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Existence and uniqueness results for a nonlinear
differential equations of arbitrary order
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Abstract

This paper studies a fractional boundary value problem of nonlinear differential equations of arbitrary
orders. New existence and uniqueness results are established using Banach contraction principle.
Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. In order
to clarify our results, some illustrative examples are also presented.
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1. Introduction

Boundary value problems for fractional differential equations arise in many engineering and scientific
disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of a complex medium, polymer rheology In consequence, fractional
differential equations have been of great interest, see [3], 4, (5] [6] [7, 8, 10, 15, 16, 19, 20, 24] and refer-
ences therein. Recently, there has been a significant progress in the investigation of these equations,
(see [1, 2, O, 111, 12, 13, 19, 24]). More recently, some basic theory for the initial boundary value
problems of fractional differential equations has been discussed in [1], 4, 13, 17, 19, 23]. Moreover,
existence and uniqueness of solutions to boundary value problems for fractional differential equations
had attracted the attention of many authors, see for example,[T], 2, 3], O, 1], 12, 19, 21, 25] and the
references therein.

In [9, 3] 2], 22], the existence and uniqueness of solutions was investigated for a nonlinear frac-
tional differential equations with integral boundary conditions by using Schauder and Krasnoselskii’s
fixed point theorem.
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This paper deals with the existence and uniqueness of solutions for the following problem:

{ Dz (t) = f (t,z (t), D¥x (t), D*?z (t), ..., Dz (1)), t € [0,1], a1
2(0) = o, (0) = 2 (0) = ... = 22 (0) = 0, J% (1) = ATz (n) . -

where D% ¢ = 0,1,2,....,n — 1, denote the Caputo fractional derivatives, with n — 1 < a,,_1 <
~<a;<ag<nandné€ N*n+#1J=10,1,\# 0 is real constant, z* € R,0 < n < 1 are real
numbers and f is a function which will be specified later.

The rest of this paper is organized as follows. In section 2, we present some preliminaries and
lemmas. Section 3 is devoted to existence of solution of the problem . In section 4 examples are
treated illustrating our results.

2. Preliminaries

The following notations, definitions, and preliminary facts will be used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order a > 0, for a continuous
function f on [0, 00l is defined as:

JU(t) = ﬁ/@ (t—7)*" f(r)dr,a >0, (2.1)

T =),
where T' (o) := [;* e u*"du.

Definition 2.2. The fractional derivative of f € C™ ([0, 00[) in the Caputo’s sense is defined as:

Def(t) = ! ] /Ot (t—7)"" " ™ (r)dr,n—1<a,ne N (2.2)

T—a)
For more details about fractional calculus, we refer the reader to [18].
Let us now introduce the Banach space
X ={z:2€C(0,1],R); D%z, D*x, ..., Dz € C([0,1],R)},
endowed with the norm

el x = llzl + [[D% ]| + [| D] + ... + [[D* ][ ;

[2]l = sup [z ()], [D*'x| = sup[D*z (1)],
teJ ted

|Dz|| = sup |D*x (t)|,..., ||[D* ‘x| = sup |D*" "z (t)|.
ted ted

We give the following lemmas [14], [15]:

Lemma 2.3. Let r,s >0, f € Li([a,b]). Then I"I*f(t) = I""f(t),D°I°f(t) = f(t),t € [a,b] .
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Lemma 2.4. Let s >r >0, f € Li([a,b]). Then D"I*f(t) = I*7"f(t),t € |a,b].
To study the problem (1), we need the following two lemmas [14]:

Lemma 2.5. For a > 0, the general solution of the fractional differential equation D%z (t) = 0 is
given by

z(t) =co+ it + ot + .o+ e t™ Y (2.3)
where ¢; e R,i=0,1,2,..,n—1,n = [a] + 1.
Lemma 2.6. Let o > 0. Then
JD% (t) =z (t) + co + crt + cot® + ... + e t" (2.4)
for some ¢; e R;i=0,1,2,....,n—1,n=[a] + 1.
We need also the following auxiliary result:
Lemma 2.7. Let g € C([0,1]), the solution of the equation
D*z(t)=g(t),t € Jn—1<aq <n, (2.5)

subject to the boundary condition

z(0) =z, 2" (0) = 2" (0) = =2 0)=0
and
JPx (1) = Xz (n) |
1S given by:
z(t) = T (1040) /0 (t—s)*"g(s)ds + z* (2.6)

_ L(6+4mn)t"! 1 et
(1—)\775—1—71—1) ( ) (040—1-5)/0 (1 ) g( )d
AI' (ﬁ—Fn) gt n et (e
(W’ =T (5+n)t”—1
<1_ APt D (n) (B +1)°

Proof . By lemmas and , the general solution of (6) is given by

+

1
I" (o)
By 2 (0) = 2, and 2’ (0) = .... = 2®? (0) = 0, we can obtain ¢y = —z*, and ¢; = ¢y = ... =

Cp—2 = 0.
Thanks to lemma [2.3, we get

x(t) =

t
/ (t—5)"""g(s)ds —co— crt — cot? — ... — cuqt" . (2.7)
0

r*t? ['(n)

ﬂl‘ = —_— Cl—
S () r@B+1) " T(B+n)

! ) /t (t — 8)6+O‘°_1 g(s)ds+ hn—1, (2.8)

I'(B+ ) Jo
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Using the boundary condition

JPx (1) = A" (1),

we get
c (ﬁ TL) ! — s B+ap—1 s) ds
R wﬂﬂ><mrw+a@/(1 S 29
( _'_n) ! — s Bt+ao—1 s) ds
VDN O w+a@/‘w Sl
z* (A" —1)T (B +
)T

AT

( 1)

Substituting the values of cg, ¢1, ¢, ..., ¢h_2, ¢, 1 in (2.7]), we obtain the desired quantity in lemma.
O

3. Main Results

For convenience, we set:

L(B+n) (14|l +e0)

1
Lo = 1o + [ e Gract)’ (3.1)
._ 1 T(B+n) (1+[Aln?+20) B B
Lk T D(ao—ag+1) |1*>\775+”_1|I‘(nfak)1‘(6+ao+1)’ - 17 5T 17
W:i=wy+wy+ ... +wWp-1,
0 . (ﬁ+n)(1+|>\‘7lﬂ+ak Z 5+n 1+|)\‘775+ak)
[1=Anf+n=1|D ()0 (B+ao+1) [1=AnB+n=1|D(n—ag)D(B+ao+1)’

g — =l 1|r(5+n |2*|[Anf —1|T(8+n)
|1=Anf+n=1|D(n)0(8+1) Z |1=Anf+n=1|D(n—ag)D(B+1)"
k=1

Now list the following hypotheses for convenience:

(H1) : The function f : [0, 1] x R® — R, is continuous.

(H2) : There exist non negative continuous functions a; € C' ([0,1]),7=0,1,2,...,n— 1 such that
for all ¢t € [0,1] and (2o, €1, T2, -, Tn-1) , (Y0, Y1, Y2, ---» Yn—1) € R"™, we have

|f (ta Zo, L1, T2, "'7xn—1) - f (ta Yo, Y1, Y2, "'7yn—1)|
< ag (t) |ro — yo| + a1 (t) |x1 — y1| + a2 (t) |za — yo| + o + an—1 () |21 — Yo

where,

wo = supag (t) ,w; =supay (t),ws =supas (t),...,wp_1 = supa,_1 (t).
teJ ted te] ted

(H3) : There exist positive constants m (t) such that

|f (t, 0, x1, T2y ooy Tp_1)| < m(t) for each t € J and all (xg, 21, 29, ..., 1) € R™
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with

M =supm(t).
teg

Our first result is based on Banach contraction principle:
Theorem 3.1. Suppose that 71 #£ %, and assume that the hypothesis (H2)holds.

If
(Lo + Z Lk) w <1, (32)

k=1

then the fractional problem (1.1))has a unique solution.

Proof . Consider the operator ¢ : X — X defined by:

oz (t) ::ﬁ/ (t—5)" f(s,z(s), DMz (s),..., D1z (s))ds + z* (3.3)
0
_ (B+n)t” ! Pl a n—
R TS / [ (5,(5), D™ (5) . D™z (5)) d
Al B—l—n t" 1 5+a0—1 al an—1
+ (o) ﬂ+040)/0 f(s,z(s), D%z (s),..., D" 'x(s))ds

z*(An?-1)T (6+n yen—1
(1 ApPAn=D)T(n)l(B+1)

We shall prove that ¢ is contraction mapping :
For x,y € X and for each t € J, we have:

o2 ()= ow ()] < ik [ (¢ =9

‘ ds (3.4)

1
L(B+nytn—! _ o\BHao—1
+|1_)\n6+n71|1"(n)1"(5+a0) /0 (1 3)

f(s,z(s), D"z (s),..., D 1x(s)) ’ds
—f (57y (3) , Dy (3) ey D1y (5>)

n a Qp—
ALyt _ gpra-t | f(s,(s), DM (s), ..., D (s))
+\1>\nﬁ+"1|F(n)F(ﬁ+ao)/0 (n =) —f(s,y(s),D*y(s ) o D=1y () ds.
Using the (H2), we can write:
wo+w Wiy — x— D*1gx— D% DM—1p_D%—1
oz () — ¢y (¢)] < (wotwi+...+wn—1)[[lz—y|+]] F(1a0+1)1y”+ A+l ylll (3.5)

+ L(8+n)(wotwi+. .. Fwn—1)[llz—y|+[[D*12— D1 y[[+...+|| D -1z —Dn—1y]|]
|1 )\n5+"—1|r(n )T(B+ao+1)
+ NL@B+n)n" 20 (wotwit. Awn—) [le—y| +]| D¥1 2= Dy +... 4[| Dt a—Dn1y||]
[1=Anf+n=1|D(n)(B+ao+1)

Thus,

woFwi+...Fwn— z— De1g—D% .|| D¥n=1g—D%n—1
|gz§a: (t) — ¢y (t)\ < (wotwit...4wn—1)[[|z—yll+]l F(longrl)lyHJr +|l yll] (3.6)

D(B+n) [1+AnP 0] (wotwi+...4wn—1) o=yl +[ D1 @—D1y|| 4.4 D*n—1z—D*n-1y]|]
[1=Anf+n=1|D(n)T (ao+B+1)

_|_
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Consequently,we have

¢z (t) — oy (1)] < Low ([lz =yl + | D%z = D'y + .. + [|[D* o — D™ y) (3.7)
which implies that

16 (z) =@ (W)l < Low ([lx =yl + [D"z = D*'y[| + ... + || D — D™ y]). (3.8)
On the other hand, for all k = 1,...,n — 1 and for each ¢ € [0, 1], we have

f(s,z(s), D%z (s),..., D 1x(s))
—f(s,y(s), DMy (s),...., Dy (s))

), D

t
«@ «@ ag—ap—1
D™ g (6) = D0y (0] < ey [ (£ =)

‘ds

( (s
—f(s,9(
( z (s
—f(s,9(

, ( )y, D12 ()
), Dy (s), .., Dy (s))
), D*x(s),...,D" 1z (s))
$), D%y (5) . Doy (5))

ds  (3.9)

1
I'(5+n) _ \Btao—1
+ |1/\7I’8+"_1|F(nak)r(,3+040)/0 (1 S)

n
[AL(B+n) _ \Btao-1
+ |1—/\77ﬁ+n—1|F(n—ak)F(/3+Oé()) /0 <TI S>

By (H2) we obtain

ag o (wotwi+...4wp—1)[[[z—y[[+[| D1 z—D* y||+..+|| D =ta—Dn—ly|]
Do (t) — Dy (t)] < DD, (3.10)
L(B+n)(wotwi+...4+wn—1)[[|lz—y[+[| Dtz — D1 y|+..+||D¥n—1z—Dn—1y||]
[1=Anf+n=1|T(n—ay)T(B+ao+1)
+ NL@B+m)n 20 (wotwit.. Awn—y)[Je—y|l+| D1 2= D y| +...4|| Dtz D ly|]
[1=Anf+n=1|D(n—ay,)T (B+ao+1)

+

Hence, we have

twit..Awn— +H[D*1z—D* y||+.. 4| D~ 1z— D1
D¢y (t) — D* gy (t)] < Lotertetons)lle—yl ”1"(aowak+1)y” : = =

DB+ 20 |(wo bt won 1) llle—ylH]| D™ =D 1y [+ 4D =Lz Dty

+ |1=Anf+n=1|T(n—ay)T(B+ao+1)

(3.11)
Therefore,

| D¢ (t) — Dy (1) < Lyw ([[z =yl + [ D"z — DMyl| + .. + |D* e — D™ yl]), - (3.12)
which implies that

[D%¢ (2) = D™ (y)|| < Liw ([l = yl[ + [DVx — Dy| + ... + [D* 7 — D Hyl]) . (3.13)

Thanks to (| . ) and (| -, we obtain

6 () 6 (y ||X_<LO+ZLk) (ly = wall + | Dy — Doy || + . + || PPy — D=ty

(3.14)
Consequently by (3.2) , we conclude that ¢ is contraction. As a consequence of Banach contrac-

tion, we deduce that ¢ has a fixed point which is a solution of the boundary
value problem (1.1]). O

The second result is the following.
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Theorem 3.2. Suppose that for all n°*t"~1 % & and assume that the hypotheses (H1) and (H3) are
satisfied.
Then, the problem (1.1) has at least a solution on J.

Proof . We shall use Scheafer’s fixed point theorem to prove that ¢ has at least a fixed point on X.
Stepl: ¢ is continuous on X : By (H1) we conclude that the operator ¢ is continuous.
Step2: The operator ¢ maps bounded sets into bounded sets in X : For ¢ > 0, we take x €
B, ={z € X;||z||x < o}. For each t € J, we have:

]¢x( )| < i ao) /0 (t — 3)0‘0*1 ’f (3,;1: (S) , D¢ (s) sy Dy (S))| ds + |x*‘ (3.15)

1
n)tn 1 ap—1 _
s [ =97 (0 (5) D (5) e D 3)

n
AT n)tn—1 ap—1 a QU —
+ ’1—>\17|5+‘n(7ﬁ1—}_1—\();)1—\(5+a0) /0 (77 - $>ﬂ+ ° ‘f (57 x (S) 7D ‘x (S) PIRERE) D 'x (S))| ds

AnB— 1|r B+n)tn—1
|1=Anf+n=1|D(n)0(B+1)"

|z

Using the (H3), we obtain

1 F(ﬁ+n)(1+l>\|n’”°‘0) « |2* || An® —1|T(B+n)
6 0] S supm 0) | ey + [ |+ g (410

Thus,
|z* ||)\r]ﬂ 1|F B+n)

|§Z§ZL‘ (t)| S LO Stlel}f)m (t) + |ZE*| + |1 AnB+n— 1|F ,3+1) t € J7 (317)
which implies that
« |2*| | An —1|T(8+n)
6 @) < MLy + |o*| + TEm e (319
On the other hand, for all k =1,2,....,n — 1, we have
t
|D* ¢z (1)] < m/ (t =) f (s,2(s), DM (s) ey D (s)) | ds (3.19)
0
(Bn)tn k! ﬁ+a0 1 a1 Qn—1
b e [a- £ (5.2 (), D (s) o Db () s
7
AT n)tn k1 1 « Qpp—
+hmﬁﬁh;$mmmﬁ $)PTTH f (5,3 (5), D (s) oy DO () ds

|z* |’)\77/3—1’F B+n)tr k1
[1=Anf+n=1|D(n—ay)T(B+1)”

By (H3) we have,

a 1 D(B+n) (14+L[A|p+20) |2*|[Anf —1|T(8+n)
1D%6 ()l < M | prgomamy + [1-An 41D ()T (B+ao+1) | [1-MgP et [D(n—ap)T(5+1)" (3.20)
Hence,
z* B n
1D (2)]| < MLy + — 21 L@ (3.21)

[1=Anf+n=1|D(n—ay)D(B+1)"
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Combining (3.18) and (3.21]) , yields

n—1
x |2*||An® —1|T(8+n) *||Anf - )
lo(@)llx < M (LO + ZLk> + 2] + [1=AnB+n=1[D(n)T(B+1) + |1=AnB+n=1|T(n—ag)D(8+1) (3:22)
k=1

Consequently
¢ (@)l x < o0 (3.23)

Step3: In the end we show that ¢ is equicontinuous on J:
Let us take (z,y) € By, t1,ty € J, such that ¢; < t5 and Thanks to (H3). We can write:

t1 to
su m(t ap—1 ap—1 su. m(t ap—1
62 (t2) - ¢x<t1>\<p;%+o)“/o (2= 5)™ " = (0 = )™ ]ds+p;%+o)“/tl (tr = 5)™ " ds

(3.24)
1
supe ; m(t)0(B+n) (7" —t57") _ \Bt+ao—1
+ |1_)\n5+n 1|F(n YD(B+ao) o (]- 3) ds
sup,e; mEOAT(B+n) (13~ =7 ~1) [ Bt+ao—1
T T St ren) (=) ds
|z*| An/B—l’F B—&—n)(t; gy 1)
|1=Anf+n=1|D(n)0(B+1)
Thus,
|6 (t2) — b (1) < Frangy (117 — 15°) + pay (2 — 1) (3.25)
MT(8+n) (n 1 tnq)
‘1 AnPtn— 1‘1" n)I'(B+ao+1) 2
4 M|A|D(B+n)nfteo |2*||An? —1|T(B+n) (tn—l o tn—l)
[1=ApBtn=2|D(n)D(B+ao+1) ' [1-Anftn=1|D(n)T(B+1) v
on the other hand, for all k =1,2...,n — 1,
|D¥¢1y (ta) — DFory (t1)] < Tlao— ak+1) (B0 =107 ) + F(ao_Q_]\a/[k—i—l_) (tg — )"
MT(B8+n) n—ap—1  n—oy—1
+ |1—)\n5+”—1|F(n—ak)F(,3+oco+1) ( 1 t2 ) (326)
SRS e S

|1=Anf+n=1|D(n—ay)T(B+ao+1)

|z

)\77*8*1|F(,8+n) (tnfakfl . tnfakfl)
[1=Anfn =t [T (n—ap)T(B+1) 12 ! '

Thanks to (3.25) and (3.26), we can state that ||¢ (z) (t2) — ¢ (x) (t1)]] — 0 as to — ¢1. By

Arzela-Ascoli theorem, we conclude that ¢ is completely continuous operator.
Step4: Finally, we discuss a priory bounds on solutions.
We shall show that the set {2 defined by

+

Q={reX,z=0¢(x),0 <0 <1}, (3.27)

is bounded:
Let x € Q, then x = g¢ (), for some 0 < ¢ < 1. Thus, for each ¢t € J, we have:

z(t) =00 (x). (3.28)
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Then

20 < ek [ =97 1 (5 (6) D7 (8) o D () s+ [ (329

n L(B+n)tm—? /1 (1 — )P f (5,2 (s), DM (s), ..., D*1z (s))| ds
) Jo

[1-2P 1m0 (B+ao

1 n
e [ = (s (5) D (), D ()
0

[1=An7 =1L (B+a0

AP —1|T(B4n)tn 1
[1=Anftn=1|D(n)D(B+1)

||

Thanks to (H3), we can write

1 1 D(B+n) (1+[Aln+20) . |2*||An® —1|T(8+n)
P [z (1)) < Stlel?m@) { MaotD) T [1=2nA+n=1[D(n)D(B+a0) "] + [1=xnf+n—1[(m)r(+1)” (3:30)
Therefore,
1 (B+n)(1+IA\n’3+‘“0) . AP —1|T(B+n)
[z (t)] < Ust‘é?m(t) |:F(040+1) T [1-Anf+n=1[T(n)I(8+a0) + 27+ [1=xns+n=1 ()T (5+1)” (3.31)
Hence,
% |z*|[An® —1|T(8+n)
which implies that,
* || 775 1 F(/B"’n)
Jall < oMLy + o] + i (333
On the other hand, for all k,=1,2,...,n — 1, we have
a 1 D(B+n)(1+[Aln?+20) jo*[|An® ~1| T (B+n)
D% ¢z (t)] < Ustlelg)m@) [F(ao ak+1) T | 1=Anf+n=1|T(n—ag)T(B+ao+1) ‘1—A7]5+”*1‘1"(n—ak)1"(5+1)’t €J.
(3.34)
Thus,
a |2*|[An® —1|T(B+n)
k
D% @)l < oMLk + 1 e e an @ (3.35)
From - and - we get,
n—1
% ) —1{I(B+n)[['(n—ag)+1'(n)]
lzllx < oM (LO - ZLk> + T Rt (3.:36)
k=1
Hence
16 ()]l x < oo (3.37)

This shows that the set €2 is bounded.
As consequence of Schaefer’s fixed point theorem, we deduce that ¢ at least a fixed point, which
is a solution of the fractional differential problem (|1.1)). OJ

Our third main result is based on Krasnoselskii theorem [14]. We have:
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Theorem 3.3. Let n°t"1 £ % Suppose that (H1), (H2) and (H3) are satisfied, such that

n—1
1 1
(F(ao-H) + Z F(ao—ak+1)) w <1, (3.38)

k=1

if there exist 6 € R such that

n—1
« , lzl| AP =1|D(B+n)[F(n—ay)+T(n)]
M (Lo + ;Lk> AR v e e e (3.39)

Then, the fractional problem (1.1)) has at least one solution on [0, 1].

Proof . We shall use Krasnoselskii fixed point theorem to prove that ¢ has at least a fixed point on
X.

e . AP —1|T(B+n)[[(n—ai)+T(n
Suppose that M (Lo + Sop—) Ly,) + |2*| + |1—>\:77»3+"|1(|F(n))l“[(75—ak;lz(6—il))] < 4 and let us take

|z*]

¢ () (t) =T (z) (t) + R () (1), (3.40)
where .
Tx(t) := ﬁ/o (t—5)°" f(s,z(s), Dz (s),..., D*1 (s))ds + z*, (3.41)
and
n—1 1
f%m<t>:=:-—<1An;15t3¥00r<5+a0>J( (1= )7 f(s,2(s), D™ (s), ..., D (5)) ds
n—1 n _
+ (1_)\77;‘3?5?&)“6%0) ; (n— )"t £ (s, 2 (s), DMa (s), ..., D'z (s)) ds

T* (AnB—l)F(Bﬁ-n)tnfl
(1=Anftn=1)T(m)L(B+1)”

(3.42)

The proof will be given in several steps.

(1* :) We shall prove that for any =,y € Bs, then T (x)(t) + R(y) (t) € Bs, such that Bs; =
fo € Xi |y <0}

For any x,y € Bs and for each t € J we have:

Tz (t) + Ry (t)| < ;)/0 (t — ) f (s,x(s), DMz (s),..., D1 (s))| ds + |z*] (3.43)

T'(ao

1
s [ 19 (s (5), D 5) e D ()] ds
0

|1—)\775+"*1 ‘F(n)l"(ﬁ—l—ao

n

Al n-1 ap—1 a Qe

e [ = (s (5) D () e D ()] s
0

||

AP —1|T(B+n)tn 1
[1=Anf+n=1|D(n)D(B+1)

Using the (H3), we obtain

Tz (t) + Ry (t)] < Stlelgm(t)

(3.44)

1 D(B+n) (1+[Alp"+e0)
Tlao+l) * [1-Anftn=1|T(n)I(B+ao+1)

||| An® —1|T(8+n)
[1=Anf+n=1|D(n)D(B+1)

+ |=¥| +
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Consequently,
* || An® 1|1 (B+n)
<
Tz (t) + Ry (t)| < Lo sup m (t) + |=*| + ’1—)\175+"*1’F(n)1“(5+1)’t € J, (3.45)
Thus,
z* s n
IT (2) + R (y)]| < ML + || + L=l (3.46)

[1=Anf+n=1|D(n)D(B+1)

On the other hand, for all k =1,2,...,n — 1, we have

L(B+n) (14|l +e0)

«a a 1
|D "Tx (t) +D kRy <t>| < ig?m (t) I'(ao—a+1) |1—)\775+”*1|F(n—ak)F(B+o¢0+1) (347)
i |2*||An? —1|T(8+n)
[1=Anf+n=1|D(n—ay)T(B+1)’
Thus,
« « \:v*||>\775—1|F(B—|—n)

| D**Tx (t) + D** Ry ()| < MLy + [ESvE= (3.48)

Combining (3.58)) and (3.60]) yields

n—1
o, |z | AnP=1|T(B4n) [0 (n—ay)+T(n)]

1T (x) + R(y)lx <M (Lo + ;Lk) + 7+ e TR an D (3.49)
T (z) + R (y)||x € Bs. (3.50)

(2* :) We shall prove that R is continuous and compact. Note that R is continuous on X in view
of the continuity of f (hypothesis (H1)).

(a*) : Now, we prove that R maps bounded sets into bounded sets of X.

For x € Bs and for each t € J, we have:

1
Re (0] £ ottt [ (=977 | (50 (5) D (5) e D ()]

= [1=Anftn=tT(n)1(

n
AT n)tn—1 ap—1 o Qpp—
e [ 0= 7 (50 (9, D7 5) e D ()

|2 [ An? —1|D(B+4n)tn

[1=Anftn=1|T(n)0(8+1) (3.51)
Using the (H3), we obtain
supe ; m(B)0(B+n) (1+ Aok ) |2*||An? —1|T(B+n)
|Rx <t)| = |1—An5+”*1\r(n)r(ﬁ+ao+1) ]1—,\nﬂ+nfljr(n)r(6+1)’t €J <3‘52)
Thus,
MT (B+n) (1+[AJn° o) ||| An® =1|T(8+n)
IR @) < [1=Anftn=1D(n)D(B+ao+1)  [1=Anftn=1|D(n)T(B+1) (3.53)
On the other hand, for all k =1,2,...,n — 1, we have
o MT (B+n) (14| AJn ok ) |2*||An® —1|T(8+n)
D™ @) < [1=AnfHn=1|D(n—ap)T(B+ao+1) — |1=Anf+n=1|D(n—ag)T(B+1)" (3.54)
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From and (3.54) , we have

D(B+n)(1+AlnP+er) L(B+n)(1+AlnP+er)
||R($)HX =M (‘1 AnBtn— 1|F n)I'(B+aop+1) Z ’1 AnBtn— 1|Fn o) T (B+ao+1)

|2*| | An® — 1|F(ﬁ+n) |2*|[Anf —1|T(8+n)
[1=xns+n=1[D ()T (5+1) Z [1=AnB+n=1|(n—ag)0(8+1)
k=1

+

Consequently,
IR (2)||x < MO +6 < . (3.55)

(b*) : In the end we show that R is equicontinuous on J :
Let tq,ts € J, such that ¢ty < t; and (z,y) € Bs, Then, we have:

Ra (1) = R (12)] < gttt [0 =077 (50 (9, D% (3) o D7 () 0

[T 2P+ 1m0 (B+ao

= 1 n—1 n
[ = 5 15 s (), D7 (), D )

|1=Anf+n=1|T(n)[(B+a0)

||| A — 1|F ,6’+n)<" togne 1)
[1=An#+7 =1 [0 (m)T(5+1) (3.56)
Using the (H3), we obtain
MF(,B-HZ) n—1 n—1
|RZL' (t1> — Rx (tz)‘ S |17)\775+n 1|F T'(8+ao+1) (tQ - tl ) (357)
M|AT(B+n)nP+e0 n—1 __ 4n-1
+ [1=Anf+n=1|D(n)T(B+ao+1) (t ta )
|z*| | AP — I‘F B+n) n—1 n—1
[1-Anf+n=1[F(m)P(5+1) (t — 1 )
On the other hand, for all k =1,2....,.n — 1,
« a MT(8+n) n— n—1
| D Rz (t) — D** Rz (t5)] < o [ T aat D) (et =) (3.58)
+ MIA|T(B+n)ns+0 ( n—agp—1 _ tg_oek—l)

|1=Anf+n=1|D(n—ay)T(B+ao+1)

(B+n) n—ap—1 _ n—og—1
|1—)\775+"—1|F(n—o¢k)F(6+1) (tl t2 ) ’

As ty — ty, the right-hand sides of the inequalities and tend to zero. Then, as a
consequence of the steps (a*) and (b*) and by Arzela-Ascoli theorem, we

conclude that R is completely continuous.

(3* :) Finally, we prove that 7" is contraction mapping

Let x,y € X. Then, for each t € J and by (H2) we have

[T (t) = Ty (t)] < E5=tentd (lo — y|| + | D% — DYy|| + ... + | D™ 'z — D™y} (3.59)

On the other hand, for all k =1,2,...,n — 1, we have

DT () — DTy (1)| < trtetin) (g —y| 4 Dz — DVy 4+ ..+ Doz — D).
(3.60)
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By (3.59) and (3.60]) , we obtain
n—1

Tz (t) = Ty ()] < |7 + O mmg | @ (lz =yl + D% = D*y|| + .. + | D>tz — D"1y)).
k=1
(3.61)
Using the condition (3.51)) we conclude that 7" is a contraction mapping.
As a consequence of Krasnoselskii’s fixed point theorem we deduce that ¢ has a fixed point which

is a solution of (L.1)). OJ

Corollary 3.4. Assume that =1 £ % and there exist non negative real numbers 6;,7 = 0,1, ..., n—
1 such that for all ¢ € [0,1] and (xq, z1, T2, .os Tn_1) s (Yo, Y1, Y2, -, Yn—1) € R™, we have

|f1 (t> Loy L1, L2y -eny xnfl) - fl (t>yOa Y1, Y2, -+ yn71>’ S 90 ’$0 - yO‘ + ...+ 971*1 ’[Ifn,1 - ynfly 9
If
n—1
<L0 +) Lk> B+ oo 4 b)) < 1, (3.62)

then the fractional problem (|1.1)) has a unique solution on J.

Corollary 3.5. Assume that (F1) holds and n*"~* 2 £ If There exist positive constants k; and
ko such that
fi1 < ki, fo < kg on J x R, then, the problem (1.1]) has at least a solution on J.

Example 3.6. Consider the following fractional differential problem:

|z(t)|+\D%x(t)‘+(D%x(t)(+]D%x(t)]

Dz (t) = +cosh (2 +t%),t €10,1],

(t2+327r)(et+|x(t)|+\D%x(t)‘+\D%x(t)‘+(D%x(t)() (3.63)
1

2 (0) = V2,2 (0) = 2" (0) = 0, J2z (1) = L.J22 (3),
For this example, we have

21| + 72| + [73| + |74
t2 + 327) (et + |z1| + |wa2| + |z3] + |74])

f(t,zy, 9,23, 24) = ( ~+cosh (2 + t2) ,t€[0,1], 21, 9, 23,24 € R.

For t € [07 1] and ("'UOJ Ty, T2, LU3) ) (y()?yb ZJ271/3) € R47 we have:

1
|f (&, @0, 1, 2, w3) — f (T, 90, Y1, Y2, y3)| < m (lzo = yol + |21 — w1] + w2 — ya| + |z5 — y3)),
So,we have
M= — 1 i—0,..3
Q; = ,0=10,...,3.
(t2 4 327)
Then,
(1) L 0,...,3
W; = sup a; =55 t=VY )
) 327
and then,

1
Lo =0,228998, Ly = 2,203434, Ly, = 1,145589, L3 = 0,424889,w = 30
T
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and

k=1

n—1
(Lo +) Lk> w = 1,799476.0, 039808 = 0, 071633 < 1.

Hence by Theorem then the problem ({3.63)) has a unique solution on [0, 1].

Example 3.7. Let us consider the following fractional boundary value problem:

sin z(t)+cos <D% ac(t)—f—D% x(t))

Dizx(t) = )’ ,t€]0,1], (3.64)
2 (0) = 3,2/ (0) = 2" (0) = 0, D3z (1) = 3D5x (1).
Then, we have
fltz,y,z) = (é)\/tcos Sj)j Z)nf € [0,1], (z,y,2) € R®.
T+ e
Let z,y,z € R and t € [0, 1]. Then
2
f t? x? y? z S = 59"
0002 < oz
So, we can take
2
( = = a2
(5y/m +€et)
Then,
B 2
(5y/T +1)>
Thanks to Theorem [3.2] the problem (3.64)) has at least one solution on [0, 1].
Example 3.8. Our third example is the following:
et e_‘“”“”‘—i—sinD%m(t)—l-sin2 D%x(t) +cos D%x(t)
¥ ()= pep OO O) ey e 1), (e
2 (0) = 2,2’ (0) = 2 (0) = 0, Dix (1) = 3Dix (2),
where,

et (e71*1l + sin (z5) + sin® (z3) + cos (z4))

207T+€t2 +1n <2+t2)’t€ [O’ 1],1’1,1‘2,1’3,1‘461&,

f(I1,$2,x3,$4) —
Taking xo, x1, T2, T3, Yo, Y1, Y2, y3 € R, t € [0, 1],then

—t2
e (Jzo — yol| + |x1 — 1| + w2 — vo| + |23 — y3])
207 + et?

|f<t7370,5€17132,373) - f(tay(]?yl’y%y?))’ <

So,we can take:
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then,

1
w; = sup a; (t) = ——,1=0,.... 3.
t€[0,1] ( ) 207T+1

For k =1,2,3 we have

n—1

1 1 .
e Y e = 1951303,
k=1

We have also
n—1

1 1 o
TlaotD T Z Tao—arin | & = 0, 1223387
k=1

By Theorem we can state that the problem (3.65)) has at least one solution on [0, 1].
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