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This study analyzes the free vibration, forced vibration, resonance, and stress wave propa-
gation of orthotropic sandwich plates made of functionally graded materials (FGMs). Dy-
namic analyses are conducted using a mesh-free method based on first-order shear defor-
mation theory and the shape functions constructed using moving least squares approxima-
tion. The sandwich plates are rested on a Pasternak elastic foundation and subjected to 
periodic or impact loading and essential boundary conditions, which are imposed through a 
transfer function method. The sandwich plates are assumed to be composed of a homogene-
ous orthotropic core and two orthotropic FGM face sheets made of two orthotropic materi-
als. The volume fractions of the materials are varied smoothly along the thickness of the face 
sheets. The convergence and accuracy of the applied method are demonstrated, after which 
numerical analyses are conducted to investigate the effects of elastic foundation coefficients, 
material distributions, geometrical dimensions, time-dependent loading, and boundary 
conditions on the vibrational and dynamic characteristics of the orthotropic FGM sandwich 
plates. 
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1. INTRODUCTION    
 A new class of materials known as functionally 
graded materials (FGMs) have attracted considera-
ble attention as advanced structural materials for 
many structural members. FGMs are heterogeneous 
composite materials with gradient compositional 
variations in their constituents (e.g., metal and ce-
ramic) from one surface of the materials to another. 
These variations result in continuously varying ma-
terial properties. The materials are designed in such 
a way that they possess desirable properties for 
specific applications. The concept of FGMs, initially 
developed for superheat-resistant materials for use 
in space planes or nuclear fusion reactors, is cur-
rently of interest to designers of functional materi-
als for energy converters, dental and orthopedic 
implants, sensors, and thermogenerators [1]. Gen-
erally, numerous engineering problems can be mod-
eled as thick plates on elastic foundations, such as 
the mat foundations of buildings, the pavement un-
derneath roads, and the bases of heavy machines. 

The mechanical behavior of elastic foundations was 
widely discussed by Winkler [2] as a one-parameter 
model or linear model and by Pasternak [3] as a 
two-parameter model. 

 Two-dimensional plate theories, including clas-
sical plate theory (CPT), first-order shear defor-
mation theory (FSDT), and higher-order shear de-
formation theories (HSDTs), are commonly used in 
plate analysis. CPT provides reasonable results for 
thin plates, but it neglects transverse shear defor-
mation effects, underestimates deflections, and 
overestimates frequencies, as well as the buckling 
loads of moderately thick plates [4]. To overcome 
the limitations of CPT, researchers have developed 
many shear deformation plate theories that account 
for transverse shear deformation effects. The theo-
ries put forward by Reissner [5] and Mindlin [6] are 
known as FSDTs. FSDT provides a sufficiently accu-
rate description of response for thin to moderately 
thick plates [7]. It is widely used in the finite ele-
ment analyses of composite shells and plates be-
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cause of its acceptable accuracy and computational 
complexity [9–11]. However, its performance 
strongly depends on shear correction factors, which 
are sensitive not only to material and geometric 
properties but also to loading and boundary condi-
tions. To avoid the use of shear correction factors 
and include the actual cross-section warping of a 
plate into analyses, scholars extensively developed 
HSDTs, with consideration for the higher-order var-
iations in in-plane displacement throughout the 
thickness of plates [8].  
 Aiello and Ombres [12] presented an analytical 
approach to evaluating the buckling load of sand-
wich panels made of hybrid laminated faces and a 
transversely flexible core. The authors applied the a 
priori assumption of the displacement field 
throughout the thickness of the panels; that is, the 
authors superpositioned symmetric and anti-
symmetric components, aside from adopting a pure 
compressive mode. Ferreira et al. [13] presented the 
static deformations and free vibrations of shear flex-
ible isotropic and laminated composite plates with 
an FSDT theory based on a high-order collocation 
method. They also analyzed isotropic and laminated 
plates by using Kansa’s non-symmetric radial basis 
function collocation method, which is based on an 
HSDT [14]. Shariyat [15] investigated the effects of 
thermo-piezoelasticity on dynamic buckling under 
suddenly applied thermal and mechanical loads for 
imperfect rectangular composite plates with sur-
face-bonded or embedded piezoelectric sensors and 
actuators. The author developed a finite element 
formulation grounded in an HSDT and considered 
the temperature dependence of material properties. 
Other researchers used HSDT and the general von 
Karman equation as bases in analyzing the non-
linear vibration and dynamic response of an FGM 
plate with piezoelectric actuators [16] and surface-
bonded piezoelectric fiber-reinforced composite 
actuators [17]. Malekzadeh et al. [18] investigated 
the dynamic response of thick laminated annular 
sector plates with simply supported radial edges 
subjected to a radially distributed line load moving 
along the circumferential direction. The authors 
used a three-dimensional (3D) hybrid method com-
posed of a series solution, layerwise theory, and a 
differential quadrature method (DQM), in conjunc-
tion with the finite difference method. Zhang et al. 
[19] employed Reddy’s third-order shear defor-
mation theory and the Galerkin procedure in deter-
mining the non-linear dynamics and chaos that un-
derlie a simply supported orthotropic FGM rectan-
gular plate in a thermal environment. The research-
ers subjected the plate to parametric and external 
excitations. Dehghan and Baradaran [20] used a 
combination of finite element methods and DQMs to 
solve the eigenvalue (buckling and free vibration) 

equations of rectangular thick plates resting on Pas-
ternak elastic foundations. Thai and Choi [21, 22] 
developed a refined plate theory for the free vibra-
tion and buckling analyses of FGM plates resting on 
an elastic foundation. Asemi and Shariyat [23] de-
veloped a highly accurate non-linear 3D energy-
based finite element elasticity formulation for the 
buckling investigation of anisotropic FGM plates 
with arbitrary orthotropic directions. To achieve the 
most accurate results, the authors used a fully com-
patible Hermitian element with 168 degrees of free-
dom, which satisfies the continuity of strain and 
stress components at the mutual edges and nodes of 
the element a priori. Mansouri and Shariyat [24] 
conducted a thermo-mechanical buckling analysis of 
orthotropic auxetic plates (with negative Poisson 
ratios) resting on an elastic foundation in hygro-
thermal environments. Shariyat and Asemi [25] 
used a non-linear finite element method and 3D 
elasticity theory to probe into the shear buckling of 
orthotropic heterogeneous FGM plates resting on a 
Winkler elastic foundation. Sofiyev et al. [26] pre-
sented analytical formulations and solutions for the 
stability analysis of heterogeneous orthotropic 
truncated conical shells subjected to external (lat-
eral and hydrostatic) pressures with mixed bounda-
ry conditions. For this purpose, the researchers used 
Donnell shell theory. Furthermore, the vibrational 
behavior of single- or multi-directional FGMs and 
functionally graded carbon nanotube-reinforced 
composite (FG-CNTRC) structures was investigated 
using 3D elasticity theory and generalized DQM [27–
35]. 
 Some forms of the mesh-free method were used 
to analyze FGM structures. Qian et al. [36] inquired 
into the static, free, and forced vibrations of a thick 
rectangular FGM plate on the basis of higher-order 
shear and normal deformation theory and a mesh-
less local Petrov–Galerkin (MLPG) method. Liew et 
al. [37] investigated the active control of laminated 
composite plates with piezoelectric sensor/actuator 
patches by employing an element-free Galerkin 
(EFG) method and FSDT. They used a simple control 
algorithm to regulate the dynamic response of lami-
nated plates with distributed sensor/actuator 
patches through a closed control loop. Lanhe et al. 
[38] examined the dynamic stability of thick FGM 
plates subjected to aero-thermomechanical loads by 
using a moving least squares DQM. Rezaei Mojdehi 
et al. [39] carried out a 3D static and dynamic analy-
sis of thick isotropic FGM plates on the basis of 
MLPG, which is used to construct 3D moving least 
squares shape functions. The static deformation, 
free vibration, and dynamic and stress wave propa-
gation of FGM cylinders were analyzed using the 
same mesh-free method adopted in the current re-
search [40–42]. In these previous works, however, 
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the structures examined were axisymmetric and 
isotropic cylinders. Lei et al. [43, 44] analyzed the 
buckling and free vibration of FG-CNTRC plates by 
using the element-free kp-Ritz method based on 
FSDT. Moradi-Dastjerdi et al. [45–47] carried out a 
dynamic analysis of functionally graded nanocom-
posite cylinders. The authors also analyzed the stat-
ic, vibrational, and dynamic behaviors of functional-
ly graded nanocomposite plates reinforced by wavy 
nanotubes through the same mesh-free method 
adopted in the present study. In an absorbing work, 
Yaghoubshahi and Alinia [48] developed an EFG 
method based on HSDT to eliminate transverse 
shear locking in the analysis of laminated composite 
plates. The authors compared their results with 
those obtained using an EFG procedure based on 
FSDT. Finally, Zhang et al. [49, 50] proposed an ele-
ment-free-based improved moving least squares-
Ritz method and FSDT to study the buckling behav-
ior of FG-CNTRC plates resting on Winkler founda-
tions. The authors also examined the non-linear 
bending of the plates as they rested on a two-
parameter elastic foundation.  
 As can be seen in the discussion above, no study 
has been devoted to the analysis of the free vibra-
tion, forced vibration, resonance, and stress wave 
propagation of orthotropic FGM sandwich plates 
subjected to periodic or impact loading. To address 
this deficiency, the present research develops a 
mesh-free method on the basis of FSDT to investi-
gate the dynamic behaviors of orthotropic FGM 
sandwich plates resting on a two-parameter Paster-
nak elastic foundation. In the mesh-free method, 
shape functions constructed through a moving least 
squares method are used to approximate the dis-
placement field in the weak form of a motion equa-
tion. A transfer function method is employed in the 
implementation of essential boundary conditions. 
The developed method does not increase calcula-
tions against EFG [41]. The orthotropic FGM sand-
wich plates are assumed to be composed of two or-
thotropic FGM face sheets and a homogeneous or-
thotropic core. The face sheets are assumed to be 
made of two orthotropic materials, whose volume 
fractions are varied smoothly along the thickness of 
the face sheets. The study also examines the effects 
of elastic foundation coefficients, material distribu-
tions, sandwich plate thickness, face sheet thickness, 
plate aspect ratio, and time-dependent force and 
boundary conditions on the free vibration, forced 
vibration, resonance, and stress wave propagation 
of the plates. 
 

2. MATERIAL PROPERTIES OF 
ORTHOTROPIC FGM PLATES 

 Let us consider an orthotropic sandwich FGM 
plate of length a, width b, total thickness h, and face 

sheet thickness hf. The material composition of the 
plate is shown in Fig. 1. The material properties of 
the face sheets are assumed to be graded along the 
thickness of the sheets. The profile of this variation 
exerts important effects on plate behavior. Several 
models have been proposed for variations in mate-
rial properties. Among these, the volume fraction 
model is the most frequently used. In this model, the 
volume fraction and material properties of a sand-
wich plate are varied as follows: 
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where P is an indicator of the material properties of 
a plate; this indicator is used in lieu of modulus elas-
ticity E, Poisson’s ratio , and density  . Subscripts 

1 and 2 represent the z=0 and z=h constituents, re-
spectively; and n denotes the volume fraction expo-
nent. An n equal to zero represents a sandwich plate 
made of two different materials in the face sheets 
and a core without any mixture of materials. By con-
trast, an infinite n indicates a homogeneous plate 
made of core constituents. Fig. 2 illustrates the vari-
ations in the material volume fraction of the FGM 
sandwich plate along the thickness of the plate at 
different volume fraction exponents. 

 

3. GOVERNING EQUATIONS 
 On the basis of FSDT, displacement components 
can be defined as [4] 
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where u, v, and w are displacements in the x, y, and z 
directions, respectively; u0, v0, and w0 denote the 
mid-plane displacements and the x  and y  rota-

tions of the normal to the mid-plane directions 
about the y-axis and x-axis, respectively. Kinematic 
relations can be obtained as follows: 

    00 , γκε 
T

xzyz
T

xyyyxx z 

 

(4) 

where 










































































xw

yw

xwzu

ywzv

xy

y

x

xvyu

yv

xu

x

y

yx

y

x

0

0
0

00

0

0

0 ,











γ

κε

 

(5) 

 
 



 

156 R. Moradi-Dastjerdi et al. / Mechanics of Advanced Composite Structures 4 (2017) 153-168 

 

 

 
Figure 1 Schematic of orthotropic FGM sandwich plate resting on 

Pasternak elastic foundation  

 

 
Figure 2 Variations in material volume fraction of orthotropic 

FGM sandwich plate along the plate thickness at different volume 
fraction exponents 

 

 The linear constitutive relations of a functional-
ly graded plate can be written as 
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in which σ , τ , ε , γ , and iiQ  are the normal stress 

vector, shear stress vector, normal strain vector, 
shear strain vector, and engineering constants, re-
spectively.   denotes the transverse shear correc-

tion coefficient, which is set at 6/5  for homoge-

neous materials and ))(6/(5 2211 VV    for FGMs 

(where 12   for orthotropic FGM structures) [51].  

In Eq. (6), as well,  
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Considering the Pasternak foundation model, the 
total energy of the plate is expressed thus: 
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where q(t) is the time-dependent applied load, and 
kw and ks are the coefficients of Winkler and Paster-
nak (shear) foundations, respectively. If a founda-
tion is modeled as a linear Winkler foundation, the 
coefficient ks in Eq. (8) takes the value of zero. 
 

4. MESH-FREE NUMERICAL ANALYSES 
 In these analyses, the moving least squares 
shape functions introduced by Lancaster and 
Salkauskas [52] are used to approximate the dis-
placement vector in the weak form of a motion 
equation. Displacement vector u can be approxi-
mated using the shape functions as follows: 
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where N is the total number of nodes, d̂ denotes the 
virtual nodal values vector, and i  is the moving 

least squares shape function of the node located at 
X(x,y)=Xi. These variables are defined in the follow-
ing manner: 
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 In Eq. (11), W  is the cubic spline weight func-

tion, P  is the base vector, and H  is the moment ma-
trix. These are defined thus: 
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 Using the moving least squares shape function 
enables Eq. (4) to be written as  
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 For an elastic foundation, wφ  and pB  can be 

defined as follows: 
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 Substituting Eqs. (6) and (14) into Eq. (8) yields 
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(17) 
in which the components of extensional stiffness A , 

bending-extensional coupling stiffness B , bending 
stiffness D , transverse shear stiffness sA , and iG  

and M  are introduced into a mass matrix. These 
variables are defined as  
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where 0I , 1I , and 2I  are the normal, coupled nor-

mal-rotary, and rotary inertial coefficients, respec-
tively. These coefficients are defined by 
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 The arrays of bending-extensional coupling 

stiffness matrix B  are zero for symmetric laminated 
composites.  

 Finally, through a derivative with respect to 

displacement vector d̂ , Eq. (17) can be expressed as  
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in which M , K , and F are the mass matrix, stiffness 
matrix, and force vector, respectively. These are 
defined as 
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where mK , bK , and sK  are the stiffness matrixes 

of extensional, bending-extensional, and bending 
modes, respectively. wK  and pK are the stiffness 

matrixes that represent Winkler and Pasternak elas-
tic foundations. They are defined in the following 
equations: 
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 For numerical integration, the problem domain 
is discretized to a set of background cells with Gauss 
points inside each cell. Then, global stiffness matrix 
K is obtained numerically by sweeping all the Gauss 
points.  

 The imposition of essential boundary conditions 
in the system of Eq. (21) is impossible because mov-
ing least squares shape functions do not satisfy the 
Kronecker delta property. As previously stated, this 
work uses a transfer function method in implement-
ing essential boundary conditions. For this purpose, 
a transformation matrix is constructed by establish-
ing a relationship between nodal displacement vec-

tor d  and virtual displacement vector d̂ . 

dTd ˆ

 

(27) 

 T is the transformation matrix that is a 5N×5N 
matrix. For each node, this matrix is defined as 
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(28) 

where )55( I  is an identity matrix of size 5. Using 

Eq. (27) rearranges the system of linear Eq. (21) to 

FdKdM ˆˆˆ 

 

(29) 

where 

FTFKTTKMTTM TTT   ˆ,ˆ,ˆ 11

 

(30) 

 Now, the essential B. Cs. can be easily enforced 
in the modified system of Eq. (29), as is possible 
with the finite element method. In this work, the 
Newmark (central difference) method is used for 
the solution of Eq. (29) in the time domain.  
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     In this method, the displacement field is obtained 
in each time step as follows:  

 ttt
dKFMd ˆˆˆ 1    (31) 

dttttdtt dt   dddd 22 
 (32) 

where t shows the times, and dt is the size of a time 
step. 

 By solving Eq. (29), the time history of the dis-
placement field and then stress wave propagation 
can be derived with the consideration of type of pe-
riodic or impact loading. In the absence of external 
forces, Eq. (29) is simplified in this manner: 

0ˆˆ  dKdM 

 

(33) 

 Thus, the natural frequencies and mode shapes 
of the plates are determined by solving this eigen-
value problem. 

 

5. RESULTS AND DISCUSSION  
 This section discusses numerical examples of 

the free vibration, forced vibration, resonance, and 
stress wave propagation behaviors of the examined 
orthotropic FGM sandwich plates. As mentioned 
earlier, the plates are subjected to periodic or im-
pact loading, and the developed mesh-free approach 
and the Newmark method are used. The frequencies 
of the sandwich plates are derived and investigated 
through the consideration of their resonance behav-
iors. 

 First, the convergence and accuracy of the 
mesh-free method in determining the vibrational 
behaviors of the plates are examined by a compari-
son between the results and those reported in the 
literature. Second, the mesh-free results on the vi-
brational and dynamic characteristics of the plates 
are presented. 

 In simulations, the orthotropic FGM sandwich 
plates are assumed to be made of a homogeneous 
glass-epoxy core and two FGM face sheets. In the 

face sheets, the material volume fractions are varied 
from those of the glass-epoxy at the interfaces of the 
core and from those of the graphite-epoxy at the 
faces of the sandwich plates. The modifications are 
conducted using Eq. (1) (Fig. 2). The material prop-
erties of the glass-epoxy and graphite-epoxy are 
listed in Table 1. Note that transverse isotropic ma-
terials are a special class of orthotropic materials 
that have the same properties in one plane (e.g., the 
x-y plane) and different properties in the direction 
normal to the aforementioned plane (e.g., the z-
axis). Thus, glass-epoxy and graphite-epoxy are 
transverse isotropic materials. In all the examples of 
the orthotropic sandwich plates, the foundational 
parameters are presented in the non-dimensional 
forms Kw=kwa4/D and Ks=ksa2/D, in which 
D=E1h3/12(1-υ122) is a reference bending rigidity of 
the plate and is based on the mechanical properties 
of graphite-epoxy. The non-dimensional deflections 
(for forced and dynamic analyses) and natural fre-
quencies of the orthotropic sandwich plates are 
based on the mechanical properties of graphite-
epoxy and glass-epoxy, respectively. The deflection 
and frequency are defined as [13] 

4
0

3
110 aqwhEw 

 

(34) 

1ˆ Eh  

 

(35) 

where q0 is the value of the amplitude of time-
dependent applied load, and w denotes the central 
deflection of the plates. The following sets of sup-
port conditions are employed to compute the de-
sired responses: 
(a) Simply supported conditions  
at x=0 and a: v=w=θy=0 and at y=0 and b: u=w=θx=0 
(b) Clamped conditions:  
at x=0 and a: and at y=0 and b: u=v=w=θx=θy=0 

 
Table 1 Material properties of the examined orthotropic (transverse isotropic) materials [53] 

Materials E1 (GPa) E2 (GPa) E3 (GPa) υ23 υ31 υ12 G23 (GPa) G31 (GPa) G12 (GPa) ρ (kg/m3) 
Graphite-epoxy 155 12.1 12.1 0.458 0.248 0.248 3.2 4.4 4.4 1500 
Glass-epoxy 50 15.2 15.2 0.428 0.254 0.254 3.28 4.7 4.7 1800 

 
 
5.1 Validation of models 
 To investigate the convergence and accuracy of 
the developed method, let us consider a simply sup-
ported FGM square plate, as was done by Thai and 
Choi [21]. Fig. 3 depicts the convergence of the pro-
posed mesh-free method in the non-dimensional 
fundamental frequencies of the plates resting on 
Winkler-Pasternak elastic foundations at h/a=0.2, 
Kw=100 and Ks=100, and volume fraction exponents 
of n=0 and n=1. These values reveal that using only 
a 5×5 node arrangement enables the proposed 
method to achieve very good accuracy and agree-
ment with the results of Thai and Choi [21] for the 

homogeneous (n=0) and FGM (n=1) plates. The non-
dimensional fundamental frequencies of these 
plates are presented in Table 2 for various values of 
h/a (0.05, 0.1, and 0.2) and elastic foundation coeffi-
cients. The table shows that the proposed method 
exhibits very good accuracy and agreement with 
previously reported results, especially with respect 
to thin plates.  
 
5.2 Free vibration of orthotropic FGM sandwich 
plates 
 Clamped orthotropic FGM sandwich plates are 
examined to investigate the effects of material dis-
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tributions, elastic foundation coefficients, and geo-
metric dimensions on the natural frequencies of the 
plates. Table 3 lists the non-dimensional fundamen-
tal frequencies of the plates at different elastic foun-
dation coefficients (Kw and Ks), aspect ratios (b/a=1 
and 3), plate thickness ratios (h/a=0.1 and 0.2), face 
sheet thickness ratios (hf/h=0.1 and 0.2), and vol-
ume fraction exponents (n=0, 0.1, 1, 10, and 100). 

The frequency parameter decreases with an in-
crease in b/a from 1 to 3 because the plate manners 
are near the beam manners. An increase in h/a and 
hf/h and a decrease in volume fraction exponent 
increase the frequency parameter. The values of h/a 
significantly affect the frequency parameter of or-
thotropic FGM sandwich plates. Finally, the elastic 
foundation also increases the frequency parameter.  

(a) 

 

(b) 

 
Figure 3 Convergence of non-dimensional fundamental frequency ( ̂ ) of the FGM plate at (a) n=0; (b) n=1 and h/a=0.2, Kw=100, Ks=100 

for different numbers of nodes in each direction  
 

Table 2 Comparison of normalized fundamental 

frequencies, ̂ , in simply supported square FGM 

plates 
Kw Ks h/a Method n=0 n=1 
0 0 0.05 Present 0.0291 0.0222 

[54] 0.0291 0.0227 
[21] 0.0291 0.0222 

0.1 Present 0.1135 0.0869 
[54] 0.1134 0.0891 
[21] 0.1135 0.0869 

0.2 Present 0.4167 0.3216 
[54] 0.4154 0.3299 
[21] 0.4154 0.3207 

100 100 0.05 Present 0.0411 0.0384 
[54] 0.0411 0.0388 
[21] 0.0411 0.0384 

0.1 Present 0.1618 0.1519 
[54] 0.1619 0.1542 
[21] 0.1619 0.1520 

0.2 Present 0.6167 0.5857 
[54] 0.6162 0.5978 
[21] 0.6162 0.5855 

 

Table 3 Non-dimensional fundamental frequencies, ̂ , in clamped orthotropic 

FGM sandwich plates 

b/a h/a hf/h Kw Ks 
n 

0 0.1 1 10 100 
1 0.1 0.1 0 0 0.0758 0.0753 0.0724 * 0.0681 0.0668 

100 10 0.1203 0.1199 0.1177 ** 0.1146 0.1138 
0.2 0 0 0.0797 0.0791 0.0757 0.0693 0.0670 

100 10 0.1240 0.1234 0.1203 0.1154 0.1139 
 

0.2 0.1 0 0 0.1983 0.1978 0.1947 0.1896 0.1880 
100 10 0.4177 0.4169 0.4132 0.4086 0.4073 

0.2 0 0 0.2026 0.2020 0.1982 0.1911 0.1882 
100 10 0.4255 0.4241 0.4177 0.4098 0.4075 

          
3 0.1 0.1 0 0 0.0661 0.0655 0.0617 0.0561 0.0544 

100 10 0.1023 0.1018 0.0991 0.0955 0.0944 
0.2 0 0 0.0710 0.0702 0.0658 0.0596 0.0546 

100 10 0.1064 0.1057 0.1021 0.0964 0.0946 
* 2nd frequency: 0.1090, 3rd frequency: 0.1430 
** 2nd frequency: 0.1693, 3rd frequency: 0.1927 

 

 

 
5.3 Forced vibration of orthotropic FGM sandwich 
plates 
 Square orthotropic FGM sandwich plates are 
subjected to periodic uniform pressure loading at 
the top face of the sandwich plates as follows:  

)sin()( 0 tqtP t

 

(36) 

where t  is the frequency of time-dependent ap-

plied load and is equal to srad25000  in the suc-

ceeding simulation.  
 The effects of loading frequency on the time his-

tory of the central deflection of the orthotropic FGM 
sandwich plates are investigated. Let us consider 

clamped square plates with h/a=0.1, hf/h=0.1, and 
n=1 and subjected to time-dependent pressure at 
loading frequencies of 0 , 2/0 , and 4/0 . Figs. 4a 

and 4b show the time histories of the normalized 
central deflections of the plates without an elastic 
foundation and with resting on the Pasternak foun-
dation (Kw=100 and Ks=10), respectively. The fig-
ures indicate that the severity of the elastic founda-
tion decreases the central deflections of the sand-
wich plates and that the amplitudes of the deflec-
tions are reduced by a decrease in loading frequen-
cy.  
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(a)  

 

(b) 

 
Figure 4 Time history of normalized central deflections ( w ) of clamped orthotropic FGM sandwich plates at (a) Kw=0, Ks=0; (b) Kw=100, 

Ks=10, and b/a=1, h/a=0.1, hf/h=0.1, and n=1  
 

 Now, let us consider square clamped sandwich 
plates subjected to periodic pressure ( 0 t ) and 

resting on the elastic foundation (Kw=100 and 
Ks=10) to delve into the effects of the plates’ geo-
metric dimensions on the time history of deflection. 
Fig. 5 illustrates the time history of the plates’ nor-
malized central deflections at h/a=0.1 and 0.2, 
hf/h=0.1 and 0.2, and n=0, 0.1, 1, and 10. The ampli-
tudes of the deflections decline with decreasing vol-
ume fraction exponent. Such amplitudes also de-
crease with increasing h/a and hf/h. The thickness 
of the plates (h/a) is higher than that of the face 
sheets (hf/h).  

 Finally, the effects of essential boundary condi-
tions on the forced vibration behaviors of ortho-
tropic FGM sandwich plates subjected to a periodic 
load of 0 t  are investigated. Fig. 6 show the time 

history of the normalized central deflections of the 
plates at h/a=0.1, hf/h=0.1, Kw=100 and Ks=10, and 
n=0, 0.1, 1, and 10 for the boundary conditions of 
CSCS and CFCF, where C, S, and F denote clamped, 
simply supported, and free edges, respectively. 
Comparing Figs. 6 and 5a indicates that the clamped 
and CFCF sandwich plates have the smallest and 
largest deflection amplitudes, respectively.  

 
5.4 Resonance behavior of orthotropic FGM sand-
wich plates 
 The resonance of orthotropic FGM sandwich 
plates are also explored. Let us consider sandwich 
plates subjected to periodic uniform loading at the 
top face of the sandwich plates, as with Eq. (36), in 
which loading frequency t  is equal to the nth natu-

ral frequency n  of the sandwich plates reported in 

Table 3. 
 Figs. 7a and 7b illustrate the time histories of 
the normalized central deflections of these sand-
wich plates without an elastic foundation and with 

resting on the Pasternak foundation (Kw=100 and 
Ks=10), respectively. These sandwich plates are 
clamped at h/a=0.1, hf/h=0.1, and n=1 and subjected 
to periodic loading with loading frequencies equal 
to the first, second, and third frequencies of the 
sandwich plates (i.e., 321 ,,  t ). This loading 

leads to a divergence in the amplitudes of deflection 
in the first mode despite the elastic foundation’s 
reduction of deflection amplitudes.  
 Fig. 8 presents the first mode of resonance in 
the clamped orthotropic sandwich plates at b/a=1, 
h/a=0.1 and 0.2, hf/h=0.1 and 0.2, and n=0, 0.1, 1, 
and 10. An increase in h/a elevates the amplitudes 
of deflection and decreases the periods of their vi-
bration because of the increase in frequency load-
ing. The volume fraction exponent exerts a stronger 
effect on the periods of vibrations through an in-
crease in hf/h.  
 
5.5 Dynamic behavior of orthotropic FGM sandwich 
plates 

 Now, the dynamic behaviors of orthotropic FGM 
sandwich plates resting on an elastic foundation are 
determined by considering sandwich plates subject-
ed to an impact uniform pressure load at the top 
face of the plates as follows: 

 (ms).tP(t)

 (ms).ttsP(t)=q

250for                         0

250for      4000in0





 

(35) 

Let us consider clamped orthotropic FGM sandwich 
plates subjected to an impact load, as with Eq. (37), 
and resting on the Pasternak elastic foundation at 
b/a=1, h/a=0.1, hf/h=0.1, Kw=100, and Ks=10 (a=1 
m, q0=0.1 MPa). Fig. 9 shows the time history of 
stress wave propagation ( xx , yy , xy , xz , and 

yz ) at the top face and central deflection of the 

sandwich plates for n=0.1, 1, and 10. The amplitudes 
of normal stresses are higher than those of shear 
stresses. An increasing volume fraction exponent 
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leads to a rise in the amplitudes of stresses and a 
decline in wave speed. After load is eliminated, the 
sandwich plates show harmonic vibration with am-

plitudes less than those of the same forced vibration 
(in Fig. 5a). 
 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Figure 5 Time history of normalized central deflections ( w ) of clamped orthotropic FGM sandwich plates at (a) h/a=0.1, hf/h=0.1; (b) 

h/a=0.1, hf/h=0.2; (c) h/a=0.2, hf/h=0.1; (d) h/a=0.1, hf/h=0.1, and b/a=1, Kw=100, Ks=10, and 0 t  

(a) 

 

(b) 

 

Figure 6 Time history of normalized central deflections ( w ) of (a) CSCS, (b) CFCF orthotropic FGM sandwich plates at b/a=1, h/a=0.1, 

hf/h=0.1, Kw=100, Ks=10, and 0 t  
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(a) 

 

(b) 

 

Figure 7 Time history of normalized central deflections ( w ) of orthotropic FGM sandwich plates at (a) Kw=0, Ks=0; (b) Kw=100, Ks=10, and 

b/a=1, h/a=0.1, hf/h=0.1, and n=1 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8 Time history of normalized central deflections ( w ) of clamped orthotropic FGM sandwich plates at (a) h/a=0.1, hf/h=0.1; (b) 

h/a=0.1, hf/h=0.2; (c) h/a=0.2, hf/h=0.1; (d) h/a=0.1, hf/h=0.1, and b/a=1, Kw=100, Ks=10, and 0 t  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

(e) 

 

(f) 

 

Figure 9 Time history of (a) xx , (b) yy , (c) xy , (d) xz , (e) yz , and (f) w  at the top face of clamped orthotropic FGM sandwich 

plates at b/a=1, h/a=0.1, hf/h=0.1, Kw=100, and Ks=10 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 10 Time history of (a) xx , (b) yy , (c) xy , (d) xz , (e) yz , and (f) w  at the top face of clamped orthotropic FGM sand-

wich plates at b/a=1, h/a=0.1, hf/h=0.2, Kw=100, and Ks=10 
 
 

 Let us consider the same sandwich plates but 
with hf/h=0.2 as the variable. Fig. 10 displays the 
stress wave propagation and central vibration of the 
plates. The comparison of Figs. 10 and 9 indicates 
that the plates exhibit almost the same dynamic be-
haviors but that the volume fraction exponent ex-
erts a stronger effect on the plates with thicker face 
sheets.  

 Finally, let us re-examine the first model of dy-
namic analysis but with h/a=0.2 as the variable. The 
time history of stress wave propagation and the cen-
tral vibration of the orthotropic FGM sandwich 
plates are illustrated in Fig. 11. The comparison of 
Figs. 9 and 11 demonstrates that an increase in the 
thickness of the sandwich plates leads to a decrease 
in the amplitudes of stresses and vibrations and the 
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speeds of wave propagation. Fig. 12 shows the time 
history of the normal stresses of the sandwich plate 
with n=10 imposed at the top, middle, and bottom 
planes (z=−h, 0, h). The sandwich plate at z=0 senses 

almost no normal stresses, whereas the top and bot-
tom planes sense the same in-plane stresses but 
with a different sign.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 11 Time history of (a) xx , (b) yy , (c) yz , and (d) w  at the top face of clamped orthotropic FGM sandwich plates at b/a=1, 

h/a=0.2, hf/h=0.1, Kw=100, and Ks=10 
 
 

(a) 

 

(b) 

 

Figure 12 Time history of (a) xx and (b) yy  at the top, middle, and bottom planes of clamped orthotropic FGM sandwich plates 

at n=10, b/a=1, h/a=0.1, hf/h=0.2, Kw=100, and Ks=10 
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6. CONCLUSION  
 In this study, the vibration, resonance, and dy-

namic behaviors of orthotropic FGM sandwich 
plates resting on a Pasternak elastic foundation are 
analyzed using a developed mesh-free method 
based on FSDT and moving least squares shape 
functions. Essential boundary conditions are im-
posed via a transfer function method. The sandwich 
plates are assumed to be composed of a homogene-
ous orthotropic core and two orthotropic FGM face 
sheets made of two orthotropic materials. Numeri-
cal examples are provided to illuminate the vibra-
tional and dynamic characteristics of the plates at 
different elastic foundation coefficients, material 
distributions, geometrical dimensions, time-
depended loading levels, and boundary conditions. 
The primary findings are summarized as follows: 
 The mesh-free method exhibits good conver-

gence and accuracy in the vibrational analysis of 
the orthotropic FGM plates. 

 Increasing sandwich plate thickness and face 
sheet thickness increase the frequency parame-
ter. 

 The severity of the elastic foundation decreases 
the vibration amplitudes of the sandwich plates. 

 Decreasing loading frequency reduces the vibra-
tion amplitudes.  

 Loading with fundamental frequency leads to a 
divergence in vibration amplitudes (resonance 
phenomenon). 

 After load elimination, the sandwich plates show  
harmonic vibration with amplitudes less than 
those of the same forced vibration.  

 The amplitudes of normal stresses are higher 
than those of shear stresses. 

 An increase in volume fraction exponent leads to 
a rise in the amplitudes of stresses and a decline 
in wave speed.  

 Plate thickness h/a exerts a stronger effect on 
the vibrational and dynamic behaviors of the 
sandwich plates than does the thickness of face 
sheets hf/h.  

 The sandwich plate at z=0 senses almost no in-
plane stresses, whereas the top and bottom 
planes sense the same in-plane stresses but with 
a different sign. 

 An increase in the thickness of the sandwich 
plates leads to a decrease in the amplitudes of 
stresses and vibrations and the speeds of wave 
propagation. 
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