
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,732 |
تعداد دریافت فایل اصل مقاله | 7,656,160 |
Almost n-Multiplicative Maps between Frechet Algebras | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 16، دوره 8، شماره 1، مهر 2017، صفحه 187-195 اصل مقاله (361.01 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2017.2500 | ||
نویسندگان | ||
Taher Ghasemi Honary1؛ Mashaalah Omidi* 2؛ AmirHossein Sanatpour1 | ||
1Department of Mathematics, Kharazmi University, Tehran, Iran | ||
2Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran | ||
تاریخ دریافت: 02 خرداد 1395، تاریخ بازنگری: 28 آبان 1395، تاریخ پذیرش: 25 دی 1395 | ||
چکیده | ||
For the Fr'{e}chet algebras $(A, (p_k))$ and $(B, (q_k))$ and $n \in \mathbb{N}$, $n\geq 2$, a linear map $T:A \rightarrow B$ is called \textit{almost $n$-multiplicative}, with respect to $(p_k)$ and $(q_k)$, if there exists $\varepsilon\geq 0$ such that $$q_k(Ta_1a_2\cdots a_n-Ta_1Ta_2\cdots Ta_n)\leq \varepsilon p_k(a_1) p_k(a_2)\cdots p_k(a_n),$$ for each $k\in \mathbb{N}$ and $a_1, a_2, \ldots, a_n\in A$. The linear map $T$ is called \textit{weakly almost $n$-multiplicative}, if there exists $\varepsilon\geq 0$ such that for every $k\in \mathbb{N}$ there exists $n(k)\in \mathbb{N}$ with $$q_k(Ta_1a_2\cdots a_n-Ta_1Ta_2\cdots Ta_n)\leq \varepsilon p_{n(k)}(a_1) p_{n(k)}(a_2)\cdots p_{n(k)}(a_n),$$ for each $k \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n\in A$. The linear map $T$ is called $n$-multiplicative if $$Ta_{1}a_{2} \cdots a_{n} = Ta_{1} Ta_{2} \cdots Ta_{n},$$ for every $a_{1}, a_{2},\ldots, a_{n} \in A$. In this paper, we investigate automatic continuity of (weakly) almost $n$-multiplicative maps between certain classes of Fr'{e}chet algebras, including Banach algebras. We show that if $(A, (p_k))$ is a Fr'{e}chet algebra and $T: A \rightarrow \mathbb{C}$ is a weakly almost $n$-multiplicative linear functional, then either $T$ is $n$-multiplicative, or it is continuous. Moreover, if $(A, (p_k))$ and $(B, (q_k))$ are Fr'{e}chet algebras and $T:A \rightarrow B$ is a continuous linear map, then under certain conditions $T$ is weakly almost $n$-multiplicative for each $n\geq 2$. In particular, every continuous linear functional on $A$ is weakly almost $n$-multiplicative for each $n\geq 2$. | ||
کلیدواژهها | ||
multiplicative maps (homomorphisms)؛ Almost multiplicative maps؛ automatic continuity؛ Frechet algebras؛ Banach algebras | ||
آمار تعداد مشاهده مقاله: 15,670 تعداد دریافت فایل اصل مقاله: 2,533 |