
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,796 |
تعداد دریافت فایل اصل مقاله | 7,656,258 |
On positive solutions for a class of infinite semipositone problems | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 5، دوره 4، شماره 1، شهریور 2013، صفحه 49-54 اصل مقاله (338.84 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2013.25 | ||
نویسندگان | ||
M. B. Ghaemi* 1؛ M. Choubin2 | ||
1Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran | ||
2Department of Mathematics, Faculty of Basic Sciences, Payame Noor University, Tehran, Iran | ||
تاریخ دریافت: 22 اردیبهشت 1391، تاریخ بازنگری: 15 دی 1391، تاریخ پذیرش: 09 بهمن 1391 | ||
چکیده | ||
We discuss the existence of a positive solution to the innite semipositone problem $$\Delta u=au-bu^\gamma-f(u)-\frac{c}{u^\alpha}, \quad x\in\Omega,\quad u=0, x\in\partial\Omega,$$ where $\Delta$ is the Laplacian operator, $\gamma>1, \alpha\in(0,1), a,b$ and $c$ are positive constants, $\Omega$ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial\Omega$, and $f : [0;1) \to \mathbb{R}$ is a continuous function such that $f(u)\to \infty$ as $u\to \infty$. Also we assume that there exist $A > 0$ and $\beta > 1$ such that $f(s) \leq As^\beta$, for all $s \geq 0$. We obtain our result via the method of sub- and supersolutions. | ||
کلیدواژهها | ||
positive solution؛ Innite semipositone؛ Sub- and supersolutions | ||
آمار تعداد مشاهده مقاله: 17,669 تعداد دریافت فایل اصل مقاله: 2,024 |