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Abstract

In the present paper, a certain convolution operator of analytic functions is defined. Subordination
and superordination- preserving properties for a useful class of analytic operators on the space of
normalized analytic functions in the open unit disk are obtained. Sandwich- type results are also
obtained.
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1. Introduction and preliminaries

Let H(∆) denote the class of analytic functions in the open unit disk ∆ = {z : |z| < 1}, and
normalized by f(0) = f ′(0)− 1 = 0. Also let A(p) be the class of all analytic functions of the form

f(z) = zp +
∞∑

k=p+1

akz
k, p ∈ N,

and let A(1) = A. For a positive integer number n and a ∈ C, let

H[a, n] = {f ∈ H(∆) : f(z) = a+ anz
n + an+1z

n+1 + . . .}

Let f and F be members of the analytic function class H(∆). The function f is said to be
subordinate to F or F is said to be superordinate of f , if there exist a function w analytic in ∆ with
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w(0) = 0, and |w(z)| < 1 such that f(z) = F (w(z)) and we write f(z) ≺ F (z) or f ≺ F . If function
F is univalent, then we have f ≺ F if and only if f(0) = F (0) and f(∆) ⊂ F (∆).

Let ϕ : C2 ×∆ −→ C and h be analytic in ∆. If p is analytic in ∆ and satisfies the (first-order)
differential subordination

ϕ(p(z), zp′(z); z) ≺ h(z), (1.1)

then p is called a solution of the differential subordination. The univalent function q is called a
dominant of the solution of the differential subordination, or dominant if p ≺ q for all p satisfying
(1.1). A dominant q̃ that satisfies q ≺ q̃ for all dominant of q of (1.1) is called the best dominant.

Let ϕ : C2 × ∆ −→ C and h be analytic in ∆. If p and ϕ(p(z), zp′(z); z) are univalent and p
satisfies the (first-order) differential superordination

h(z) ≺ ϕ (p(z), zp′(z); z) (1.2)

then p is called a solution of the differential superordination. An analytic function q is called a
subordinant of the solution of the differential superordinate, or more simply a subordinant if q ≺ p
for all q satisfying (1.2). A univalent subordinant q̃ that satisfies q̃ ≺ q for all subordinant of q of
(1.2) is called the best subordinant.

Ali et al [2] have obtained sufficient conditions for certain normalized analytic functions f(z) to

satisfy q1(z) ≺ zf ′(z)
f(z)
≺ q2(z), where q1 and q2 are given univalent functions in ∆ with q1(0) = q2(0) =

1.
For two functions fj(z), j = 1, 2, given by

fj(z) = z +
∞∑
k=2

ak,jz
k

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) := z +
∞∑
k=2

ak,1ak,2z
k = (f2 ∗ f1)(z), z ∈ ∆.

In terms of the Pochhammer symbol (or the shifted factorial), define (κ)n by

(κ)0 = 1, and (κ)n = κ(κ+ 1)(κ+ 2) . . . (κ+ n− 1), n ∈ N := {1, 2, . . .}.

Also, Aghalary et al [1] have defined a function φλa(b, c; z) by

φλa(b, c; z) := 1 +
∞∑
n=1

(
a

a+ n

)λ
(b)n
(a)n

zn, z ∈ ∆, (1.3)

where b ∈ C, c ∈ R\Z−0 , a ∈ C\Z−0 (Z−0 = {0,−1,−2, . . .}) and λ ≥ 0. Corresponding to the function
φλa(b, c; z), given by (1.3), they have introduced the following convolution operator

Lλa(b, c; β)f(z) := φλa(b, c; z) ∗
(
f(z)

z

)β
, f ∈ A, β ∈ C\{0}. (1.4)

It is easy to see that
z(φλa(b, c; z))′ = aφλa(b, c; z)− aφλ+1

a (b, c; z), (1.5)
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and
z(Lλ+1

a (b, c; β)f(z))′ = aLλa(b, c; β)f(z)− aLλ+1
a (b, c; β)f(z). (1.6)

The operator Lλa(b, c; β)f(z) includes, as its special cases, Komatu integral operator (see [4], [5],
[10]), some fractional calculus operators (see [4], [12], [13]) and Carlson-Shaffer operator (see [3]).

Making use of the principle of subordinant between analytic functions Miller et all [8] obtained
some interesting subordination theorems involving certain operators. Also Miller and Mocanu [7]
considered subordination-preserving properties of certain integral operator investigations as the dual
concept of differential subordination. In the present investigation, we obtain the subordination
and superordination-preserving properties of the convolution operator Lλa defined by (1.4) with the
Sandwich-type theorems.

2. Definitions and Preliminaries

The following definitions and Lemmas will be required in our present investigation.

Definition 2.1. If 0 ≤ α < 1, λ ≥ 0 and a ∈ C\Z−0 (Z−0 = {0,−1,−2, . . .}), let Lλa(α) denote the
class of functions f ∈ A wich satisfies the inequality

Re[Lλa(b, c; β)f(z)] > α

For a = 1, we set Lλ1(α) = Lλ(α).

Definition 2.2. [6] Denote by Q the set of all functions q that are analytic and injective on ∆\E(q)
where

E(q) = {ξ ∈ ∆ : lim
z→ξ

q(z) =∞}

and are such that h′(ξ) 6= 0 for ξ ∈ ∂∆\E(q).

Lemma 2.3. [6] Let h(z) be analytic and convex univalent in ∆ and h(0) = a. Also p(z) be analytic
in ∆ with p(0) = a. If

p(z) +
zp′(z)

γ
≺ h(z), γ 6= 0, Reγ ≥ 0,

then p(z) ≺ q(z) ≺ h(z), where

q(z) =
γ

zγ

∫ z

0

h(t)tγ−1dt.

Furthermore q(z) is a convex function and is the best dominant.

Lemma 2.4. [7] Let h(z) be a convex in ∆, h(0) = a, γ 6= 0 and <γ ≥ 0. Also p ∈ H[a, n] ∩ Q. If

p(z) + zp′(z)
γ

is univalent in ∆, h(z) ≺ p(z) + zp′(z)
γ

and q(z) = γ
zγ

∫ z
0
h(t)tγ−1dt then q(z) ≺ p(z), and

q(z) is a convex function and is the best subordinant.

Lemma 2.5. [11] Let q(z) be a convex univalent function in ∆ and ψ, γ ∈ C with Re(1 + zq′′(z)
q′(z)

) >

max{0,−Reψ
γ
}, q(0) = a, γ 6= 0 and Reγ ≥ 0. If p(z) is analytic in ∆ and ψp(z) + γzp′(z) ≺

ψq(z) + γzq′(z) then p(z) ≺ q(z), and q(z) is the best dominant.

Lemma 2.6. [9] Let q(z) be a convex univalent function in ∆ and η ∈ C, assume that Reη > 0. If
p(z) ∈ H[a, n]∩Q and p(z) + ηzp′(z) ≺ q(z) + ηzq′(z) which implies that q(z) ≺ p(z) and q(z) is the
best subordinant.
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3. Differential subordination defined by convolution operator

Theorem 3.1. If 0 ≤ α < 1, λ ≥ 0 and a ∈ C\Z−0 , then we have

Lλa(α) ⊂ Lλ+1
a (δ),

where
δ(α, a) = aβ(a) + a(2α− 1)β(a+ 1),

and

β(x) =

∫ 1

0

tx−1

1 + t
dt.

The result is sharp.

Proof . First note that f ∈ Lλa(α) and

z(Lλ+1
a (b, c; β)f(z))′ = aLλa(b, c; β)f(z)− aLλ+1

a (b, c; β)f(z). (3.1)

We define p(z) = Lλ+1
a (b, c; β)f(z). From the relation (1.1) we have

Lλa(b, c; β)f(z) = p(z) +
zp′(z)

a
.

Now from Lemma 2.3, for γ = a, it follows that

p(z) = Lλ+1
a (b, c; β)f(z) ≺ q(z) =

a

za

∫ z

0

1 + (2α− 1)t

1 + t
ta−1dt,

therefore we have
Lλa(α) ⊂ Lλ+1

a (δ),

where
δ = min

|z|≤1
Req(z) = q(1) = aβ(a) + a(2α− 1)β(a+ 1).

Furthermore q(z) is a convex function and is the best dominant. �

For the class Lλ we obtain the next corollary.

Corollary 3.2. If 0 ≤ α < 1 and λ ≥ 0, then we have

Lλ(α) ⊂ Lλ+1(δ),

where
δ = δ(α) = 2α− 1 + 2(1− α) ln 2,

and the result is sharp.

Theorem 3.3. Let h ∈ H(∆), with h(0) = 1 and h′(0) 6= 0, which verifies the inequality Re[1 +
zh′′(z)
h′(z)

] > −1
2
. If f ∈ A and satisfies the differential subordination

Lλa(b, c; β)f(z) ≺ h(z), (3.2)

then
Lλ+1
a (b, c; β)f(z) ≺ q(z), (3.3)

where

q(z) =
a

za

∫ z

0

h(t)ta−1dt.

The function q(z) is convex and is the best dominant.
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Proof . Let
p(z) = Lλ+1

a (b, c; β)f(z). (3.4)

Differentiating (3.4) with respect to z, we have p′(z) = (Lλ+1
a (b, c; β)f(z))′. From the relation (1.1)

we have
zp′(z)

a
+ p(z) = Lλa(b, c; β)f(z).

Now, in view of (2.4), we obtain the following subordination

zp′(z)

a
+ p(z) ≺ h(z).

Then from Lemma 2.3 for γ = a we conclude that

p(z) = Lλ+1
a (b, c; β)f(z) ≺ q(z),

where

q(z) =
a

za

∫ z

0

h(t)ta−1dt

and q(z) is the best dominant. �

Taking λ = 0 in Theorem 3.3, we arrive the following corollary.

Corollary 3.4. Let h ∈ H(∆), with h(0) = 1, h′(0) 6= 0, and Re
(

1 + zh′′(z)
h′(z)

)
> −1

2
. If f ∈ A and

satisfies (f(z)
z

)β ≺ h(z), then La(b, c; β) ≺ q(z) where q(z) = a
za

∫ z
0
h(t)ta−1dt. The function q(z) is

the best dominant.

By setting a = γ + β, λ = 0 and b = c = 1 in Theorem 3.3, we get the following corollary.

Corollary 3.5. Let h ∈ H(∆), with h(0) = 1 and h′(0) 6= 0, which satisfies the inequalityRe
(

1 + zh′′(z)
h′(z)

)
>

−1
2
. If f ∈ A and satisfies the differential subordination (f(z)

z
)β ≺ h(z), then

γ + β

zγ+β

∫ z

0

uγ−1(f(u))βdu ≺ 1

z

∫ z

0

h(u)du

The function 1
z

∫ z
0
h(u)du is the best dominant.

Corollary 3.6. Let 0 < R ≤ 1 and let h(z) be convex in ∆, defined by h(z) = 1 +Rz + Rz
2+Rz

, with
h(0) = 1. If f ∈ A satisfies in the following differential subordination

Lλa(b, c; β)f(z) ≺ h(z),

then
Lλ+1
a (b, c; β)f(z) ≺ q(z),

where

q(z) =
a

za

∫ z

0

(
1 +Rt+

Rt

2 +Rt
ta−1

)
dt

= za−1 +Ra

(
za

a+ 1
+
M(z)

z

)
,

with

M(z) =

∫ z

0

ta

2 +Rt
dt.

The function q(z) is convex and is the best dominant.
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If a = 1, Corollary 3.6 becomes:

Corollary 3.7. Let 0 < R ≤ 1 and let h(z) be convex in ∆, defined by h(z) = 1 +Rz + Rz
2+Rz

, with
h(0) = 1. If f ∈ A and suppose that

Lλ(b, c; β)f(z) ≺ h(z),

then
Lλ+1(b, c; β)f(z) ≺ q(z)(z ∈ ∆),

where

q(z) =
1

z

∫ z

0

(
1 +Rt+

Rt

2 +Rt

)
dt

= 2 +
Rz

2
− 2

Rz
log(2 +Rz),

The function q(z) is convex and is the best dominant.

By taking R = 1 in Corollary 3.7 we have the following corollaries.

Corollary 3.8. Let h(z) be convex in ∆, defined by h(z) = 1 + z + z
2+z

, with h(0) = 1. If f ∈ A,
satisfies in the differential subordination

Lλ(b, c; β)f(z) ≺ h(z),

then
Lλ+1(b, c; β)f(z) ≺ q(z),

where

q(z) = 2 +
z

2
− 2

z
log(2 + z).

The function q(z) is convex and is the best dominant.

Corollary 3.9. Let h(z) be convex in ∆, defined by h(z) = 1 + z + z
2+z

, with h(0) = 1. Suppose
that γ ∈ C, a = γ + β, λ = 0 and b = c = 1. If f ∈ A and satisfies the differential subordination
(f(z)

z
)β ≺ h(z), then

γ + β

zγ+β

∫ z

0

uγ−1(f(u))βdu ≺ q(z) = 2 +
z

2
− 2

z
log(2 + z).

The function q(z) is convex and is the best dominant.

Corollary 3.10. Let h(z) = 1+(2α−1)z
1+z

be convex function in ∆, with h(0) = 1. If f ∈ Lλ(α) and

Lλ(b, c; β)f(z) ≺ h(z) then
Lλ+1(b, c; β)f(z) ≺ q(z),

where

q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q(z) is convex and is the best dominant.
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Theorem 3.11. Let q(z) be a convex function with q(0) = 1, and let h be a function such that

h(z) = q(z) + zq′(z)
q(z)

. If f ∈ H(∆) and satisfies the differential subordination

Lλa(b, c; β)f(z) ≺ h(z), (3.5)

then
Lλ+1
a (b, c; β)f(z) ≺ q(z)

and this result is sharp.

Proof . We have

z(Lλ+1
a (b, c; β)f(z))′ = aLλa(b, c; β)f(z)− aLλ+1

a (b, c; β)f(z). (3.6)

Let p(z) = Lλ+1
a (b, c; β)f(z), then from (3.5) and (3.6) , we have

p(z) +
zp′(z)

a
≺ q(z) +

zq′(z)

a
.

An application of Lemma 2.6, we conclude that p(z) ≺ q(z) or Lλ+1
a (b, c; β)f(z) ≺ q(z) and this

result is sharp. �

Theorem 3.12. Let h ∈ H(∆), with h(0) = 1, and h′(0) 6= 0, which satisfies in the inequality

Re
(

1 + zh′′(z)
h′(z)

)
> −1

2
. If f ∈ A and satisfies the differential subordination

(Lλ+1
a (b, c; β)f(z))′ ≺ h(z),

then
Lλ+1
a (b, c; β)f(z)

z
≺ q(z),

where

q(z) =
1

z

∫ z

0

h(t)ta−1dt,

the function q(z) is the best dominant.

Proof . Let us define the function f by

f(z) =
Lλ+1
a (b, c; β)f(z)

z
. (3.7)

Differentiating with respect to z logarithmically, we have

zp′(z)

p(z)
=
z(Lλ+1

a (b, c; β)f(z))′

Lλ+1
a (b, c; β)f(z)

− 1

and
p(z) + zp′(z) = (Lλ+1

a (b, c; β)f(z))′

Now, from (3.7) we obtain
p(z) + zp′(z) ≺ h(z)

Then, by Lemma 2.3 , for γ = 1 we have p(z) ≺ q(z) or

Lλ+1
a (b, c; β)f(z)

z
≺ 1

z

∫ z

0

h(t)dt

and the function q(z) is the best dominant. Therefore, we complete the proof of theorem 3.12. �

Suppose that λ = 0 and in Theorem 3.12 we have the following result.
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Corollary 3.13. Let h ∈ H(∆), with h(0) = 1 and h′(0) 6= 0, which satisfies in the inequality

Re(1 +
zh′′(z)

h′(z)
) > −1

2

. If f ∈ A and (La(b, c; β)f(z))′ ≺ h(z) then La(b,c;β)f(z)
z

≺ 1
z

∫ z
0
h(t)dt, and the function 1

z

∫ z
0
h(t)dt is

the best dominant.

By taking γ ∈ C, a = γ + β, λ = 0, and b = c = 1 in the Theorem 3.12 we get the following
result.

Corollary 3.14. Let f ∈ A, h ∈ H(∆) and h(0) = 1, h′(0) 6= 0. If Re(1 + zh′′(z)
h′(z)

) > −1
2

−(γ + β)

zγ+β+1

∫ z

0

uγ−1(f(u))βdu+
γ + β

zβ+1
≺ h(z),

then
γ + β

zγ+β−1

∫ z

0

uγ−1(f(u))βdu ≺ 1

z

∫ z

0

h(u)du.

The function 1
z

∫ z
0
h(u)du is the best dominant.

Corollary 3.15. Let 0 < R ≤ 1 and let h(z) be convex in ∆, defined by h(z) = 1 +Rz+ Rz
2+Rz

, with
h(0) = 1. If f ∈ A satisfies in the following differential subordination

(Lλ+1(b, c; β)f(z))′ ≺ h(z),

then
Lλ+1(b, c; β)f(z)

z
≺ q(z),

where

q(z) =
1

z

∫ z

0

(
1 +Rt+

Rt

2 +Rt

)
dt

= 1 +
Rz

2
+
RM(z)

z
,

with

M(z) =
z

R
− 2

R2
(ln(2 +Rz))− 2

R
ln 2.

The function q(z) is convex and is the best dominant.

Suppose that γ ∈ C, a = γ + β, λ = 0 and b = c = 1 in Corollary 3.15 we have the following
corollary.

Corollary 3.16. Let h(z) be convex in ∆, defined by h(z) = 1 + z + z
2+z

, with h(0) = 1. If f ∈ A,
satisfies in the differential subordination

−(γ + β)

zγ+β+1

∫ z

0

uγ−1(f(u))βdu+
γ + β

zβ+1
≺ h(z),

then
γ + β

zγ+β−1

∫ z

0

uγ−1(f(u))βdu ≺ 1

z

∫ z

0

h(u)du,

where

q(z) = 2 +
z

2
− 2

z
log(2 + z).

The function q(z) is convex and is the best dominant.
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Corollary 3.17. Let h(z) = 1+(2α−1)z
1+z

be convex function in ∆, with h(0) = 1. If f ∈ Lλ(α) and

(Lλ+1(b, c; β)f(z))′ ≺ h(z),

then
Lλ+1(b, c; β)f(z)

z
≺ q(z),

where

q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q(z) is convex and is the best dominant.

Theorem 3.18. Let q(z) be a convex function in ∆, q(0) = 1 and h(z) = q(z) + zq′(z)
q(z)

. If f ∈ H(∆)
and satisfies the differential subordination

(Lλ+1
a (b, c; β)f(z))′ ≺ h(z), (3.8)

then
Lλ+1
a (b, c; β)f(z)

z
≺ q(z)

and this result is sharp.

Proof . Let

p(z) =
Lλ+1
a (b, c; β)f(z)

z
. (3.9)

Logarithmic differentiation of (3.9) and through a little simplification we obtain

p(z) + zp′(z) = (Lλ+1
a (b, c; β)f(z))′.

Now by using Lemma 2.6, we conclude that the differential equation

Lλ+1
a (b, c; β)f(z)

z
≺ q(z)

and this result is sharp. �

4. Differential superordination defined by convolution operator

The results this section are obtained with differential superordination method.

Theorem 4.1. Let h be convex function in ∆, with h(0) = 1, and f ∈ A. Assume that Lλa(b, c; β)f(z)
is univalent with Lλ+1

a (b, c; β)f(z) ∈ H[1, n] ∩Q. If h(z) ≺ Lλa(b, c; β)f(z) then

q(z) ≺ Lλ+1
a (b, c; β)f(z), (4.1)

where

q(z) =
a

za

∫ z

0

h(t)ta−1dt.

The function q(z) is the best subordinant.
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Proof . If we let
p(z) = Lλ+1

a (b, c; β)f(z),

then from the relation (1.6) we have p(z) + zp′(z)
a

= Lλa(b, c; β)f(z). Now according to Lemma 2.4 we
get the desired result (4.1). �

Corollary 4.2. Suppose that γ ∈ C, a = γ + β λ = 0 and b = c = 1. Let h ∈ H(∆) be convex func-

tion in ∆, with h(0) = 1, and f ∈ A. Assume that (f(z)
z

)β is univalent with γ+β
zγ+β

∫ z
0
uγ−1(f(u))βdu ∈

H[1, n] ∩Q. If h(z) ≺ (f(z)
z

)β then

1

z

∫ z

0

h(u)du ≺ γ + β

zγ+β

∫ z

0

uγ−1(f(u))βdu

and 1
z

∫ z
0
h(u)du is the best subordinant.

Corollary 4.3. Let h(z) be a convex mapping in ∆, defined by h(z) = 1 + z + z
2+z

, with h(0) = 1.

Suppose that γ ∈ C, a = γ + β, λ = 0, b = c = 1, and f ∈ A and (f(z)
z

)β is univalent with
γ+β
zγ+β

∫ z
0
uγ−1(f(u))βdu ∈ H[1, n] ∩ Q. If h(z) ≺ (f(z)

z
)β then q(z) ≺ γ+β

zγ+β

∫ z
0
uγ−1(f(u))βdu, where

q(z) = 2 + z
2
− 2

z
log(2 + z). The function q(z) is the best subordinant.

Corollary 4.4. Let h(z) = 1+(2α−1)z
1+z

be a convex function in ∆ with h(0) = 1. Assume that f ∈
Lλ+1(α) and Lλ(b, c; β)f(z) is univalent with Lλ+1(b, c; β)f(z) ∈ H[1, n]∩Q. If h(z) ≺ Lλ(b, c; β)f(z)
then

q(z) ≺ Lλ+1
a (b, c; β)f(z),

where

q(z) = 2α− 1 + 2(1− α)
log(1 + z)

z
.

The function q(z) is the best subordinant.

Theorem 4.5. Let h be a convex function in ∆, with h(0) = 1, and f ∈ A. Assume that

(Lλ+1
a (b, c; β)f(z))′ is univalent with Lλ+1

a (b,c;β)f(z)
z

∈ H[1, n] ∩Q. If h(z) ≺ (Lλ+1
a (b, c; β)f(z))′ then

q(z) ≺ Lλ+1
a (b, c; β)f(z)

z
,

where

q(z) =
1

z

∫ z

0

h(t)dt.

The function q(z) is the best subordinant.

5. Sandwich results

Combining results of differential subordinations and superordinations, we arrive at the following
”Sandwich results”.

Theorem 5.1. Let q1(z) be convex univalent in the open unit disk ∆, and q2(z) be univalent in
the open unite disk ∆ and f ∈ A. Also let Lλa(b, c; β)f(z) be univalent with Lλ+1

a (b, c; β)f(z) ∈
H[1, n] ∩ Q. The following subordinate relationship q1(z) ≺ Lλa(b, c; β)f(z) ≺ q1(z) implies q1(z) ≺
Lλ+1
a (b, c; β)f(z) ≺ q2(z). Moreover the functions q1(z) and q2(z) are the best subordinant and the

best dominant respectively.
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Theorem 5.2. Suppose that q1(z) is convex univalent, and let q2(z) be univalent in ∆ and f ∈ A.

Let (Lλ+1
a (b, c; β)f(z))′ be univalent with Lλ+1

a (b,c;β)f(z)
z

∈ H[1, n]∩Q. If q1(z) ≺ (Lλ+1
a (b, c; β)f(z))′ ≺

q2(z) then q1(z) ≺ Lλ+1
a (b,c;β)f(z)

z
≺ q2(z). Moreover the functions q1(z) and q2(z) are the best subor-

dinant and the best dominant respectively.
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