
Int. J. Nonlinear Anal. Appl. 8 (2017) No. 2, 243-250
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2017.3056.1494

On exponential domination and graph operations

Betül Ataya, Aysun Aytaçb,∗
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Abstract

An exponential dominating set of graph G = (V,E) is a subset S ⊆ V (G) such that∑
u∈S

(1/2)d(u,v)−1 ≥ 1

for every vertex v in V (G)−S, where d(u, v) is the distance between vertices u ∈ S and v ∈ V (G)−S
in the graph G− (S − {u}). The exponential domination number, γe(G), is the smallest cardinality
of an exponential dominating set. Graph operations are important methods for constructing new
graphs, and they play key roles in the design and analysis of networks. In this study, we consider
the exponential domination number of graph operations including edge corona, neighborhood corona
and power.
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1. Introduction and preliminaries

The well-known concept of domination in graphs is a good tool for analyzing situations that can
be modeled by networks in which a vertex can exert influence on, or dominate, all vertices in its
immediate neighborhood. In some real world situations, a vertex can influence not only the vertices
within its immediate neighborhood, but also all vertices within a given distance. This kind of
situation is captured by distance domination. There are many variants of domination. Some of
these consider the distance that a vertex is from the set. For example, in distance domination, a
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vertex dominates all those vertices within a specific distance of it. Recently, Dankelmann et al. [4]
considered the case where the domination of a vertex reduces as distance increases. The dominating
power of a vertex decreases exponentially, by the factor 1/2, with distance. Hence a vertex v can be
dominated by a neighbor of v or by a number of vertices that are not too far from v. Such a model
could be used, for example, for the analysis of dissemination of information in social networks, where
the impact of the information decreases every time it is passed on. The assumption is that gossip
heard directly from a source is totally reliable, while gossip passed from person to person loses half
its credibility with each individual in the chain. Finding the exponential domination number in this
application amounts to determining the minimum number of sources needed so that each person gets
fully reliable information.

Let G = (V (G), E(G)) be a simple undirected graph of order n. We begin by recalling some
standard definitions that we need throughout this paper. For any vertex v ∈ V (G), the open
neighborhood of v is N(v) = {u ∈ V (G)|uv ∈ E(G)} and closed neighborhood of v is N [v] =
N(v) ∪ {v}. The degree of v in G denoted by deg(v), is the size of its open neighborhood. A vertex
v is said to be pendant vertex if deg(v) = 1. A vertex u is called support vertex if u is adjacent to
a pendant vertex. The distance d(u, v) between two vertices u and v in G is the length of a shortest
path between them. The diameter of G, denoted by diam(G) is the largest distance between two
vertices in V (G) [6, 13].

A set S ⊆ V (G) is a dominating set if every vertex in V (G)−S is adjacent to at least one vertex
in S. The minimum cardinality taken over all dominating sets of G is called the domination number
of G and is denoted by γ(G) [7, 8, 9].

Dankelmann et al. [4] recently defined exponential domination. Let G be a graph and S ⊆ V (G).
We denote by 〈S〉 the subgraph of G induced by S. For each vertex u ∈ S and for each v ∈ V (G)−S,
we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)− (S − {u})〉 if such a path
exists, and ∞ otherwise. Let v ∈ V (G). The definition is

ws(v) =

{ ∑
u∈S 1/2d(u,v)−1, if v /∈ S

2, if v ∈ S.

We refer to ws(v) as the weight of S at v (note that we define ws(v) = 2 if v ∈ S since then
v contributes ws(v)/2d to every vertex it exponentially dominates at distance d . If, for each,
v ∈ V (G), we have ws(v) ≥ 1, then S is an exponential dominating set. The smallest cardinality
of an exponential dominating set is the exponential domination number, γe(G), and such a set is a
minimum exponential dominating set, or γe(G)-set for short [1, 4].

The corona of two graphs is defined in [6] and there have been some results on the corona of two
graphs [5]. A new variances of corona of two graphs are defined in [10, 11, 12]. In this paper, we
study these operators in graphs and discuss their the exponential domination numbers.

The paper proceeds as follows. In Section 2, known results are given. Formulas for the exponential
domination number of the graphs obtained via unary and binary graph operations are given in Section
3. Section 4 concludes the paper.

2. Basic Results

Theorem 2.1. [4] For every positive integer n, γe(Pn) = d(n+ 1)/4e.

Theorem 2.2. For every positive integer n ≥ 3,

γe(Cn) =

{
2, if n = 4
dn/4e, if n 6= 4
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Theorem 2.3. [4] If G is a connected graph of diameter d, then γe(G) ≥ dd+2
4
e.

Theorem 2.4. [4] If G is a connected graph with order n, then γe(G) ≤ 2
5
(n+ 2).

Theorem 2.5. [4] Let G be a connected graph with order n and T be a spanning tree of G. Then,
γe(G) ≤ γe(T ).

Theorem 2.6. [4] For every graph G, γe(G) ≤ γ(G). Also, γe(G) = 1 if and only if γ(G) = 1.

Theorem 2.7. [4] There exists a tree T of order 375 with γe(T ) = 144.

Theorem 2.8. [2, 3] Let G1 and G2 be any two graphs. Let (G1 ◦G2) and (G1 +G2) be corona and
join operations of G1 and G2, respectively.
a) For any two graphs G1 and G2, γe(G1 ◦G2) ≥ ddiam(G1◦G2)

2
e.

b) Let G1 and G2 be any two graphs. If diam(G1) < diam(G2), then γe(G1 +G2) = γe(G1).

Theorem 2.9. [13, 6] If G is a simple graph and diam(G) ≥ 3, then diam(G) ≤ 3.

Corollary 2.10. [13, 6] If the diameter of G is at least 3, then γ(G) ≤ 2.

Theorem 2.11. Let G be a graph with order n and diam(G) = d. Then Gd ∼= Kn.

Theorem 2.12. [3] Let G be any connected graph of order n and diameter 2. If G has not a vertex
with degree n− 1, then γe(G) = 2.

Theorem 2.13. [3] Let G be any connected graph of order n. If G has a vertex with degree n− 1,
then γe(G) = 1

3. Graph Operations, Exponential Domination

3.1. Neighbourhood Corona

In this section, we consider the minimum exponential domination number of graphs which is obtained
by neighbourhood corona operation of any connected graph G and a path graph Pn, cycle graph Cn,
star graph S1,n, wheel graph W1,n and complete graph Kn.

Definition 3.1. [11] The graph G1 ∗G which is obtained by neighbourhood corona operation of a
connected graph G1 and graph G is formed as follows: Every vertex of graph G1 correspond to a
graph G and every vertex of G is adjacent to every neighbour vertex of the corresponding vertex of
G1.

Theorem 3.2. Let Pn be a path with n vertices and G be any connected graph with m vertices. Then,
exponential domination number of Pn ∗G is

γe(Pn ∗G) =


2d(n− 2)/6e+ 1 , n ≡ 0, 1(mod 6)

2d(n− 2)/6e+ 2 , n ≡ 2(mod 6)

2d(n− 2)/6e , otherwise

.
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Proof . Let vi be vertices of Pn and uij be the vertices of G corresponding to vi, where i ∈
{1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. It is obvious to see that deg(v1) = m+ 1. The distance between
v1 and u1j is d(v1, u1j) = 2. Let S ⊆ V (G) and S be an γe−set of Pn ∗G. S must include v3 and any
vertex u3j to exponentially dominate v1 and u1j. We also exponentially dominate the vertices v4, v5
and all vertices u4j and u5j corresponding to v4 and v5, respectively. Since d(v6, x) = for every x in
S, wS(v6) ≥ 1 is not satisfied. Therefore, we must add v9 and any vertex u9j such that d(v6, v9) = 3
and d(v6, v9j) = 3 to S. When the similar though is continued, we obtain S. Since, the distance
between any two vertices of S is 6k, k ∈ Z+. Hence, the cardinality of S is 2d(n− 2)/6e. Let vk be
the last vertex taken to S on Pn. We have three cases depending on whether undominated vertices
on Pn are exponentially dominated or not by vk.
Case 1. Let n ≡ 0, 1 (mod 6).
In this case, the number of undominated vertices on Pn is 3 or 4. Hence, the vertices vn, vn−1 and
the vertices unj, un−1j are not exponentially dominated by the vertices of S. So, S must contain at
least one more vertex which is either vn or vn−1. Therefore, we have γe(Pn ∗ G) = |S| + |{vn}| =
2d(n− 2)/6e+ 1.
Case 2. Let n ≡ 2 (mod 6).
In this case, the number of undominated vertices on Pn is exactly 5. The proof is similar to Case 1.
Hence, S must contain two more vertices. One of these is any vertex vx of the last three vertices of
Pn and the other is any vertex uxj of G. Therefore, we have γe(Pn ∗G) = 2d(n− 2)/6e+ 2.
Case 3. Let n ≡ 3, 4, 5 (mod 6).
In this case, the number of undominated vertices on Pn is 0,1 or 2. It is clear that each vertex of
Pn ∗G is exponentially dominated by the vertices S. Hence, we have γe(Pn ∗G) = 2d(n− 2)/6e.
By summing up Case 1, 2 and 3, we get the theorem. �

Theorem 3.3. Let Cn be a cycle with n vertices and G be any connected graph with m vertices.
Then, exponential domination number of Cn ∗G is

γe(Cn ∗G) =

{
2d(n− 2)/6e+ 1 , n ≡ 1, 2(mod 6)
2d(n− 2)/6e , otherwise

.

Proof . Let vi be vertices of Cn and uij be the vertices of the graph G corresponding to all vertices
vi, where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Let S ⊆ V (G) and S be γe-set of Cn ∗ G. Similar
with Pn ∗ G, S must include the vertex v3 on Cn and any vertex u3j to exponentially dominate v1
and u1j. Since the distance between any two vertices of S is 6k, k ∈ Z+. Hence, the cardinality of
S is 2d(n − 2)/6e. Let vk be the last vertex taken to S on Cn. We have two cases depending on
whether undominated vertices on Cn are exponentially dominated or not by vk.
Case 1. Let n ≡ 1, 2(mod 6).
In this case, the number of undominated vertices on Cn is 4 or 5. Hence, the vertices vn, vn−1 and
corresponding vertices ∀unj, un−1j are not exponentially dominated by the vertices of S. Thus, S
must contain at least one more vertex which is either vn or vn−1. Therefore, we have γe(Cn ∗ G) =
2d(n− 2)/6e+ 1.
Case 2. Let n ≡ 0, 3, 4, 5(mod 6).
In this case, the number of undominated vertices on Cn is 0,1,2 or 3. For all remaining vertices,
wS(v) ≥ 1 satisfies. Thus, we do not need to add any more vertex to S. Hence, we have γe(Cn ∗G) =
2d(n− 2)/6e. By summing up Case 1 and Case 2, we get the theorem. �

Theorem 3.4. Let S1,n be wheel graph with n + 1 vertices and G be any connected graph with m
vertices, then γe(S1,n ∗G) = 2.
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Proof . Let S ⊆ V (G) and S be γe-set of S1,n ∗ G. Since the center vertex c of S1,n exponentially
dominates many vertices in S1,n ∗ G, S must contain the vertex c. But, the condition wS(v) ≥ 1 is
not satisfied for all v in V (S1,n ∗ G)−N [c]. Also, any vertex v in V (S1,n ∗ G)−N [c] is adjacent to
all pendant vertices of S1,n. Thus, it is sufficient to add any one of these pendant vertices of S1,n to
S. Hence, we have wS(v) ≥ 1 for every v in V (S1,n ∗G) and γe(S1,n ∗G) = 2. �

Corollary 3.5. Let W1,n be wheel graph, Kn be complete graph, Kn,m be bipartite complete graph
and G be any connected graph with m vertices. Then, γe(G1 ∗G) = 2, for G1

∼= W1,n, Kn, Kn,m.

Proof . The proof can be easily obtained by Theorem 2.12. �

3.2. Edge Corona

In this section, we consider exponential domination number of graphs which is obtained by edge
corona operation of any connected graph G and a path graph Pn, cycle graph Cn, star graph S1,n,
complete graph Kn and wheel graph W1,n.

Definition 3.6. [10] The graph G1 �G which is obtained by edge corona operation of a connected
graph G1 and graph G is formed as follows. Every edge of graph G1 correspond to a graph G and
every vertex of G is adjacent to two end vertices of the corresponding edge of G1.

Theorem 3.7. Let Pn and Cn be a path and a cycle of order n, respectively and G be any connected
graph of order m. Then, γe(G1 �G) = γ(G1) = d(n/3)e, for G1

∼= Pn, Cn.

Proof . Let u1, u2, . . . , un be vertices and e1, e2, . . . , en be edges of G1. It is obviously to see that, for
G1
∼= Pn, deg(u1) = deg(un) = m+ 1 and deg(ui) = 2m+ 2 for every ui in V (G1)− {u1, un} and for

G1
∼= Cn, deg(u) = 2m+2 for every u in V (G1). Let S be γe-set of G1 �G. Thus, S must contain the

common vertex u2 either on path or on cycle that has maximum degree in G1 �G. Since d(u2, x) = 2
for every x in V (G) that is corresponding to the edge e3 in E(G1). The condition wS(x) ≥ 1 is
not satisfied. Hence, we need to add u5 ∈ G1 to S which is at distance 2 from x and exponentially
dominates most vertices in G1 �G. When the similar though is continued, it is easy to see that the
distance between vertices of S is 3k, k ∈ Z+and then S = {u2, u5, u8, . . .}. This set is γe-set of G1,
too.

If we select S such that |S| < γ(G1), then we can not exponentially dominate all vertices. Hence,
wS(u) ≥ 1 is not satisfied for every u in V (G �G1).

If we select S such that |S| > γ(G1), then by the definition of minimum exponential dominating
set we have a contradiction with the minimality of S. Hence, we have

γe(G1 �G) = γ(G1) = d(n/3)e.

The proof is now completed. �

Theorem 3.8. Let S1,n be star graph with n + 1 vertices and G be any connected graph with m
vertices. Then, γe(S1,n �G) = 1.

Proof . The distance between u in S1,n � G and the center vertex c in V (S1,n) is 1. Therefore, it
is sufficient to add only center vertex c to minimum exponential dominating set. Hence, we have
γe(S1,n �G) = 1. The proof is now completed. �
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Theorem 3.9. Let Kn be a complete graph with n vertices and G be any complete graph with m
vertices. Then, γe(Kn �G) = 2.

Proof . Vertex set of Kn � G can be partitioned into two vertex sets such that V (Kn � G) =
V (Kn) ∪mV (G). We denote the graphs corresponding to every edge of Kn by G. It is easy to see
that, 1 ≤ d(u, v) ≤ 3 for u, v in V (Kn) and 1 ≤ d(u, v) ≤ 2. for u in V (Kn) and v in V (G). Let
S be γe-set of Kn � G. The vertex u in V (Kn) is adjacent to (n − 1)(m + 1) vertices of G. Other
remaining (n − 1)(n − 2)/2 vertices of G are at distance 2 from u. Hence, S must include any two
vertices of Kn to exponentially dominate every v in Kn �G. Therefore, we have

γe(Kn �G) = 2.

The proof is now completed. �

Theorem 3.10. Let W1,n be wheel graph with n + 1 vertices and G be any connected graph with m
vertices. Then,

γe(W1,n �G) =

{
n/5 + 1, if n ≡ 0 (mod 5)
dn/5e+ 1, otherwise

.

Proof . Vertex set of W1,n � G can be partitioned into three vertex sets such that V (W1,n � G) =
V1 ∪ V2 ∪ V (W1,n), where V1 is the set of G that corresponds to every edge on cycle of W1,n, V2 is
vertex set of G that corresponds to every edge which is incident to center vertex c of W1,n.

Let S be γe-set of W1,n �G and c be center vertex of W1,n. Since d(c, u) = d(c, v) = 1 for u in V2
and v in V1, S must include the center vertex c. Hence, S exponentially dominates all vertices of V2
and W1,n. It is easy to see that the distance between c and any vertex of V1 is 2. Then, The condition
wS(v) ≥ 1 is not satisfied. We must add at least two vertices of S form V (W1,n) to exponentially
dominate some vertices of V1. These two vertices are on cycle of W1,n and the distance between them
is 5. For undominated vertices in V1, n/5 vertices in V1 are taken into S. If n ≡ 0 (mod 5), then
|S| = n/5 + 1; otherwise |S| = dn/5e+ 1. �

3.3. Power

In this section, we consider exponential domination number power operation of path graph Pn, cycle
graph Cn, star graph S1,n, wheel graph W1,n and some common results are found related to graph
power operation.

Definition 3.11. [13] Let G be a simple graph. kth power of G is denoted by Gk and it is the
graph which has the vertex set V (Gk) = V (G) and the edge set E(Gk) = {uv|dG(u, v) ≤ k}.

Theorem 3.12. Let Pn be a path with n vertices and P k
n be the kth power of Pn. Then,

γe(P
k
n ) =

{
dn/(3k + 1)e, if n ≡ 1, 2, 3, . . . , 2k + 1 (mod 3k + 1)
dn/(3k + 1)e+ 1, otherwise

Proof . Let vi be vertices of P k
n , where i ∈ {1, 2, . . . , n}. Let S be γe-set of P k

n . We note that
the vertex vk+1 is adjacent to 2k + 1 vertices in P k

n . Thus, S must include vk+1. The vertex vk+1

contributes 1/2 to wS(v2k+2). We must add the vertex v4k+2 to S, which is at distance 2 from v2k+2,
to be satisfied wS(v2k+2) ≥ 1. The distance between the vertices in S is at most 3k + 1. Hence, S
has at least n/(3k + 1) vertices. We have two cases depending on n.
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Case 1. Let n ≡ 1, 2, 3, . . . , 2k + 1 (mod 3k + 1).
In this case, after taking the last vertex in S the number of the remaining vertices which are not in S
is at most k. By the structure of P k

n , these k vertices are adjacent to the last vertex in S. Therefore,
all vertices in P k

n are exponentially dominated by the vertices of S. So, we have

γe(P
k
n ) = dn/(3k + 1)e.

Case 2. Let n ≡ 0, 3k, 3k − 1, 3k − 2, . . . , 2k + 2(mod 3k + 1).
In this case, after taking the last vertex vi ∈ S the number of the remaining vertices which are not
in S is at least k+ 1. To exponentially dominate these vertices, S must include one vertex vj on the
path [vi+1, vn] of P k

n , where j ∈ {i + 1, i + 2, . . . , n}. Since all vertices are exponentially dominated
by the vertices of S, we get

γe(P
k
n ) = dn/(3k + 1)e+ 1.

By summing up Case 1 and 2, we get the theorem. �

Theorem 3.13. Let Cn be cycle graph with n vertices and Ck
n be the kth power of Cn. Then,

γe(C
k
n) =

{
dn/(3k + 1)e, if n ≡ 1, 2, 3, . . . , 2k + 2 (mod 3k + 1)
dn/(3k + 1)e+ 1, otherwise

.

Proof . The proof is similar to the proof of Theorem 3.3.1. By the structure of Ck
n, it is easy to

see that there are differences in the case n ≡ 2k + 2 (mod 3k + 1). In this case, the number of the
remaining vertices after taking the last vertex in S is k + 1. But, these vertices are exponentially
dominated by the vertices of S. �

Corollary 3.14. The exponential domination number of second power of star graph S1,n, wheel
graph W1,n and bipartite complete graph is γe(S

2
1,n) = γe(W

2
1,n) = γe(K

2
n,m) = 1.

Proof . Let G ∼= S1,n,W1,n, Kn,m. We know that diam(G) = 2. By Theorem 2.11, the graph G2 is
isomorphic to Kn. Hence, we have γe(G

2) = 1 by Theorem 2.13. The proof is now completed. �

Corollary 3.15. Let G be a graph with diam(G) = d and k ≥ dd/2e. Then, γe(Gk) = 1.

Proof . The proof is obvious from Theorem 2.11 and Theorem 2.13. �

Theorem 3.16. Let G be any connected graph and Gk, Gk+1 are the kth and (k+ 1)th graph power
of G, respectively. Then,

γe(G
k+1) ≤ γe(G

k).

Proof . Let S be γe-set of Gk. Let dGk(u, v) = x in Gk for u in S and v in V (Gk)− S. in the graph
Gk. Since S is γe-set, wS(v) = 2/2x ≥ 1 for every v in S. If diam(Gk) = d, then it is clear that
diam(Gk+1) ≤ d. We also know that V (Gk) = V (Gk+1). Let γe-set of Gk+1 be the same set S. In
this case, dGk+1(u, v) ≤ x in Gk+1 for u ∈ S and v ∈ V (Gk+1) − S. By the definition, the value of
wS(v) in Gk+1 is

dGk+1(u, v) ≤ x

2d
Gk+1 (u,v) ≤ 2x

2

2
d
Gk+1(u,v)

≥ 2
2x

(wS(v))Gk+1 ≥ (wS(v))Gk .
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Since, (wS(v))Gk ≥ 1, it is clear that (wS(v))Gk+1 ≥ 1. Hence, if we denote γe-set of Gk+1 by S1,
then we have |S1| ≤ |S|. This implies that γe(G

k+1) ≤ γe(G
k). �

Corollary 3.17. Let G be any connected graph with n vertices and Gk be the kth power of G. Hence,
we have

γe(G
k) ≤ γe(G

k−1) ≤ γe(G
k−2) ≤ . . . ≤ γe(G

2) < γe(G).

4. Conclusion

In this paper, we have discussed the graph-theoretic concept of exponential domination number.
Calculation of the exponential domination number for simple graph types is important because
if one can break a more complex network into smaller networks, then under some conditions the
solutions for the optimization problem on the smaller networks can be combined to a solution for
the optimization problem on the larger network.
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