
1. Introduction 

The natural convective flow induced by thermal 

and solutal buoyancy forces that act on bodies with 

different geometries in a fluid-saturated porous 

medium is prevalent in many natural phenomena and 

has wide-ranging industrial applications. In 

atmospheric flows, for example, maintaining the 

purity of air or water is impossible because foreign 

mass may be present either naturally or in mixed 

form with air or water due to industrial emissions. 

Natural processes such as the attenuation of toxic 

waste in water bodies, the vaporization of mist and 

fog, photosynthesis, the drying of porous solids, 

transpiration, sea wind formation (wherein upward 

convection is modified by Coriolis forces), and ocean 

current formation occur because of the thermal and 

solutal buoyancy forces that develop as a result of 

temperature difference, temperature concentration, or 

a combination of these two. Such forces are also 

encountered in several practical systems for industry-

based applications, including heat exchanger devices, 

molten metals (for cooling), insulation systems, 

petroleum reservoirs, filtration systems, chemical 

catalytic reactors and processes, nuclear waste 

repositories, desert coolers, wet bulb thermometers, 

and frost formation in vertical channels.  

 Considering the importance of the above-

mentioned fluid flow problems, extensive research 

has been carried out on these issues. Raju et al. [1], 

for instance, derived analytical and numerical 
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solutions of unsteady magnetohydrodynamic (MHD) 

free convective flow over an exponentially moving 

vertical plate with heat absorption. Reddy and Raju 

[2] studied transient MHD free convective flow past 

an infinite vertical plate embedded in a porous 

medium with viscous dissipation. Raju et al. [3] 

probed into the application of the finite element 

method in the examination of unsteady MHD free 

convective flow past a vertically inclined porous 

plate. The authors included thermal diffusion and 

diffusion thermo effects in their analysis. Similarly, 

Raju et al. [4] used the finite element method to 

illuminate thermal diffusion and diffusion thermo 

effects on unsteady heat and mass transfer MHD 

natural convective Couette flow. Murthy et al. [5] 

studied heat and mass transfer effects on MHD 

natural convective flow past an infinite vertical 

porous plate in the presence of thermal radiation and 

the Hall current. Sivaiah and Raju [6] investigated 

finite element solutions of heat and mass transfer 

flow on the basis of the Hall current, heat sources, 

and viscous dissipation. Rao et al. [7] also examined 

finite element solutions of heat and mass transfer, 

this time with particular concentration on the MHD 

flow of a viscous fluid past a vertical plate under 

oscillatory suction velocity. Rao et al. [8] discussed 

chemical reaction effects on unsteady MHD free 

convective fluid flow past a semi-infinite vertical 

plate embedded in a porous medium with heat 

absorption. The combined influence of thermal 

diffusion and diffusion thermo on chemical reacted 

magnetohydrodynamic free convection from an 

impulsively started infinite vertical plate embedded 

in a porous medium studied by Jithender Reddy et al. 

[9] using finite element method. Ramya et al. [10] 

discussed the influence of chemical reaction on the 

MHD boundary layer flow of nanofluids over a 

nonlinearly stretching sheet with thermal radiation. 

Ramya et al. [11] studied the slip effect of the MHD 

boundary layer flow of nanofluid particles over a 

non-linearly isothermal stretching sheet in the 

presence of heat generation/absorption. Appling the 

finite element method, Rao et al. [12] obtained 

numerical solutions to MHD transient flow past an 

impulsively started infinite horizontal porous plate in 

a rotating fluid with the Hall current. Radiation and 

mass transfer flow past a semi-infinite moving 

vertical plate with viscous dissipation was examined 

via finite element analysis by Rao et al. [13]. The 

combined influence of thermal diffusion and 

diffusion thermo effects on unsteady hydromagnetic 

free convective fluid flow past an infinite vertical 

porous plate in the presence of chemical reaction was 

investigated by Raju et al. [14]. The effects of 

thermal radiation and heat source on unsteady MHD 

free convective flow past an infinite vertical plate 

with thermal diffusion and diffusion thermo effects 

were studied by Raju et al. [15]. The effects of a 

magnetic field on the flow field, heat transfer, and 

entropy generation of Cu–water nanofluid mixed 

convection in a trapezoidal enclosure were 

investigated by Aghaei et al. [16]. Aghaei et al. [17] 

studied the effects of a magnetic field on the flow 

field and heat transfer of nanofluid with variable 

properties in a square enclosure with two heat 

sources. 

 The study of many transport processes existing in 

nature and in industrial applications, wherein heat 

and mass transfer is a consequence of buoyancy 

effects caused by the diffusion of heat and chemical 

species,  is useful for improving a number of 

chemical technologies, such as polymer production, 

enhanced oil recovery, underground energy transport, 

ceramic manufacturing, and food processing. Heat 

and mass transfer from different geometries 

embedded in porous media finds numerous 

engineering and geophysical applications. For 

example, it is considered in the drying of porous 

solids, the use of thermal insulation, and the cooling 

of nuclear reactors. At high operating temperatures, 

radiation effects can be significant. Because many 

engineering processes are implemented at high 

temperatures, knowledge of radiation heat transfer is 

critical in the design of reliable equipment, nuclear 

plants, gas turbines, and various propulsion devices 

or aircraft, missiles, satellites, and space vehicles. 

The combination of heat and mass transfer problems 

with chemical reaction is equally important in many 

processes and has therefore received considerable 

attention in recent years. Such combination has found 

numerous applications in, for example, the design of 

chemical processing equipment, investigations of 

crop damage due to freezing, and the use of food 

processing and cooling towers. In this regard, Deka 

et al. [18] investigated the effects of first-order 

homogeneous chemical reaction on unsteady flow 

past an infinite vertical plate with constant heat and 

mass transfer. Muthucumaraswamy and Ganesan 

[19] discussed the effects of chemical reaction and 

injection on the flow characteristics of the unsteady 

upward motion of an isothermal plate. The MHD 

flow of a uniformly stretched vertical permeable 

surface in the presence of heat generation/absorption 

and chemical reaction was considered by Chamkha 

[20]. Ibrahim et al. [21] obtained an analytical 

solution for unsteady MHD free convective flow past 

a semi-infinite vertical permeable moving plate with 

a heat source and chemical reaction. Rahman et al. 

[22] studied heat transfer in micropolar fluid with 

temperature-dependent fluid properties along a non-

stretching sheet.  

 Despite the insights provided by the 

aforementioned studies, none of them explained the 

effects of thermal radiation on flow and heat transfer. 

The effects of radiation on MHD flow and heat 

transfer problems have become increasingly 

important in industry given the previously stated 

issue of significant radiation at high operating 

temperatures, in which many engineering processes 

occur. The deficiency of the above-mentioned studies 
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in exploring radiation was addressed by other 

scholars. Cogley et al. [23], for example, showed that 

in an optically thin limit for a non-gray gas near 

equilibrium, the fluid does not absorb its own emitted 

radiation but absorbs the radiation emitted by 

boundaries. Satter and Hamid [24] investigated 

unsteady free convective interaction with thermal 

radiation in boundary layer flow past a vertical 

porous plate. Vajravelu [25] shed light on the flow of 

a steady viscous fluid and heat transfer characteristics 

in a porous medium by considering different heating 

processes. Hossain and Takhar [26] considered 

radiation effects on the mixed convective boundary 

layer flow of an optically dense viscous 

incompressible fluid along a vertical plate with 

uniform surface temperature. Raptis [27] investigated 

the steady flow of a viscous fluid through a porous 

medium bounded by a porous plate subjected to a 

constant suction velocity through the presence of 

thermal radiation. Makinde [28] examined transient 

free convective interaction with the thermal radiation 

of an absorbing emitting fluid along a moving 

vertical permeable plate. The effects of chemical 

reaction and radiation absorption on unsteady MHD 

free convective flow past a semi-infinite vertical 

permeable moving plate with a heat source and 

suction was studied by Ibrahim et al. [29]. Bakr [30] 

presented an analysis of MHD free convection and 

mass transfer adjacent to a moving vertical plate for 

micropolar fluid in a rotating frame of reference 

under the presence of heat generation/ absorption and 

a chemical reaction. 

 When the density of an electrically conducting 

fluid is low and/or when an applied magnetic field is 

strong, the Hall current is produced in the flow field. 

The Hall current plays an important role in 

determining the features of flow problems because it 

induces econdary flow in the flow field. With this 

consideration in mind, several researchers 

comprehensively investigated hydromagnetic free 

convective flow past a flat plate with Hall effects 

under different thermal conditions. Some of these 

works are those conducted by Pop and Watanabe 

[31], Abo-Eldahab and Elbarbary [32], Takhar et al. 

[33], and Saha et al. [34]. Note that the Hall current‘s 

inducement of secondary flow in the flow field 

resembles the characteristics of Coriolis force. 

Comparing the individual effects of these two 

phenomena and their combined influence on fluid 

flow problems is therefore a crucial component of 

fluid flow research. Such effort has been initiated by 

certain studies, such as that of Narayana et al. [35], 

who probed into the effects of the Hall current and 

radiation–absorption on the MHD natural convective 

heat and mass transfer flow of a micropolar fluid in a 

rotating frame of reference. Seth et al. [36] 

investigated the effects of the Hall current and 

rotation on the unsteady hydromagnetic natural 

convective flow of a viscous, incompressible, 

electrically conducting, and heat-absorbing fluid past 

an impulsively moving vertical plate with ramped 

temperature in a porous medium. The authors also 

took the effects of thermal diffusion into account. 

 The main purpose of the present investigation 

was to illuminate the effects of the Hall current and 

thermal radiation on unsteady MHD natural 

convective heat and mass transfer flow past a vertical 

porous plate. We assumed that the plate is embedded 

in a uniform porous medium and oscillates in time 

with a constant frequency in the presence of a 

transverse magnetic field. Governing equations were 

solved numerically using the finite element 

technique, and numerical results were derived for 

various values of the physical parameters of interest.  

2. Mathematical formulations 

 The fundamental equations that govern the 

motion of an incompressible, viscous, and 

electrically conducting fluid in the presence of a 

magnetic field are as follows [37]: 

 

Equation of continuity: 

 

0 v                                                                  (1) 

 

Momentum equation: 
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Energy equation: 
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Species continuity equation: 
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Kirchhoff’s first law: 

 

0 J                                     (5) 

 

General Ohm’s law, with consideration for Hall 

effects: 

 

  









 e

e

ee p
e

BvEBJ
B

J



 1

0

          (6) 

 

Gauss’s law of magnetism: 

0 B                                                                         (7)
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Fig. 1. Geometry of the problem 

  

The unsteady flow of an electrically conducting 

fluid past an infinite vertical porous flat plate that 

coincides with the x - axis
 

0y  was considered. 

For this case, thermal diffusion, the Hall current, and 

heat sources in the presence of a uniform transverse 

magnetic field were also taken into account. Our 

investigation was underlain by the following 

assumptions: 

i. The coordinate system is chosen in such a way 

that                  the x - axis runs along the plate in 

an upward direction, and the y′-axis runs normal 

to the plane of the plate immersed in the fluid. 

ii. A uniform transverse magnetic field oB  is 

applied in a direction parallel to the y - axis. 

iii. Initially (i.e., at time 0t ), both the fluid and 

plate are at rest and have uniform temperature 
T

. Species concentration on the surface of the plate 

and at every point within the fluid is maintained 

at uniform concentration 
C . 

iv. The temperature at the surface of the plate is 

increased to uniform temperature wT  , and species 

concentration on such surface is raised to uniform 

species concentration wC  and maintained at this 

level thereafter.  

v. Given that the plate is of infinite extent in the x
direction and is electrically non-conducting, all 

physical quantities, except pressure, depend only 

on y  and t .  

vi. No applied or polarized voltages exist, thereby 

rendering the effects of fluid polarization 

negligible. This corresponds to a case wherein no 

energy is incorporated into or extracted from fluid 

by electrical means [38].  

vii. The magnetic field induced by fluid motion is 

negligible in comparison to the applied magnetic 

field. This assumption is justified because the 

magnetic Reynolds number is very small for the 

liquid metals and partially ionized fluids that are 

commonly used in industrial applications [38]. 

viii. No voltage is applied, suggesting the absence of 

an electric field. 

ix. All the fluid properties, except density in the 

buoyancy force terms, are constant. 

 We introduce a coordinate system  zyx  ,, , in 

which the x - axis is positioned vertically 

upwards, the y - axis is normal to the plate 

directed into the fluid region, and the z - axis 

runs along the width of the plate. Let 

kwjviuv ˆˆˆ 


 be the velocity, 

kJjJiJJ zyx
ˆˆˆ 


 be the current density at 

point  tzyxp  ,,, , and JBB ˆ
0  be the 

applied magnetic field, with kji ˆ,ˆ,ˆ  being the 

unit vectors along                     the x - axis, y - 
axis, and z - axis, respectively. Because the plate 

is of infinite length in the x and z  directions, 

all values, except perhaps that of pressure, are 

independent of x  and z . Eq. (1) yields  
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which is trivially satisfied by  
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where 0V  is a constant, and 00 V . Therefore, 

velocity vector v is obtained using  
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Eq. (7) is satisfied by  
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Eq. (5) is reduced to  
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which shows that yJ constant. Given that the plate 

is non-conducting, 0yJ  at the plate and, hence, 

0yJ  at all points in the fluid. Accordingly, the 

current density is given by  

 

kJiJJ zx
ˆˆ                                                    (13) 

http://www.sciencedirect.com/science/article/pii/S2090447916300296#b0250
http://www.sciencedirect.com/science/article/pii/S2090447916300296#b0250
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 Under assumptions (iv) and (v), Eq. (6) takes the 

form 
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where eem   is the Hall parameter. Eqs. (10), 

(11), (13), and (14) yield  
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With the above assumptions the usual boundary 

layer, and Boussinesq‘s approximation, Eqs. (2) to 

(4) are reduce to the following forms: 
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 For an optically thick fluid, both emission and 

self-absorption exist, and the absorption coefficient is 

usually wavelength dependent and large. These 

features enable the use of Rosseland approximation 

for the radiative heat flux vector. Thermal radiation is 

assumed present in the form of a unidirectional flux 

in the y direction, that is, rq  (transverse to the 

vertical surface). Using the Rosseland approximation 

[39],  radiative heat flux rq  is derived thus: 
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where s is the Stefan–Boltzmann constant, and ek  

denotes the mean absorption coefficient. Note that 

the adoption of Rosseland approximation limited the 

present analysis to optically thick fluids. If 

temperature differences within flow are sufficiently 

small, then Eq. (20) can be linearized by expanding 

4T   in the Taylor series about 
T , which, after 

disregarding higher-order terms, takes the following 

form: 
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 Using Eqs. (21) and (20) in the last term of Eq. 

(18) derives 
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 Introducing Eq. (22) into Eq. (18) produces the 

energy equation in the following form: 
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In Eq. (18), viscous dissipation and Ohmic 

dissipation are disregarded, and in Eq. (19), the term 

arising from chemical reaction is absent. We now use  
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Characteristic time ot is defined according to the                     

non-dimensional process mentioned above as 
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0V
to


 . Let us introduce the following 

dimensionless quantities: 
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 Eqs. (16) to (19) are converted into the following 

non-dimensional forms, respectively: 
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 The corresponding boundary condition (23) in                         

non-dimensional form is  
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 For practical engineering applications and the 

design of chemical engineering systems, the values 

of interest include the skin friction coefficient, the 

couple stress coefficient, the Nusselt number, and the 

Sherwood number. The local skin friction coefficient, 

which signifies surface shear stress, is defined as 
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The couple stress coefficient on a wall is given by 
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 The local Nusselt number embodies the ratio of 

convective to conductive heat transfer across (normal 

to) a boundary and is a quantification of surface 

temperature gradient (heat transfer rate on a wall). It 

is defined as 
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 Finally, the local Sherwood number, which 

encapsulates the ratio of convective to diffusive mass 

transport and simulates the surface mass transfer rate, 

is defined thus 
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where 


xV
R o

ex


  . 

3. Solution Method  

3.1. Numerical solution via the finite element method 

The finite element method was implemented to 

obtain numerical solutions (25) to (28) under 

boundary condition (29). This technique is extremely 

efficient and generates robust solutions to complex 

coupled, nonlinear, multiple-degree differential 

equation systems. The fundamental steps of the 

method are summarized below. An excellent 

description of finite element formulations was also 

provided by Bathe [40] and Reddy [41]. 

3.1.1 Step 1: Discretization of a domain into 

elements 

 An entire domain is divided into a finite number 

of sub-domains—a process known as the 

discretization of the domain. Each sub-domain is 

termed a ―finite element,‖ and a collection of 

elements is designated as the ―finite element mesh.‖ 

3.1.2. Step 2: Derivation of the elements 

 The derivation of a finite element (i.e., the 
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algebraic expressions among the unknown 

parameters of finite element approximation) involves 

the following steps: 

a. Construct the variational formulation of the 

differential equation. 

b. Assume the form of the approximate solution 

over a typical finite element. 

c. Derive the finite element by substituting the 

approximate solution into the variational 

formulation. 

These steps result in a matrix equation of the form

    eee FuK  , which defines the finite element 

model of the original equation. 

 

3.1.3. Step 3: Assembly of elements 

 The algebraic so obtained is assembled by 

imposing ―inter-element‖ continuity conditions. This 

assembly yields a large number of algebraic that 

constitute a global finite element model, which 

governs the entire flow in the domain. 

3.1.4. Step 4: Imposition of boundary conditions 

 The physical boundary conditions defined in (29) 

are imposed on the assembled algebraic. 

3.1.5. Step 5: Solution of assembled elements 

The final matrix equation can be solved through a 

direct or indirect (iterative) method. For 

computational purposes, coordinate   is varied 

from 0 to 10max  , where max  represents 

infinity (i.e., external to the momentum, energy, and 

concentration boundary layers). The entire domain is 

divided into a set of 100 line segments of equal width 

(0.1), with each element being two-noded. 

3.1.6. Step 6: Variational formulation 

 The variational formulation associated with (25) 

to (28) over a typical two-noded linear element 

 1, ee   is given by 
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where ,
1 2m
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
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1
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K
BZ

1
2  , and 

,1w ,2w ,3w  and 4w  are arbitrary test functions 

that may be viewed as variations in ,u ,w  , and 

 , respectively. After reducing the order of 

integration and nonlinearity, we arrive at the 

following system of equations: 
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3.1.7. Step 7: Finite element formulation 

 The finite element model may be obtained on the 

basis of Eqs. (38) to (41), in which finite element 

approximations of the following form are substituted 
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 The finite element model of the eth element thus 

formed is given by 
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 The entire domain is divided into a set of 100 

intervals of equal length (0.1). At each node, two 

functions are to be evaluated. The assembly of the 

elements therefore produces a set of 123. Given that 

the system derived after the assembly are nonlinear, 

an iterative scheme is employed to solve the matrix 

system. Specifically, the Gauss elimination method 

is used, thereby maintaining an accuracy of 0.0005. 

3.2. Analytical solution via perturbation technique 

 To find the solution of the system of partial 

differential equations (25) to (28) in the 

neighborhood of the plate under condition (29), we 

assume a perturbation of the forms 

 

        


 2

int

1

int

0
2

, ueueutu       (46) 

        


 2

int

1

int

0
2

, wewewtw  (47) 

        


 2

int

1

int

0
2

,  eet      (48) 

        


 2

int

1

int

0
2

,  eet      (49) 

  

 From Eqs. (45) to (48), we derive 

 

 2

int

1

int

2
ueueu

u
o




 


                          (50) 

 2

int

1

int

2

2

2
ueueu

u
o




 


                        (51) 

    2

int

1

int

2
ueinuein

t

u 


 
                      (52) 

 2

int

1

int

2
wewew

w
o




 


                        (53) 

 2

int

1

int

2

2

2
wewew

w
o




 


                     (54) 

    2

int

1

int

2
weinwein

t

w 


 
                     (55) 

 2

int

1

int

2












 eeo                         (56) 

 2

int

1

int

2

2

2












 eeo                         (57) 

    2

int

1

int

2


 



einein

t
                      (58) 

 2

int

1

int

2












 eeo                           (59) 

 2

int

1

int

2

2

2












 eeo                         (60) 

 

    2

int

1

int

2


 



einein

t
                        (61) 

  

 Substituting Eqs. (45) to (60) into Eqs. (25) to 

(28), equating harmonic and non-harmonic terms, 

and disregarding the higher-order terms of  2O  

yield the following set of equations: 

 

044  oooooo BmwGcGrZuuu       (52) 

044 1  oooo BmuwZww                      (63) 

0Pr4  ooo F
                                   

 (64) 

04  oo Sc                                                   (65) 

044 1111211  BmwGcGruZuu    (66) 

044 11311  BmuwZww                         

(67) 

0Pr4 1111   X                                     (68) 

04 111   inScSc                                

(69) 

044 2222222  BmwGcGruZuu         (70) 

044 22422  BmuwZww                      (71) 

0Pr4 2222   X                                  (72) 

04 222   inScSc                                  (73) 

 

where the prime denotes differentiation with respect 

to   and ,
1 2m

M
B


  ,

1

K
BZ   

 ,
1

1
K

BZ   ,2 inZZ   ,13 inZZ   

,14 inZZ  ,Pr1 FinX  FinX  Pr2 .  

  

 The corresponding boundary conditions can be 

written as follows: 

 

Case 1: Isothermal temperature 
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Case 2: Ramped temperature 
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(75) 

  

 Solving Eqs. (61) to (72) using boundary 

conditions (74) and (75) yields the expressions for 

primary and secondary velocities, temperature, and 

concentration. We obtained a comprehensive range 

of solutions to the converted conservation equations. 

To test the validity of the numerical finite element 

computations, we compared the local skin friction 

and couple stress coefficients and the Nusselt and 

Sherwood numbers in Tables 1 to 3 with the 

solutions obtained using the perturbation technique. 

The tables show that the results are in excellent 

agreement. As the numerical solutions are highly 

accurate, the values of ,u ,w ,  and   that 

correspond to the analytical and numerical solutions 

are very close to one another. 

Table 1: Comparison of local skin friction coefficient and 

couple stress coefficient with Gr = 6.0, Gc = 5.0, Pr = 0.71, 

F = 0.5, Sc = 0.6, and t = 0.5 

Hall  
parameter 

Finite element method 

Local skin friction 

coefficient 

Couple stress  

coefficient 

0.5 2.325756798 3.023157864 

1.0 2.456947862 3.146408538 

1.5 2.588279843 3.269659212 

2.0 2.717853215 3.392909882 

Hall 

parameter 

Perturbation technique 

Local skin friction 

coefficient 

Couple stress 

coefficient 

 2.3257567990 3.02315786301 

0.5 2.4569478630 3.14640853700 

1.0 2.5882798440 3.2696592110 

1.5 2.7178532160 3.39290988101 

3.3. Accuracy of analytical and numerical solutions 

Table 2: Comparison of local Nusselt number with Gr = 

5.0, Gc = 5.0, Pr = 0.71, m = 0.5, Sc = 0.6, and t = 0.5 

Radiation 
number 

Finite element 
method 

Perturbation 
technique 

2.0 0.349673412 0.3496734130 

1.5 0.407029841 0.4070298420 

1.0 0.464386268 0.46438626900 

0.5 0.521746697 0.5217466980 

 

Table 3: Comparison of local Sherwood number with Gr = 

6.0, Gc = 5.0, Pr = 0.71, F = 0.5, m = 0.5, and t = 0.5 

Schmidt 

number 

Finite element 

method 

Perturbation 

technique 

0.22 0.4348793152 0.4348793152 

0.30 0.4237549217 0.4237549217 

0.60 0.419679342 0.412679342 

0.78 0.391582079 0.401582079 

Table 4: Comparison of current local Sherwood number 

(Sh) values with the results of Sharma and Chaudhary [37] 

 Analytical results of Sharma and Chaudhary 

[37] 

Sh 

 Sc =  0.22   Sc = 0.30   Sc = 0.78 

  0.2200   0.3000   0.7800 

  0.0800   0.1200   0.3800 

- 0.1700 - 0.2100 - 0.4100 

- 0.2700 - 0.3500 - 0.8100 

- 0.0800 - 0.1200   0.3900 

  0.2100   0.2600   0.4400 

Present numerical results 

 Sc =  0.22   Sc = 0.30   Sc = 0.78 

0.218862   0.295247   0.774285 

0.079562   0.119627   0.376248 

- 0.169821   - 0.209634 - 0.409631 

- 0.269824 - 0.349625 - 0.806431 

- 0.079562 - 0.119627   0.382645 

  0.209634   0.259647   0.436921 

4. Code Validation 

 To evaluate the accuracy of the finite element 

method, we compared the results with accepted 

datasets of local Sherwood numbers for MHD 

viscous incompressible fluid flow past a vertical 

porous plate immersed in porous medium under the 

presence of the Hall current; this scenario 

http://www.sciencedirect.com/science/article/pii/S2090447914000902#b0130
http://www.sciencedirect.com/science/article/pii/S2090447914000902#b0130
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corresponds to the case computed by Sharma and 

Chaudhary [37] in the absence of thermal radiation 

and phase angle, with the authors adopting different 

Schmidt numbers and keeping other parameters 

constant. The results of the evaluation are presented 

in table 4. This favorable comparison lends 

confidence to the accuracy of the numerical 

procedure in the current work. The developed code 

can therefore be used with great confidence in the 

study of the problem considered in this paper. 

5. Results and Discussion 

 To analyze the effects of the Hall current, thermal 

buoyancy force, concentration buoyancy force, 

thermal diffusion, mass diffusion, thermal radiation, 

and time on the flow field, numerical values of the 

primary and secondary fluid velocities in the 

boundary layer region (computed from numerical 

solutions (38) and (39)) were plotted graphically 

against boundary layer coordinate η in Figs. 2 to 15 

for various values of the Hall current parameter (m), 

the thermal Grashof number for heat transfer (Gr), 

the Grashof number for mass transfer (Gc), the 

Prandtl number (Pr), the Schmidt number (Sc), the 

thermal radiation parameter (F), and time (t). In the 

plotting, we set magnetic paramount permeability 

parameter K to 0.5, Pr to 0.71, and Sc to 0.22.  

Figs. 2 to 15 indicate that for both ramped 

temperature and isothermal plates, primary velocity u 

and secondary velocity w attain distinctive maximum 

values near the surface of the plate, after which the 

values decrease appropriately with increasing 

boundary layer coordinate η and thereby approach 

the free stream value. The primary and secondary 

fluid velocities are also slower in the ramped 

temperature plate than in the isothermal plate.  

 

Fig. 2. Primary velocity profiles at Gr = 6, Gc = 5, Pr = 

0.71, Sc = 0.6, F = 5, and t = 0.5. 

 

 

 
Fig. 3. Secondary velocity profiles at Gr = 6, Gc = 5, Pr = 

0.71, Sc = 0.6, F = 5, and t = 0.5. 

 

 
Fig. 4. Primary velocity profiles at m = 0.5, Gc = 5, Pr = 

0.71, Sc = 0.6, F = 5, and t = 0.5. 

 

 Fig. 2 illustrates that the primary velocity retards 

near the plate when Hall parameter m increases. Fig. 

3 shows that the secondary velocity increases near 

the plate and decreases away from the plate with an 

increase in Hall parameter m. The momentum 

boundary layer thickness increases with increasing m. 

The Hall parameter exerts marked effects on the 

secondary velocity profiles because effective 

conductivity σ/(1+m
2
) decreases as m increases. For 

small values of m, the term 1/(1+m
2
) decreases, 

thereby increasing the resistive magnetic force and 

suppressing the fluid velocity components. This 

result is a new phenomenon, which emerges as a 

result of the inclusion of Hall currents. The case m = 

0 corresponds to the disregard of Hall effects. 

Moreover, the primary and secondary profiles 

approach their classical hydrodynamic values when 

the Hall parameter tends to infinity. This finding is 

attributed to the fact that the magnetic force terms 

approach 0 for very large values of the Hall 

parameter. 
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http://www.sciencedirect.com/science/article/pii/S2090447914000902#b0130
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Fig. 5. Secondary velocity profiles at m = 0.5, Gc = 5, Pr = 

0.71, Sc = 0.6, F = 5, and t = 0.5. 

 

 
Fig. 6. Primary velocity profiles at m = 0.5, Gr = 6, Pr = 

0.71, Sc = 0.6, F = 5, and t = 0.5. 

 

 

 
Fig. 7. Secondary velocity profiles at m = 0.5, Gr = 6, Pr = 

0.71, Sc = 0.6, F = 5, and t = 0.5. 

 
Fig. 8. Primary velocity profiles at m = 0.5, Gr = 6,  

Gc = 5, Pr = 0.71, Sc = 0.6, and t = 0.5. 

 

 Figs. 4 to 7 demonstrate the effects of thermal 

and concentration buoyancy forces on the primary 

and secondary fluid velocities in the ramped 

temperature and isothermal plates. In these plates, u 

and w increase with rising Gr and Gc. Gr represents 

the strength of thermal buoyancy force relative to 

viscous force, and Gc represents the strength of 

concentration buoyancy force relative to viscous 

force. Therefore, Gr and Gc increase with rising 

strengths of thermal and concentration buoyancy 

forces, respectively, relative to viscous force. In this 

problem, natural convective flow is induced by 

thermal and concentration buoyancy forces. 

Correspondingly, the thermal and concentration 

buoyancy forces tend to accelerate the primary and 

secondary fluid velocities throughout the boundary 

layer regions of both the ramped temperature and 

isothermal plates (Figs. 4–7). 
 

 Figs. 8 and 9 indicate that for the ramped 

temperature and isothermal plates, radiation 

parameter 𝐹 tends to accelerate the translational 

velocity (primary and secondary) and the ramped and 

isothermal temperatures in the entire boundary layer 

region. Generally, radiation increases with rising 

temperature; ultimately, velocity also rises. Figs. 10 

and 11 depict the effects of time on fluid flow in the 

boundary layer regions of the ramped temperature 

and isothermal plates. The figures show that u and w 

increase with increasing t in both plates, implying 

that fluid flow in the boundary layer regions of the 

plates accelerates with the progression of time. The 

numerical values of fluid temperature  , computed 

from numerical solution (40), are plotted graphically 

against boundary layer coordinate   in Figs. 12 to 

14 for various values of F, Pr, and t. Fig. 12 indicates 

that fluid temperature   increases with rising F  in 

both the ramped temperature and isothermal plates. 

Thus, thermal radiation tends to enhance fluid 

temperature throughout the boundary layer regions in 

the plates. Thermal radiation provides an additional 

means of diffusing energy because thermal radiation 
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parameter 




e

s

k

T
F

34 


 and, therefore, a Rosseland 

mean absorption coefficient decrease as F  increases 

at fixed ek values of 
T  and  .  

 

 Fig. 13 shows the temperature distribution 

influenced by the Prandtl number for the ramped and 

isothermal temperatures. The fluid temperature 

decreases as the Prandtl number increases in the 

entire boundary layers of the ramped and isothermal 

temperatures. Because Pr is the relative strength of 

viscosity and thermal conductivity of the fluid, this 

parameter decreases when the thermal conductivity 

of the fluid increases. This result suggests that 

thermal diffusion tends to enhance fluid temperature. 

As time progresses, fluid temperature is enhanced in 

both the ramped temperature and isothermal plates. 

Fig. 14 illustrates that the fluid temperature is at its 

maximum on the surfaces of the ramped temperature 

and isothermal plates. It decreases with increasing 

boundary layer coordinate ƞ, thereby approaching the 

free stream value. Finally, the fluid temperature is 

lower in the ramped temperature plate than in the 

isothermal plate. 

 
Fig. 9. Secondary velocity profiles at m = 0.5, Gr = 6,  

Gc = 5, Pr = 0.71, Sc = 0.6, and t = 0.5. 

 

 
Fig. 10. Primary velocity profiles at m = 0.5, Gr = 6,                      

Gc = 5, Pr = 0.71, Sc = 0.6, and F = 5. 

 

 
Fig. 11. Secondary velocity profiles at m = 0.5, Gr = 6, Gc 

= 5, Pr = 0.71, Sc = 0.6, and F = 5. 

 

 

 Fig. 15 presents the effects of mass diffusion on 

the fluid flow in the boundary layer regions of the 

ramped temperature and isothermal plates. Fluid 

concentration ϕ decreases with increasing Sc, which 

represents the ratio of momentum diffusivity and 

molecular (mass) diffusivity. Sc decreases with 

increasing mass diffusivity, implying that mass 

diffusion tends to accelerate fluid flow in the 

boundary layer regions of the two plates. We also 

recorded numerical values of the surface local skin 

friction coefficients (Cf and Cw) and Nusselt number 

(Nu) at different values of Gr, Gc, M, m, and F 

(Tables 5 to 10, respectively) for the isothermal and 

ramped temperature plates. Tables 5 to 9 indicate that 

the skin friction coefficients (Cf and Cw) increase 

with rising Gr, Gc, and m, whereas the reverse effect 

was observed for Cf  and Cw, which improve with 

increases in M and F in both cases (isothermal and 

ramped). Table 10 shows that the Nu decreases with 

increasing F in the ramped temperature and 

isothermal plates. 

 

 
 

 
Fig. 12. Temperature profiles at Pr = 0.71 and t = 0.5. 
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Fig. 13. Temperature profiles at F = 5 and t = 0.5. 

 

 
Fig. 14. Temperature profiles at F = 5 and  

Pr = 0.71. 

 
Fig. 15. Concentration profiles at different values of Sc. 

 

Table-5: Effect of Gr on Cf and Cw in case of isothermal 

and ramped temperatures 

 

Gr 
Cf Cw 

Isothermal Ramped Isothermal Ramped 

1.0 0.4312621 0.4180319 0.0005132 0.0004826 

2.0 0.4523194 0.4316692 0.0005316 0.0005055 

3.0 0.4702158 0.4520036 0.0005564 0.0005249 

Table 6: Effects of Gc on Cf and Cw under isothermal and 

ramped temperatures 

 

 

Gc 
Cf Cw 

Isothermal Ramped Isothermal Ramped 

1.0 0.4492615 0.4263189 0.0005248 0.0005048 

2.0 0.4629747 0.4418594 0.0005493 0.0005269 

3.0 0.4839541 0.4680157 0.0005614 0.0005418 

Table 7: Effects of M on Cf and Cw under isothermal and 

ramped temperatures 

M 
Cf Cw 

Isothermal Ramped Isothermal Ramped 

0.5 0.4215862 0.4430815 0.0004056 0.0004231 

1.0 0.3954103 0.4013592 0.0003621 0.0003917 

1.5 0.3621894 0.3715463 0.0003328 0.0003618 

Table 8: Effects of m on Cf and Cw under isothermal and 

ramped temperatures 

m 
Cf Cw 

Isothermal Ramped Isothermal Ramped 

0.5 0.4326557 0.4105331 0.0004132 0.0003926 

1.0 0.4413581 0.4296145 0.0004305 0.0004163 

1.5 0.4563175 0.4406218 0.0004531 0.0004362 

Table 9: Effects of F on Cf and Cw under isothermal and 

ramped temperatures 

F 
Cf Cw 

Isothermal Ramped Isothermal Ramped 

0.5 0.4203462 0.4413644 0.0003952 0.0003715 

1.0 0.3918722 0.4015843 0.0003621 0.0003469 

1.5 0.3629883 0.3624475 0.0003578 0.0003182 

 
 

Table 10: Effects of F on Nu under isothermal and ramped 

temperatures 

F 
Nu 

Isothermal (t = 1.0) Ramped temperature (t = 0.5) 

0.5 0.96254871 0.47526984 

1.0 0.92434182 0.44069521 

1.5 0.89214413 0.40531899 

6. Conclusion  

 This research work investigated the effects of the 

Hall current on the unsteady hydromagnetic natural 

convective flow (with heat and mass transfer) of a 

viscous, incompressible, electrically conducting, and 

optically thick radiating fluid past an impulsively 

moving vertical plate embedded in a fluid-saturated 

porous medium. The temperature of the plate was 

temporarily ramped for the analysis. The significant 

findings for ramped temperature and isothermal 

plates are summarized as follows. 
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 The Hall current tends to accelerate the 

secondary fluid velocity throughout the 

boundary layer region.  

 The primary and secondary fluid velocities 

accelerate with the progression of time 

throughout the boundary layer region. 

 Thermal radiation and thermal diffusion 

tend to enhance fluid temperature, and fluid 

temperature increases over time throughout 

the boundary layer region. 

 The Nusselt number derived on the basis of 

the temperature profiles decreases with 

increasing Prandtl number, thermal 

radiation, and time throughout the boundary 

layer. 

 The Schmidt number and time tend to 

reduce the Sherwood number throughout 

the boundary layer.  

 The numerical solutions are highly accurate, 

and the values of the primary and secondary 

velocities, temperature, and concentration 

that correspond to the analytical and 

numerical solutions are very close to one 

another. 

Applications of the research  

The problem pursued in this work presents many 

scientific and engineering applications, including the 

following: 

a) Analysis of blood flow through arteries 

b) Soil mechanics, water purification, and 

powder metallurgy 

c) Study of the interaction between a 

geomagnetic field and a geothermal region 

d) Petroleum engineering applications 

concerned with the movement of oil, gas, 

and water through oil or gas reservoirs 

6.2. Scope for future research  

Future research work can use the finite element 

method implemented in the current work as it is a 

very useful approach to solving linear and nonlinear 

partial and ordinary differential equations in physics, 

mechanical engineering, and other similar fields. The 

results obtained are more accurate than those derived 

using other numerical methods. The finite element 

approach is currently used by mechanical engineers 

to solve complex problems. 

Nomenclature 

List of variables  

B
  
Magnetic induction vector 

oB  Intensity of applied magnetic field (Tesla) 

pC  Specific heat at constant pressure, (J K
-1

 Mole
-1

) 

E   Electric field 

e   Electron charge, Coloumb  


C  Concentration in fluid far from plate ( 3mKg ) 

C
 
  Species concentration of fluid at plate ( 3Kgm ) 

wC    Concentration of plate ( 3mKg ) 

D   Chemical molecular diffusivity ( 12 sm ) 

x   Coordinate axis along plate ( m ) 

y   Co-ordinate axis normal to plate ( m ) 

u   Velocity component in x  direction (
1sm ) 

v   Velocity component in y  direction (
1sm ) 

w   Velocity component in z  direction (
1sm ) 

Gr   Grashof number for heat transfer 

Gc  Grashof number for mass transfer 

Pr  Prandtl number 

Sc  Schmidt number 

ep  Electron pressure ( 2mN ) 

T   Temperature of fluid  K  

wT     Temperature of plate  K  


T
     

Fluid temperature far from plate  K  

t   Time  s  

t   Dimensional time  s  

rq   Radiative heat transfer coefficient 

  Current density vector ( )

 Scalar Components of  

u   Velocity component in x direction ( 1sm )   

v   Velocity vector 

oV   Reference velocity ( 1sm ) 

w   Velocity component in z direction  ( 1sm ) 

g   Acceleration due to gravity ( 2sm )
  

K   Permeability of porous medium ( 2m ) 

M  Hartmann number 

m   Hall parameter 

F   Thermal radiation parameter 

Nu  Local Nusselt number 

Sh  Local Sherwood number 

xeR  Reynolds number 

fC  Local skin friction coefficient due to primary   

  velocity (u) 

wC  Local skin friction coefficient due to  

J 2.. msA

 
zyx JJJ ,, J
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  secondary velocity (w)  

P   Pressure ( Pa ) 

k   Dimensional permeability of porous medium   

ot   Characteristic time (  s  

Greek symbols 

   Coefficient of volume expansion  1K  

   Density of fluid  3/ mkg  

*  Volumetric coefficient of expansion with    

 concentration ( 13 Kgm ) 

   Kinematic viscosity  12 sm  

e  Electron frequency (Hertz) 

w    Shear stress ( 2/ mN ) 

   Dimensionless temperature  K  

   Dimensionless concentration (
3mKg ) 

   Electrical conductivity ( 11  m ) 

e   Electron collision time ( s ) 

i   Ion collision time ( s ) 

e   Number of electron density 

   Spatial coordinate ( m ) 

i   Ion frequency (Hertz)    

         Thermal conductivity, mKW /  

Superscript 

 /   Dimensionless properties 

Subscripts 

w   Conditions on wall 

    Free stream conditions 

p    Plate 
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