiometric corrections on data [3]. 

The Reed-Xialoi (RX) is the most widely used AD 
algorithm [4], it is known as a benchmark anomaly 
detector for multi/hyperspectral images. This 
algorithm, which is derived from the generalized 
likelihood ratio test (GLRT), assumes that the 
background pixels in a local neighborhood around the 
target can be modeled by the multivariate normal 
(Gaussian) distribution [5,6]. RX assumes that r is an 
image pixel vector, which has L elements.  L is the 
number of image’s spectral bands. The RX detector is 
defined by equation (1).  

����(�) = (� − �)
���×�

�� (� − �) (1) 

In this equation, µ is the sample mean vector. C is 
the sample data covariance matrix. Finally δrxd(r) is 
the well-known mahalanobis distance that shows the 
abnormality amount of pixel under test (PUT). The 
result of AD process is a two dimensional detection 
matrix. To determine the exact location of targets 
(anomalies), a threshold should be applied on the 
detection matrix. 

The most reported problem for the RX and many 
of its modified versions is the “small sample size”. 

This problem concerns the estimation of a local 

background covariance matrix from a small number of 
very high dimensional samples. This may result in a 

badly conditioned and unstable estimate of local 

background covariance matrix that strongly affects the 
detection performance of the AD algorithm [7]. The 

first solution to this problem is enlarging the sample 

size by expanding the local window size. This solution 

tries to resolve the non-homogeneity of the local 

H
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background, which undermines the effectiveness of 

the covariance matrix estimation. Another solution for 

this problem is using the Dimension Reduction (DR) 
[7, 8]. 

Performance of many AD algorithms can be 

improved by using a pre-processing DR step. Because 

the hypercube is a relatively large empty space and the 
most important or interesting information could be 

represented in a few features [9, 10]. The DR step, 

used as a pre-processing step of the AD algorithm, can 
reduce the inter-band spectral redundancy and ever-

present noise. Although the DR is lossy, it increases 

the separation between anomaly and background 

signatures. Thus, the detection performance of the 
anomaly detector is improved. DR techniques are 

divided into two categories: linear and nonlinear. 

Although linear techniques do not exploit the 
nonlinear properties in hyperspectral data, they can be 

fast enough for real time applications. A popular linear 

DR method, which is ideally used for small target 
detection is Principle Component Analysis (PCA) 

[11]. There are other linear DR methods, such as the 

Discrete Wavelet Transform (DWT), which is used to 

improve the detection performance and runtime of AD 
algorithms [12]. Other linear DR methods, such as 

Fourier Transform (FT) have not been investigated for 

AD methods. 
A general framework of an AD scenario is shown 

in Fig. 1. In the first step, the spectral dimension of an 

image cube is reduced using a DR method (Fig. 1(b)). 
The AD algorithm is then used to analyze new image; 

the result is a two dimensional matrix named “AD 

matrix” (Fig. 1(c)).  

To specify the locations of anomalies or targets in the 
image, a post-processing threshold step can be added 
to the algorithm. The final result is an image that 
shows the exact location of the targets (Fig. 1(d)).  
In this study we introduce a new DR method for RX 
detector based on the Discrete Fourier Transform 
(DFT).  We compared the proposed method, namely 
FFT-RX, with RX [4], RX-UTD [13], Kernel-RX [5], 
  

 
Fig. 1. Flowchart of hyperspectral AD using the pre-processing DR 
method 

PCA-RX [8, 11] and DWT-RX [12]. The Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) and 
Hyperspectral Mapper (HyMap) datasets are being 
used to both apply and evaluate the proposed 
methodology on real hyperspectral remotely sensed 
images. 

II. PROPOSED DIMENSIONALITY REDUCTION 

METHOD 

The Fourier Transform (FT) is an essential tool for 
the analysis of signals and systems. This 
transformation maps a time series onto the series of 
frequencies. The FT determines all signal frequencies; 
it does not have a time resolution [14]. However, 
because in dimensionality reduction methods, the time 
resolution is not important, using this transformation 
as a dimensionality reduction technique is not a 
negative attribute. In order to find the frequency 
spectrum of a digital signal, we used Discrete Fourier 
Transform (DFT), which is the discrete version of the 
FT. A practical method for computing the DFT, which 
requires much less computational effort, is the Fast 
Fourier Transform (FFT) [15, 16]. Cooley and Tukey 
introduced this method, which can lead to major 
changes in computational techniques [17]. 

In general, most signals mainly include low 
frequency components [18]. Therefore, when 
calculating the amplitude of the DFT of a signal, such 
as a spectrum pixel of a hyperspectral image, the early 
component of the amplitude, which is related to low 
frequencies in the main signal, are very high compared 
to other components. This problem is shown in Fig.2. 
In this figure, part (a) shows a pixel spectrum of a 
hyperspectral image that has 64 spectral bands; part 
(b) shows the DFT amplitude of part (a). According to 
this image, the amplitude of coefficients related to low 
frequencies is very high. This important characteristic 
can reduce the dimensions of hyperspectral images. 

 
Fig. 2. (a) A spectrum pixel of a hyperspectral image, (b) FFT 
amplitude of the main signal 

 
Fig. 3. (a) Hyperspectral image matrix, (b) FFT Amplitude of 
hyperspectral matrix, (c) Abstract of FFT Amplitude matrix. 
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We used DFT in a three-step anomaly detection 
framework (see Fig. 3). In the first step, the DFT of 
every image pixel is calculated using the FFT. The 
amplitude of the DFT values is, then, calculated. The 
results are placed in a matrix named “amplitude” (Fig. 
3(b)). The last step uses a few bands of the amplitude 
matrix which are related to low frequencies of the 
main image (and which, in addition, have high 
values). In this way, a new matrix is formed which is 
the abstract of the FFT amplitude matrix (Fig. 3(c)). 
This matrix is a good approximation of the main 
image and any anomaly detectors can employ it.  The 
number of abstract matrix’s bands which shows the 
amount of band reduction, can be selected during the 
experiment. 

III. EXPERIMENTAL RESULTS 

A. Hyperspectral images 

1) HyMap data with implanted targets (Img-I) 

This hyperspectral image, which released for Target 

Detection Blind Test project, has 126 spectral bands 

[19, 20]. During the image acquisition campaign, 12 

real targets were located in an open grass region. 

Targets of this image are divided into two parts: self-

test and blind-test. Because only the real location of 

the self-test targets is available, we cannot use this part 

of the image to evaluate the performance of the AD 

algorithms. Due to this limitation, some self-test 

targets (red cotton, blue cotton, yellow nylon, and red 

nylon) were selected and implanted in another part of 

the image. To implant the targets in this sub-image 

(named “Img-I”) a target implanted method [21, 22] 

has been used. For this method, asynthetic sub-pixel 

anomaly, z, is a combination of both the target and 

background, as shown in equation (2). In this 

equation, t and b shows (i.e., denotes) the target and 

background vectors, respectively. Therefore, sub-pixel 

(z) consists of the target’s spectrum with fraction f, 

and the background’s spectrum with fraction (1-f) 

[22]. 

� = �. � + (1 − �). � (2) 

This implantation method does not include the 
adjacency effects of the target spectrum on the local 
background pixels. To have a more realistic condition, 
the background pixels, which are neighbors of the 
targets, can be affected by a target pixel. This effect 
can be achieved by using a Gaussian function with a 
width of w, as shown in equation (3), where �� is the 
spatial distance between background pixel (��) and the 
target pixel (t) [6]. 

��

= ����−
��
�

��
� . �. � �1−����−

��
�

��
� . �� . �� 

       
(3) 

In order to construct the desired image, according 
to Fig. 4, a part of the main image is selected; the 
targets are then implanted in the selected sub-image 
(Fig. 4(a)). To apply the effect of background on 
targets and, in addition, make sub-pixels, outlines of 
targets have been selected and combined with their 
adjacent background according to equation (2) with 
the coefficient f=0.6. This means that every target 
pixel is composed of 60% target and 40% background. 

Then, we used equation (3) in order apply the 
effect of anomalies on the background pixels. The 
final image with implanted targets includes sub-pixel 
and full-pixel (or multi-pixel) targets. As a result, this 
image seems to be a perfect data for testing AD and 
TD algorithms. Fig. 4(b) shows the truth location of 
the targets that are either sub-pixel or full-pixel. 

2) AVIRIS data with real targets (Img-II and Img-
III) 

Two other sub-images have been extracted from 
ahyperspectral image of a naval air station in San 
Diego, California, collected by the AVIRIS sensor 
[23]. This data cube has 189 useful spectral bands with 
a ground resolution of 3.5 meters (see Fig. 5). The first 
sub-image, named Img-II, is an 80×80 pixel data cube 
that contains some military targets as anomalies and is 
used to evaluate the exact detection performance of 
algorithms using Receiver Operation Characteristic 
(ROC) curve (Fig. 5 (a)). The truth location of targets 
in this sub-image is shown in Fig. 5 (b). The second 
sub-image, named Img-III, is an image window with 
100×100 pixels. This sub-image contains 38 
anomalous targets which may be either helicopters or 
helipads, as shown in Fig. 5(c). This sub-image is used 
in some TD works [8, 24]; it is also used to evaluate 
the runtime of anomaly detectors. 

A. Implementation 

One of the most important decisions for AD 
algorithms is about the size of detection window [6]. 
Although, there is no specific method for choosing 
these windows [6], the size of the inner window 
should be almost as large as the biggest target in the 
scene. In addition, the size of the outer window should 
be large enough to provide a sufficient number of 
background samples for simulating the local 
background [25]. According to the both above-
mentioned rules and the results of the experiment, the 
inner and outer window size for Img-I are selected 
3×3 and 11×11 pixels, respectively. The inner and 
outer windows for both Img-II and Img-III are 
selected 5×5 and 13×13 pixels, respectively. 
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Fig. 4. A natural color composite of the HyMap data cube, (a) selected sub-image with implanted targets (Img-I), (b) truth location of targets. 

 

 

Fig. 5. A natural color composite of the AVIRIS data cube, (a) sub-
image with real targets (Img-II), (b) truth locations of targets in 
Img-II and (c) sub-image with real targets (Img-III). 

 
The proposed DR method (FFT-RX) acts as a pre-

processing step for RX method and makes method. In 
addition, PCA-RX and DWT-RX methods are RX 
detectors that use PCA and DWT detectors as a pre-
processing step. An important decision for the FFT, 
DWT and PCA DR methods  
is the amount of reduction rate that determines the 
number of image/feature bands after the DR step. This 

parameter should be selected according to two 

metrics: detection performance and runtime. In this 

study, according to the experiments conducted in 
different cases on Img-I and Img-II, the band number 

of output images is assumed to be 8 for all DR 

methods. 

B. Evaluation of Detection Performance 

The ROC curve is the best way to evaluate the 

detection performance of AD algorithms [1]. To 

evaluate the detection performance of algorithms more 
accurately,  the area under the ROC curve (AUC)  is 

                                                                             

used. This value is an exact criterion; it is widely used 

to evaluate the detection performance of target 

detection algorithms [8]. Another way to evaluate the 
performance of algorithms is the visual investigation. 

This evaluation can be a good criterion using the post-

processing threshold step. In this study the evaluation 
of algorithms for Img-I and Img-II datasets is done 

using the ROC curve and the AUC value; in addition, 

the Img-III dataare used to evaluate algorithms 

visually. 

1) Results of Img-I 

Fig.6 shows the ROC curves of the AD methods for 
Img-I. Table 1 presents the AUC values of all 

algorithms. According to these criteria, the detection 

performance of the RX and RX-UTD methods is, in 
general, very weak.This is because of “small sample 

size problem” that concerns the estimation of local 

background covariance matrix [7]. However, the per-

processing DR methods not only reduce the inter-band 
spectral redundancy and ever-present noise but also 

increase the separability between anomaly and 

background signatures. Therefore they can 
significantly improve the performance RX detector. 

According to the ROC curves and AUC values, the 

FFT-RX and DWT-RX ones perform best; the RX and 
RX-UTD methods performs worst and the 

performance of other methods are almost acceptable. 

2) Results of Img-II 

Fig.7 shows the ROC curves of the anomaly 
detectors for Img-II. The AUC values of these 
methods are shown in Table 2. According to these 
results, FFT-RX and Kernel-RX ones performed best, 
the performance of RX and RX-UTD is the worst and 
the performance of other methods is good. These 
results show the performance of RX detector and its 
family is, in general, very weak, but we can improve 
their performance using DR methods. In addition 
kernelizing RX detector can improves its performance 
significantly. 
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3) Results of Img-III 

Img-III is used to evaluate the performance of 
anomaly detectors visually in a real scene. Because the 
truth location of the targets in this image is not 
available, the detection performance of AD algorithms 
is investigated visually. To achieve a better visual 
investigation, a threshold step is added at the end of 
the AD procedure. To execute this post-processing 
step, a cut-off threshold is needed; this value can be 
calculated adaptively using equation (4) [26]: 

�� = �� + �� × �� (4) 

 

TABLE I 
AUC of AD methods applied to Img-I 

AD Algorithm AUC 

RX 0.50 
RX-UTD  0.49 

Kernel -RX 0.94 

PCA-RX 0.92 

DWT-RX 0.95 

FFT-RX 0.95 

 

 
Fig. 6. ROC curves of Anomaly Detection algorithms for Img-I, 

 

where �� is the cut-off threshold that declares whether 
a pixel is a target or not, �� and ��are the mean and 
standard deviation of the output of the AD algorithm, 
respectively, and �� is the z statistic at the significant 
level of α, which controls the number of pixels 
declared to be anomalies. Fig. 8 shows the output of 
the threshold step using the adaptive cut-off threshold 
of equation (4). 
According to these results, the performance of RX and 
RX-UTD is very weak but DR step increases RX 
performance significantly. The Kernel-RX detector 
suffers from False Alarm Rate (FAR) that reduces its 
performance. Performance of FFT-RX and PCA-RX is 
almost the same but FFT-RX has the lowest FAR. In 
addition, performance of DWT-RX is good. 

 
Fig. 7. ROC curves of Anomaly Detection algorithms for Img-II 

 

TABLE II 
AUC of AD methods applied to Img-II 

AD Algorithm AUC 

RX 0.49 

RX-UTD  0.50 

Kernel -RX 0.97  

PCA-RX 0.95 

DWT-RX 0.96  

FFT-RX  0.97 

 

Fig. 8. Detection results of algorithms applied to Img-III 

 

C. Runtime Evaluation 

To evaluate the speed of the AD methods, a 

computer system with an “Intel Core i5-2410M, 

2.3GHz” processor and four GB of Random Access 

Memory (RAM) is used to measure the runtime of 

algorithms on Img-III, in equal conditions. Runtime of 

the DR methods is shown in Table 3; the runtime of 

the AD methods, which includes the runtime of related 

DR pre-processing methods, is shown in Table 4.  
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TABLE III 
Runt ime of DR methods a ppli ed to  Img-I II  

DR Method PCA FFT  DWT 
Runt ime( s)  0 .98  0.26 9.78 

 
TABLE IV 

Runtime of AD methods applied to Img-III 

AD Algorithm AUC 

RX 348.84 

RX-UTD  348.70 

Kernel -RX 1395.94 

PCA-RX 7.83 

DWT-RX 16.65  

FFT-RX  7.16 

 
According to these results, among the DR 

methods, FFT has the best runtime which is 3.7 and 

37.6 times faster than PCA and DWT, respectively. 

Among the AD methods, FFT-RX has the best 

runtime which is almost equal to PCA-RX and 2.3, 

48.7, 48.7 and 194.8 times faster than DWT-RX, RX, 

RX-UTD and Kernel-RX, respectively. These results 

show that FFT is fast enough to be used in real-time 

applications by using parallel processing [27]. 

IV. CONCLUSION 

DR as a pre-processing step for RX detector 
reduces the inter-band spectral redundancy and 
increases the separation between anomaly and 
background. Consequently, it can resolve the “small 
sample size” problem of RX algorithm and improves 
the detection performance and runtime of this method 
as well. A new linear dimension reduction method, 
presented in this paper, uses FFT to implement the DR 
as a pre-processing step for RX method. The proposed 
method, named FFT-RX, is compared with some 
popular detectors: RX, RX-UTD, Kernel-RX, PCA-
RX and DWT-RX. To evaluate the performance and 
runtime of methods two hyperspectral datasets 
acquired by both the AVIRIS and HyMap sensors, are 
used. According to the experimental results the 
proposed DR method improves the detection 
performance and runtime of RX detector significantly 
and has a better runtime than the PCA and DWT DR 
methods. Among all methods, the FFT-RX has the 
best runtime and detection performance that make it 
suitable for real-time applications of AD in 
hyperspectral remotely sensed data. An important 
problem in all DR methods is determining the amount 
of dimensionality reduction. According to the 
experiments, DR rate is directly related to runtime of 
algorithms, but its relation to the performance is not 
linear. Future research directions include evaluating 
reduction rate of DR methods on the performance of 
AD methods. 
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