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Abstract

In this paper, we give a probabilistic counterpart of Mazur-Ulam theorem in probabilistic normed
groups. We show, under some conditions, that every surjective isometry between two probabilistic
normed groups is a homomorphism.
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1. Introduction and preliminaries

Mazur and Ulam showed that every bijective isometry between real normed spaces is affine [5]. Since
then it has attracted the attention of some researchers in order to generalize this result (see e.g. [§]).
In particular, the Mazur-Ulam theorem has been investigated in normed and metric groups [3} [10]
and in probabilistic and random normed spaces [T, [].

In this paper we give a probabilistic counterpart of the Mazu-Ulam theorem in probabilistic
normed groups introduced by the authors in [7]. We begin with some basic notions which will be
needed in this paper.

A distribution function is a function F' from the extended real line [—oo,+o0] to the interval
[0,1] such that F' is nondecreasing and left-continuous and satisfies F/(—oc0) = 0, F(+o00) = 1A.
We denote the set of all distribution functions by A. A subset of A consisting of all distribution
functions F' with F'(0) = 0 will be denoted by A™. The subset Dt of AT is defined as follows:

Dt = {F € A* : " F(+o0) = 1},
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where [~ f(z) denotes the left limit of the function f at the point z. For F,G € A" we mean F < G
by F(z) < G(z), for all € R. The distribution function H, is given by

o) = {

0, ifz <a,
1, ifx>a,

for all a,z € R. The maximal element for A™ (and also for D) according to the presented order is
the distribution function H,.

A triangular norm (briefly ¢-norm) is a binary function 7" from [0, 1] x [0,1] to [0, 1] which is
associative, commutative, nondecreasing in each place and T'(a,1) = a, for all a € [0,1]. A triangle
function is a function 7 : At x AT — AT such that 7 is associative, commutative, nondecreasing
for all F,G,H € A" and it has Hy as unit [4]. A sequence {F,} in AT converges weakly to a
distribution function F, written by F,, < F, if and only if the sequence {F, ()} converges to F(z)
at each continuity point = of F' (see Definition 4.2.4. in [9]). A triangle function 7 is said to be
continuous if F,, = F and G,, = G in AT imply that 7(F,, G,) — 7(F,G). For example, if T is a
continuous t-norm, then 77 is a continuous triangle function, where 71 is defined by

r(F,G)(x) = sup T(F(s),G(t)), (1.1)

s+t=x

for all F,G € A" and every z,s,t € R.

Definition 1.1. [7] A triple (G, F, 7) is called a probabilistic normed group, where G is a group
with identity element e, 7 is a continuous triangle function and F' is a mapping from G into A*
satisfying the following conditions:

(PGN1) F, = H, if and only if z = e,

(PGN2) F,, > 7(F,, F,), whenever z,y € G,

(PGN3) F,-1 = F,, where 7! is the inverse element of x.

Then F' is called a probabilistic group-norm on GG. The probabilistic group-norm F' is called abelian
if = F, for each z,y € G.

In a probabilistic normed group (G, F, 1), for each x in G and A > 0, the strong A-neighborhood
of x is the set
No(A) = {yeG:Fy1(X)>1- A}

The strong neighborhood system for G is the union | J, ., N, where N, = {N,(\) : A > 0}. Note
that the strong neighborhood system for G determines a Hausdorff topology for G (see Theorem
12.1.2 in [9]).

2. Main theorem

Definition 2.1. [2] A group G is called divisible if for every g € G, and every positive integer n
there exists y € G such that y” = g. We say that group G is 2-divisible if for each g € G there exists
y € G such that y?> = g. The algebraic center of points x,y € G is an element z € G, denoted by
/Ty, such that 2* = zy.

Definition 2.2. Let (G, F, ) and (G’, F', 7) be two probabilistic normed groups. A mapping 7T :
(G, F,u) — (G', F',7) is called an isometry if for each z,y € G,

T@)Tw) - = Foy1-
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Let (G, F,T) be a probabilistic normed group. Consider the following conditions:
(C1) There exists a constant ¢ > 1 such that F,2(t) < F,(%), for all 2 € G and t > 0.
(C2) F, e DT, forall xz € G.

(C3) 7(D* x D) C D™.

The following example gives a probabilistic normed group satisfying the conditions (C1),(C2) and
(C3).

Example 2.3. Consider the probabilistic normed group (R, F, 77), where R is the additive group of
real numbers and F, = H|,, for all z € R. We have F,» = H,,|, for each n € N and each x € R.
Therefore

o0, ift<n|z| [0, fi<|la] ¢
Fxn(t)_{l, ift>n|x]| _{ F(2),

Loiftjz| "
for each z,t € R and every n € N. Now for n > 2, choosing 1 < ¢ < n we get
)= B < B,
n c
for each z,t € R. Particularly, for n = 2 putting 1 < ¢ < 2, we get

Fa) < B,

for all z,t € R. It is obvious that for every x € R, F, = Hy € D*. Since 70(Ha|s Hiy) = Hia|+1y)»
for all z,y € R, we get
r(Fy, Fy) € DT,

Now consider the probabilistic normed group (R, F, 7r), where R, is the multiplicative group with
e = 1. Let Fy, = H|iog(n)|, for all h € R.. We have

t

Fia(t) = Hitognz|(t) = Haftognl (1) = Hirogn (3

),

for each t,h € Ry. Putting 1 < ¢ <2, we have Fj2(t) < Fy(%).

Theorem 2.4. Let (G, F,u) and (G', F',T) be two probabilistic normed groups such that both G, G’
are uniquely 2-divisible abelian groups, and conditions (C1), (C2) and (C3) hold for both (G, F',T)
and (G, F,p). If T : G — G’ is a surjective isometry, then

F —
T(/7)(/T(@)T(y) " Ho,

forall z,y € G.

Proof . Let x,y € G and set
a=ry, b=VT@)T(y), E=F me
Let {g,} be a sequence of maps form G’ to itself, defined for each z € G’ by

qo(2) =T(a*(T7(2))7"), @(z) =b"2"",
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and for n € N,
n+1 = Gn-1°4n © q;ll-

For n € N define {p,}, a sequence of points in G’, by

pP1 = b7 Pny+1 = %L—l(pn)'

By induction, one can see that for all n € Ny we have

(T (x)) = T(y), 0(T(y)) = T(x). (2.1)

We show that for each u,v € G' and all n € Ny,

/ /
gn(u)gn(v)~1 = Fuv_l'

For n =0,
/ o
Foowyao )1 = Fr(@2(r-1()-1)(T(@2(r-1(0)-1)) 1
= Fuz(1-1(u) -1 (a2(T-1 ()~ 1)1 = Fa2a—2(7-1(u))-17-1 ()
= Fraw-ir-1) = Frrw-1r-1w) -1 = Frotwr-1e)-
o
= Flrr—1@wy)(rr-1w)-1)
= Fvivfl‘

Suppose that the statement holds for some n € N. Then we get

! !
dn+1(w)gn+1(v)~1 = F‘]nfloquoq»;il(u)(qu710Qn°qgi1(v))71
!
anogy (u)(gnogy L, (v) 1
!
- Fqgil(u)(q;il(u))—l
!
an—10¢ "1 (u)(gn—10g;*, (v))~1

. !
- Fuv—l‘

So

/ /
gn(u)gn(v)~1 = Fuv—la

for each u,v € G’ and all n € Ny. Now by induction we are going to show that

Fy 1@y = B, Fprw- =, (2.2)

for n € N. For n = 1, we have

/ _ _ —
p1T(x)~t — F T(x)T(y)T(z)~1 F T(y)T(z)~L E.

(Note that in the above equation we use the fact that if s> = tr and v = mn, then s?v? = (sv)? and
sv = v/trmn = \/tr\/mn, for all s,v,r,t,m,n € G'.)
Likewise,

Fl

nT

N / JR—
w = F agam = F
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Hence (2.2)) holds for n = 1. Suppose that (2.2) holds for some n € N. Then by using (2.1)) and the
induction hypothesis we get

/ _ / _ / _
Fpar@y = o son) s = oy = -
Similarly we have
/ _
Fpn+1T(y)_1 = L.
Now by (2.2)) for n > 2,
/ / / —
F;in_Lil = FPnT($)71T($)p;11 Z T(FpnT(z)_l’ FT(I)P,Zil) = T(E, E) (23)
Again, by induction we prove that there is constant ¢ > 1 such that
t
F o 2(t)<F (- 24
qn(2)z 1( ) = Lz 1(0)7 ( )

for each z € G', t > 0 and n € N. For n=1, we have
Fél(Z)Z‘1 = FI;QZ_IZ_I = Fl;2(z—1)2 = F(,bz—1)2.

By the condition (C1), there exists constant ¢ > 1 such that
/ / t
F’(bzfl)2 (t> < sz*1<z)7

for each z € G’ and t > 0. Hence .
Fqll(Z)z—l(t) <F, 1(;)7

p1z—

for each z € G' and t > 0. Now suppose that the statement holds for some natural number n. Then
for each z € G" and t > 0,

/ v
qn+1(z)z’1(t) - qn_lqnq;il(Z)(qn_1q,fi1(2))*1(t)

v
=F i oo )

¢
!
<E e ()
¢
— / —
- Fqn_ilan(pn)(q;il(z))’l ( c)
¢ , ¢

- F‘;n—l(pn)z_l(z) - Fpn-HZ_l(E)'

In the inequality (2.4) replace z by p,+1. Then for n € N and ¢ > 0, we obtain
/ F/ t /

%(Pnﬂ)}?;il t) < pnp;}rl E) = (p"p;il)ﬂ(E)'
Therefore
t
/ /
B 0 <5,

and for n > 3 and each t > 0, we have

(2.5)

!
pnp:il <t) — pnflprin(E) = > p2p171(0n72).
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By (2.3) and (2.5) for n > 3 we get
t
T(E,E)t) < F'

-  Pp2py Cn_2 ) )

(2.6)

On the other hand, there is ¢; > 1 such that

/

v
F ot () = Froa -1 -1yrr-1m)-1 (1)

= Foa(r-10))-12(t) = Flar-1(0))-1)2(t)
¢

< Fyr—1p))-1(—)
C1

t

= Fryar-o- (2

t

= Fjil“(zz)b*1 <C_1)

for each t > 0. Consequently,
T(E’ E) (Clcn_Qt) < FZ/72P1_1 (Clt) < ‘FTC(a)b—1 (t)u
for each t > 0. Since F, € D* for each z € G’, and 7(D* x D) C DT we have
lim 7(E, E)(cic" %) = 1,
n——+0oo

for each t > 0. But H, is a maximal element of D%, therefore
F’T/”(a)b—1 = Ho.
([l

Theorem 2.5. Suppose that (G, F,u) and (G', F',T) are two probabilistic normed groups such that
both G,G' are uniquely 2-divisible abelian groups. Let the conditions (C1),(C2) and (C3) hold for
both (G', F',7) and (G, F,p). If U : (G, F,u) — (G', F',T) is a surjective isometry with U(e) = e,
then U is a homomorphism.

Proof . We can apply Theorem for surjective isometry U. For each z,y € G we have

F' = Ho.
U(vz9) (/T @)U ()~ Ho
Thus

for each x,y € G. That is,
Uvry) = vU(@)U(y), (2.7)
for each x,y € G. In the equation (2.7)), let y = e. Since U(e) = e, we have
U(Vz) = U(2),
for each x € G. Now for arbitrary z,y € G we get
U(ry) = (U(vzy))* = (VU(2)U(y))* = U(x)U(y),

i.e., U is a homomorphism. []
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