
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,759 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
پیشبینی خواص مکانیکی آلومینیوم 6061 حاصل از فرآیند نورد در کانال همسان زاویهدار با استفاده از شبکه عصبی مصنوعی و رگرسیون غیرخطی | ||
مدل سازی در مهندسی | ||
مقاله 13، دوره 15، شماره 51، دی 1396، صفحه 197-207 اصل مقاله (1007.55 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jme.2017.2690 | ||
نویسندگان | ||
مسعود محمودی* ؛ علی نادری بختیاری | ||
دانشگاه سمنان | ||
تاریخ دریافت: 24 تیر 1394، تاریخ بازنگری: 24 آبان 1394، تاریخ پذیرش: 02 آذر 1394 | ||
چکیده | ||
فرآیند نورد در کانال همسان زاویهدار از فرآیندهای تغییر فرم شدید پلاستیک جهت دستیابی به ساختار فوقریز دانه میباشد. در این مقاله به بررسی این فرآیند و تأثیر پارامترهای آن به کمک مدلسازی شبکهی عصبی مصنوعی و رگرسیون غیرخطی پرداختهشده است. بهمنظور پیشبینی خواص مکانیکی نمونه آلومینیم 6061 حاصل از فرآیند نورد در کانال همسان زاویهدار از شبکه عصبی پس انتشار پیشخور استفادهشده است. پارامترهای زاویه کانال قالب، تعداد عبور و مسیر فرآیند بهعنوان ورودیهای شبکه عصبی و پارامترهای استحکام کششی، درصد ازدیاد طول و سختی بهعنوان خروجیهای شبکه عصبی در نظر گرفتهشدهاند. بعلاوه، رابطه بین پارامترهای ورودی با هرکدام از پارامترهای خروجی با استفاده از رگرسیون غیرخطی استخراج گردیده است. با مقایسه خروجیهای شبکه عصبی و روابط برازش با نتایج تجربی مشاهده گردید که هر دو مدل بهطور مناسبی قابلیت پیشبینی خواص مکانیکی رادارند، هرچند مدل شبکه عصبی عملکرد بهتری را نشان میدهد. در ادامه به کمک دادههای توسعه دادهشده توسط مدل شبکه عصبی مصنوعی آموزشدیده، تأثیر پارامترهای ورودی فرآیند بر استحکام کششی، درصد ازدیاد طول و سختی مورد تجزیهوتحلیل قرارگرفته است. نتایج نشان میدهد که مدل شبکه عصبی ، یک ابزار کارآمد برای پیشبینی خواص مکانیکی ورقهای آلومینیم 6061 حاصل از فرآیند نورد در کانال همسان زاویهدار میباشد. | ||
کلیدواژهها | ||
تغییر شکل پلاستیک شدید؛ نورد در کانال همسان زاویه-دار؛ خواص مکانیکی؛ شبکه عصبی مصنوعی؛ رگرسیون غیر خطی | ||
عنوان مقاله [English] | ||
Prediction of Mechanical Properties of Equal Channel Angular Rolled Al6061 Alloy Sheet Using Artificial Neural Networks and Nonlinear Regression | ||
نویسندگان [English] | ||
Masoud Mahmoodi؛ Ali Naderi Bakhtiari | ||
چکیده [English] | ||
Equal channel angular rolling (ECAR) is a severe plastic deformation (SPD) process in order to achieve ultrafine-grained (UFG) structure. In this paper, the mechanical properties of ECAR process using artificial neural network (ANN) and nonlinear regression have been illustrated. For this purpose, a multilayer perceptron (MLP) based feed-forward ANN has been used to predict the mechanical properties of ECARed Al6061 alloy sheets. Channel oblique angle, number of passes and the route of feeding are considered as ANN inputs and tensile strength, elongation and hardness are considered as the outputs of ANN. In addition, the relationship between input parameters and mechanical properties were extracted separately using nonlinear regression method. Comparing the outputs of models and experimental results shows that models used in this study can estimate the mechanical properties appropriately. Where, the performance of ANN model is better than the correlations to predict mechanical properties. Finally, the developed outputs of trained neural network model are used to analyze the effects of input parameters on tensile strength, elongation and hardness of ECARed Al6061 alloy sheets. The results showed that the ANN model, without highly expensive tests and experiments, is an efficient tool to predict the mechanical properties of ECARed Al6061 sheets. | ||
کلیدواژهها [English] | ||
SPD, ECAR, Mechanical properties, ANN, Nonlinear Regression | ||
مراجع | ||
[1] Sedighi, M., Mahmoodi, M., (2013). “Residual Stresses Evaluation in Equal Channel Angular Rolled Al 5083 by IHD Technique: Investigation of Two Calculation Methods”., Material and Manufacturing Process, Vol. 28, No.1, pp. 85–90. [2] Nam, C.Y., Han, J.H., Chung, Y.H., Shin, M.C., (2003) “Effect of precipitates on microstructural evolution of 7050 Al alloy sheet during equal channel angular rolling”. Material Science and Engineering A, Vol. 347, pp. 253–257. [3] Chen, Z., Cheng, Y., Xia, W., (2007). “Effect of Equal-Channel Angular Rolling Pass on Microstructure and Properties of Magnesium Alloy Sheets”. Material and Manufacturing Process, Vol. 22, No. 1, pp. 51–56. [4]Chung, Y.H., Park, J., Lee, K.H., (2006). “An Analysis of Accumulated Deformation in the Equal Channel Angular Rolling ( ECAR ) Process”. Metals and Materials International, Vol. 12, No. 4, pp. 289–292. [5] Chung, Y.H., Park, J.W., Lee, K.H., (2007). “Controlling the Thickness Uniformity in Equal Channel Angular Rolling (ECAR) ”. Materials Science Forum, vol. 539–543, pp. 2872–2877. [6] Cheng, Y.Q., Chen, Z.H., Xia, W.J., (2007). “Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature”. Materials Characterization, Vol. 58, No. 7, pp. 617–622. [7] Cheng, Y.Q., Chen, Z.H., Xia, W.J., Zhou, T., (2008). “Improvement of Drawability at Room Temperature in AZ31 Magnesium Alloy Sheets Processed by Equal Channel Angular Rolling”. Journal of Materials Engineering and Performance, Vol. 17, No. 1, pp. 15–19. [8] Hassani, F. Z., Ketabchi, M., (2011). “Nano grained AZ31 alloy achieved by equal channel angular rolling process”. Materials Science and Engineering A, Vol. 528, No. 21, pp. 6426–6431. [9] Habibi, A., Ketabchi, M., Eskandarzadeh, M., (2011). “Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process”. Journal of Materials Processing Technology, Vol. 211, No. 6, pp. 1085–1090. [10] Habibi, A., Ketabchi, M., (2012). “Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing”. Materials and Design, Vol. 34, pp. 483–487. [11] Zhangtt, H., Huangt, S. H., (1995). “Applications of neural networks in manufacturing : a state-of-the-art survey . International Journal of Production Research, vol. 33, no. 3, pp. 705–728. [12] Shi, X., Zeng, W., Sun, Y., Han, Y., Zhao, Y., Guo, P., (2015). “Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy”. Journal of Materials Engineering and Performance, Vol. 24, No. April, pp. 1754–1762. ]13[ کیا، س.م.، (1393). " شبکه های عصبی مصنوعی در MATLAB". ویرایش دوم، انتشارات دانشگاهی کیان. [14]Sadati, S.H., kaklar, J.A., Gajar, R., (2011). “Application of Artificial Neural Networks in the Estimation of Mechanical Properties of Materials, Atrtificial Neural Networks-Industrial and control Engineering Applications”. Prof. K. Suzuki (Ed.), ISBN: 978-953-307-220-3, InTech. [15] Djavanroodi, F., Omranpour, B., Sedighi, M., (2013). “Artificial Neural Network Modeling of ECAP Process”. Materials and Manufacturing Processes, Vol. 28, No. 3, pp. 276–281. [16] Esmailzadeh, M., Aghaie Khafri, M., (2012). “Finite element and artificial neural network analysis of ECAP”. Computational Materials Science, Vol. 63, pp. 127–133. [17]Chan, W.L., Fu, M.W., Lu, J., (2008). “An integrated FEM and ANN methodology for metal-formed product design, Engineering Applications of Artificial Intelligence”. Engineering Applications of Artificial Intelligence, Vol. 21, No. 8, pp. 1170–1181. [18] Qin, Y.J., Pan, Q.L., He, Y.B., Li, W.B., Liu, X.Y., Fan, X., (2010). “Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression”. Materials and Manufacturing Processes, Vol. 25, No. 7, pp. 539–545. [19] Haghdadi, N., Khalesian, A.R., Abedi, H.R., (2013). “Materials and Design Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy”. Materials and Design, Vol. 49, pp. 386–391. [20] Sheikh, H., Serajzadeh, S., (2008). “Estimation of flow stress behavior of AA5083 using artificial neural networks with regard to dynamic strain ageing effect”. Journal of Materials Processing Technology, Vol. 196, No. 1–3, pp. 115–119. ]21[ محمودی، م.، (1393). " تاثیر پارامترهای فرآیند نورد در کانالهای همسان زاویه دار بر تنشهای پسماند و خواص مکانیکی ساختاری آلیاژهای آلومینیوم". رساله دکترا، دانشگاه علم و صنعت ایران. ]22[ دادگر اصل، ی.، تاجداری، م.، مسلمی نائینی، ح.، داودی، ب.، عزیزی تفتی، ر.، پناهیزاده، و.، (1394). " پیش بینی مقدار گشتاور مورد نیاز در فرآیند شکل دهی غلتکی سرد مقاطع کانالی شکل با استفاده از شبکه های عصبی مصنوعی". مجله مهندسی مکانیک مدرس، دوره 99، شماره 9، ص ص. 1-6. ]23[شکوهفر، ع.، قربانپور، س.، نصیری خلیل آباد، س.، ذوالریاستین، ا.، جعفری، ع.، (1392). " پیش بینی سختی در نانو کامپوزیت های Al-Al2O3 با استفاده از شبکه عصبی مصنوعی با تغییر عوامل موثر در روش آلیاژسازی مکانیکی". مجله مهندسی مکانیک مدرس، دوره 13، شماره 13، ص ص.26-32. [24] Dobatkin, S.V., Szpunar, J.A., Zhilyaev, A.P., Cho, J.Y., Kuznetsov, A.A., (2007). “Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper, Mater”. Materials Science and Engineering: A, Vol. 462, No. 1–2, pp. 132–138. [25] Meyers, M.A., Mishra, A., Benson, D.J., (2006). “Mechanical properties of nanocrystalline materials”. Progress in Materials Science, Vol. 51, pp. 427–556. [26] Lee, J., Suh, J., Ahn, J., (2003). “Work-Softening Behavior of the Ultrafine-Grained Al Alloy Processed by High-Strain-Rate , Dissimilar-Channel Angular Pressing”. Metallurgical and Materials Transactions A, Vol. 34, pp.625–632.
| ||
آمار تعداد مشاهده مقاله: 1,460 تعداد دریافت فایل اصل مقاله: 323 |