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Abstract

We consider the quasilinear Kirchhoff’s problem

utt − φ(x)||∇u(t)||2∆u+ f(u) = 0, x ∈ RN , t ≥ 0,

with the initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case where N ≥ 3, f(u) =
|u|au and (φ(x))−1 ∈ LN/2(RN) ∩ L∞(RN) is a positive function. The purpose of our work is to
study the long time behaviour of the solution of this equation. Here, we prove the existence of a
global attractor for this equation in the strong topology of the space X1 =: D1,2(RN)×L2

g(RN). We
succeed to extend some of our earlier results concerning the asymptotic behaviour of the solution of
the problem.
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1. Introduction

Our aim in this work is to study the following quasilinear hyperbolic initial value problem

utt − φ(x)||∇u(t)||2∆u+ f(u) = 0, x ∈ RN , t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN ,
(1.1)
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with initial conditions u0, u1 in appropriate function spaces, N ≥ 3. The case of N = 1, the first
equation of (1.1) describes the nonlinear vibrations of an elastic string. Throughout the paper we
assume that the functions φ, g : RN −→ R satisfy the following condition:

(G) φ(x) > 0, for all x ∈ RN and (φ(x))−1 =: g(x) ∈ LN/2(RN) ∩ L∞(RN).

This class will include functions of the form

φ(x) ≈ c0 + ε|x|a, ε > 0, a > 0,

resembling phenomena of slowly varying wave speed around the constant speed c0. Many results
treat the case of φ(x) = constant (in bounded or unbounded domains). It must be noted, that this
case is proved to be totally different from the case of φ(x)→ c± > 0, as x→ ±∞.

Kirchhoff in 1883 proposed the so called Kirchhoff string model in the study of oscillations of
stretched strings and plates

ph
ϑ2u

ϑt2
+ δ

ϑu

ϑt
=

{
p0 +

Eh

2L

∫ L

0

(
ϑu

ϑx

)2

dx

}
ϑ2u

ϑx2
+ f, (1.2)

where we have 0 < x < L, t ≥ 0, and we have to mention that u = u(x, t) is the lateral displacement
at the space coordinate x and the time t, E the Young modules, p the mass density, h the
cross-section area, L the length, p0 the initial axial tension, δ the resistance modules and f
the external force (see [7]). When p0 = 0 the equation is considered to be of degenerate type and
the equation models an unstretched string or its higher dimensional generalization. Otherwise it is
of nondegenerate type.

In the case treated here the problem becomes complicated because the equation does not give
rise to compact operators. The homogeneous Sobolev spaces combined with equivalent weighted
Lp spaces, is the appropriate space to overcome these difficulties. In our paper we assume that
f(u) = |u|au, in order to study the behavior of the solutions for this kind of equations. This case is
rather interesting in the case of the homogeneous Sobolev spaces.

In bounded domains there is a vast literature concerning the attractors of semilinear waves equa-
tions. We refer to the monographs [2], [13]. Also in the paper [3] the existence of global attractor
in a weak topology is discussed for a general dissipative wave equation. K. Ono [9], for δ ≥ 0, has
proved global existence, decay estimates, asymptotic stability and blow up results for a degenerate
non-linear wave equation of Kirchhoff type with a strong dissipation .

On the other hand, it seems that very few results are achieved for the unbounded domain case.
In our previous work (see [10]), we proved global existence and blow-up results for an equation of
Kirchhoff type in all of RN . Also, in [12] we proved the existence of compact invariant sets for the
same equation. Recently, in [11] we studied the stability of the origin for the generalized equation of
Kirchhoff strings on RN , using central manifold theory. Also, Karahalios and Stavrakakis [4]- [6]
proved existence of global attractors and estimated their dimension for a semilinear dissipative wave
equation on RN .

The presentation of this paper has as follows: In Section 2, we discuss the space setting of the
problem and the necessary embedding for constructing the evolution triple. In Section 3, we prove
existence of an absorbing set for our problem in the energy space X0. Finally in Section 4, we prove
that there exists a global attractor like invariant set AXs

δ1
in the strong topology of the energy space

X1 =: D1,2(RN)× L2
g(RN).
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Notation: We denote by BR the open ball ofRN with center 0 and radius R. Sometimes for sim-
plicity we use the symbols C∞0 , D1,2, Lp, 1 ≤ p ≤ ∞, for the spaces C∞0 (RN), D1,2(RN), Lp(RN),
respectively; ‖ · ‖p for the norm ‖ · ‖Lp(RN ), where in case of p = 2 we may omit the index. These
spaces, as we will see later on when we define them, are very useful for our problem. They are playing
a very important role for the product space X0, as we will see in Section 2. Finally, the symbol =:
is used for definitions.

2. Space setting; formulation of the problem

As we have already seen in [10], the space setting for the initial conditions and the solutions of our
problem is the product space

X0 =: D(A)×D1,2(RN), N ≥ 3.

We also define the space X1 =: D1,2(RN) × L2
g(RN), with the following associated norm

e1(u(t)) =: ||u||2D1,2 + ||ut||2L2
g
. We have that the embedding X0 ⊂ X1 is compact. The homo-

geneous Sobolev space D1,2(RN) is defined as the closure of C∞0 (RN) functions with respect to
the following energy norm ||u||2D1,2 =:

∫
RN |∇u|

2dx. It is known that

D1,2(RN) =
{
u ∈ L

2N
N−2 (RN) : ∇u ∈ (L2(RN))N

}
and D1,2(RN) is embedded continuously in L

2N
N−2 (RN), that is, there exists k > 0 such that

||u|| 2N
N−2
≤ k||u||D1,2 . (2.1)

The space D(A) is going to be introduced and studied later in this section. We shall frequently
use the following generalized version of Poincaré’s inequality∫

RN
|∇u|2dx ≥ α

∫
RN

gu2dx, (2.2)

for all u ∈ C∞0 and g ∈ LN/2, where α =: k−2||g||−1
N/2 (see [1, Lemma 2.1]). It is shown that

D1,2(RN) is a separable Hilbert space. The space L2
g(RN) is defined to be the closure of C∞0 (RN)

functions with respect to the inner product

(u, v)L2
g(RN ) =:

∫
RN

guvdx. (2.3)

It is clear that L2
g(RN) is also a separable Hilbert space. Moreover, we have the following

compact embedding.

Lemma 2.1. Let g ∈ LN/2(RN) ∩ L∞(RN). Then the embedding D1,2 ⊂ L2
g is compact. Also, let

g ∈ L
2N

2N−pN+2p (RN). Then the following continuous embedding D1,2(RN) ⊂ Lpg(RN) is valid, for all
1 ≤ p ≤ 2N/(N − 2).

Proof . For the proof we refer to [5, Lemma 2.1]. �

To study the properties of the operator −φ∆, we consider the equation

− φ(x)∆u(x) = η(x), x ∈ RN , (2.4)
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without boundary conditions. Since for every u, v ∈ C∞0 (RN) we have

(−φ∆u, v)L2
g

=

∫
RN
∇u∇v dx, (2.5)

we may consider equation (2.4) as an operator equation of the form

A0u = η, A0 : D(A0) ⊆ L2
g(RN)→ L2

g(RN), η ∈ L2
g(RN). (2.6)

The operator A0 = −φ∆ is a symmetric, strongly monotone operator on L2
g(RN). Hence,

Friedrich’s extension theorem is applicable. The energy scalar product given by (2.5) is

(u, v)E =

∫
RN
∇u∇vdx

and the energy space XE is the completion of D(A0) with respect to (u, v)E. It is obvious that
the energy space is the homogeneous Sobolev space D1,2(RN). The energy extension AE = −φ∆ of
A0,

− φ∆ : D1,2(RN) → D−1,2(RN), (2.7)

is defined to be the duality mapping of D1,2(RN). We define D(A) to be the set of all solutions
of equations (2.4), for arbitrary η ∈ L2

g(RN). Friedrich’s extension A of A0 is the restriction of
the energy extension AE to the set D(A). The operator A = −φ∆ is self-adjoint and therefore
graph-closed. Its domain D(A), is a Hilbert space with respect to the graph scalar product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g
, for all u, v ∈ D(A).

The norm induced by the scalar product is

||u||D(A) =

{∫
RN

g|u|2 dx+

∫
RN

φ|∆u|2 dx
} 1

2

,

which is equivalent to the norm

||Au||L2
g

=

{∫
RN

φ|∆u|2 dx
} 1

2

.

So we have established the evolution quartet

D(A) ⊂ D1,2(RN) ⊂ L2
g(RN) ⊂ D−1,2(RN), (2.8)

where all the embeddings are dense and compact.
Finally, we give the definition of weak solutions for the problem (1.1).

Definition 2.2. A weak solution of the problem (1.1) is a function u such that

(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;D1,2(RN)], utt ∈ L2[0, T ;L2
g(RN)],

(ii) for all v ∈ C∞0 ([0, T ]× (RN)), satisfies the generalized formula∫ T

0

(utt(τ), v(τ))L2
g
dτ +

∫ T

0

(
||∇u(t)||2

∫
RN
∇u(τ)∇v(τ)dxdτ

)
+

∫ T

0

(f(u(τ)), v(τ))L2
g
dτ = 0,

(2.9)

where f(s) = |s|as, and

(iii) satisfies the initial conditions

u(x, 0) = u0(x), u0 ∈ D(A), ut(x, 0) = u1(x), u1 ∈ D1,2(RN).
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3. Existence of an absorbing set

In this section we prove existence of an absorbing set for our problem (1.1) in the energy space
X0. First, we give existence and uniqueness results for the problem (1.1) using the space setting
established previously. Let (m,mt) ∈ C (0, T ;D(A)×D1,2) be given. In order to obtain a
local existence result for the problem (1.1), we need information concerning the solvability of the
corresponding nonhomogeneous linearized (around the function m) problem restricted to the sphere
BR:

utt − φ(x)||∇m(t)||2∆u+ f(m) = 0, (x, t) ∈ BR × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ BR, (3.1)

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T ).

Then, we have the following local existence result:

Theorem 3.1. Consider that (u0, u1) ∈ D(A)×D1,2 and satisfy the nondegenerate condition

||∇u0|| > 0. (3.2)

Then there exists T = T (||u0||D(A), ||∇u1||) > 0 such that the problem (1.1) admits a unique local
weak solution u satisfying

u ∈ C(0, T ;D(A)) and ut ∈ C(0, T ;D1,2).

Moreover, at least one of the following statements holds true, either

(i) T = +∞, or
(ii) e(u(t)) =: ||u(t)||2D(A) + ||ut(t)||2D1,2 →∞, as t → T−.

Proof . For the proof we refer to [10, Theorem 3.2]. �

Next, to prove the existence of an absorbing set in the space X0, we set v = ut + εu for
sufficiently small ε. Then following [13, page 207], for calculation needs we rewrite (3.1) as follows

vt − εv +
(
−φ(x)||∇m||2∆ + ε2

)
u+ f(m) = 0. (3.3)

Lemma 3.2. Assume that f(u) is a C1-function, a ≥ 0, N ≥ 3. If the initial data (u0, u1) ∈
D(A)×D1,2 and satisfy the condition

||∇u0|| > 0, (3.4)

then we have that
||∇u(t)|| > 0, for all t ≥ 0. (3.5)

Proof . Let u(t) be a unique solution of the problem (1.1) in the sense of Theorem 3.1 on [0, T ).
Multiplying the first equation in (1.1) by −2∆ut and integrating it over RN , we have

d

dt
||∇ut(t)||2 + ||∇u(t)||2 d

dt
||u(t)||2D(A)

+ 2(f(u(t)), ∆ut(t)) = 0 (3.6)

Since ||∇u0|| > 0, we see that ||∇u(t)|| > 0 near t = 0. Let

T =: sup{t ∈ [0,+∞) : ||∇u(s)|| > 0 for 0 ≤ s < t},

then T > 0 and ||∇u(t)|| > 0 for 0 ≤ t < T . By contradiction we may prove that T = +∞. �

For the existence of the absorbing set we have to prove the following Theorem.
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Theorem 3.3. Assume that 0 ≤ a < 2/(N − 2), N ≥ 3, ||∇u0|| > 0, (u0, u1) ∈ D(A) × D1,2

and
ρ1 > 4α−1/2R2c2

3, (3.7)

where ρ1 = min(−ε, ε, 2ε), c3 =:
(
max

{
1, M−1

0

})1/2
. Then the ball B0 is an absorbing set in the

energy space X0. We also obtain that the unique local solution defined by Theorem 3.1 exists globally
in time.

Proof . Given the constants T > 0, R > 0, we introduce the two parameter space of solutions

XT,R =:
{
m ∈ C (0, T ;D(A)) : mt ∈ C

(
0, T ;D1,2

)
,m(0) = u0,

mt(0) = u1, e(m) ≤ R2, t ∈ [0, T ]
}
,

where e(m) =: ||mt||2D1,2 + ||m||2D(A). Also u0 satisfies the nondegenerate condition ||∇u0|| > 0.

The set XT,R is a complete metric space under the distance d(u, v) =: sup0≤t≤T e(u(t)− v(t)). We
may introduce the notation

M0 =:
1

2
||∇u0||2, T0 =: sup

{
t ∈ [0, ∞) : ||∇m(s)||2 > M0, 0 ≤ s ≤ t

}
.

By condition ||∇u0|| > 0, we may see that M0 > 0, T0 > 0 and ||∇m(t)|| > M0 > 0, for all
t ∈ [0, T0]. Multiplying equation (3.1) by

gAv = g(−ϕ∆)v = −∆v = −∆(ut + εu),

and integrating over RN , we obtain (using Hölder inequality with p−1 = 1
N
, q−1 = N−2

2N
, r−1 = 1

2
)

1

2

d

dt

{
||m||2D1,2||u||2D(A) + ||v||2D1,2 −

ε2

2
||u||2D1,2 }

− ε||v||2D1,2 + ε||m||2D1,2||u||2D(A) − ε3||u||2D1,2

≤
∣∣∣∣( d

dt
||m||2D1,2

)
||u||2D(A)

∣∣∣∣+ k2||m||aLNa||∇m||L 2N
N−2
||∇v||.

(3.8)

We observe that

θ(t) =: ||m||2D1,2 ||u||2D(A) + ||v||2D1,2 −
ε2

2
||u||2D1,2 ≥M0||u||2D(A) + ||ut||2D1,2 ≥ c−2

3 e(u), (3.9)

with c3 =:
(
max

{
1, M−1

0

})1/2
. We also have∣∣∣∣( d

dt
||m||2D1,2

)
||u||2D(A)

∣∣∣∣ =

∣∣∣∣(2

∫
RN

∆mmtϕgdx

)
||u||2D(A)

∣∣∣∣
≤ 2

(
||m||2D(A)

)1/2
(
||mt||2L2

g

)1/2

||u||2D(A)

≤ 2α−1/2R2e(u) ≤ 2α−1/2R2c2
3 θ(t).

(3.10)

By the relations (3.9) and (3.10), applying Young’s inequality in the last term of (3.8) and using
the estimates

||m||aLNa ≤ Ra and ||∇m||
L

2N
N−2
≤ ||m||D(A) ≤ R, (3.11)

the inequality (3.8) becomes
d

dt
θ(t) + C∗θ(t) ≤ C(R), (3.12)
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where C∗ = 1
2

(
ρ1 − 4α−1/2R2c2

3

)
> 0, ρ1 = min(−ε, ε, 2ε) and C(R) = k2R

2(a+1). Applying
Gronwall’s Lemma in (3.12) we get

θ(t) ≤ θ(0) e−C∗t +
1− e−C∗t

C∗
C(R). (3.13)

By using the nondegenerate condition ||∇u0|| > 0 and relation (3.5), we may assume that
||∇m(s)|| > M0 > 0, 0 ≤ s ≤ t, t ∈ [0,+∞). Letting t→∞, in relation (3.13) we conclude that

lim
t→∞

sup θ(t) ≤ C(R)

C∗
=: R2

∗. (3.14)

So, the ball B0 =: BX0(0, R̄∗) for any R̄∗ > R∗, where R∗ defined by (3.14), is an absorbing set
for the associated semigroup S(t) in the energy space X0 ⊂ X1, compactly. Also, from inequality
(3.14) and following the arguments of Theorem 3.1 (see [10]), we conclude that the solution of (3.1)
exists globally in time. �

4. Global strong attractor in the space X1

In this section we intend to study the problem (1.1) in a dynamical system point of view. An
important remark is that we were unable to show that the operator S(t) : X0 → X0, which is
associated to the problem (1.1), is continuous. For this reason we will study our problem as a
dynamical system in the space X1 =: D1,2(RN)× L2

g(RN). We need the following results.

Proposition 4.1. Assume that (u0, u1) ∈ X0 and 0 ≤ a ≤ 4/(N − 2), where N ≥ 3. Then the
linear wave equation (3.1) has solutions such that

u ∈ C
(
0, T ;D1,2

)
and ut ∈ C

(
0, T ;L2

g

)
.

Proof . The proof follows the lines of [5, Proposition 3.1]. �

Theorem 4.2. Assume that f(u) = |u|au is a nonlinear C1 function such that |f(u)| ≤ k1|u|a+1 and
0 ≤ a ≤ 4/(N −2), where N ≥ 3. If (u0, u1) ∈ D(A)×D1,2 and satisfy the nondegenerate condition

||∇u0|| > 0, (4.1)

then there exists T > 0 such that the problem (1.1) admits local weak solutions u satisfying

u ∈ C(0, T ;D1,2) and ut ∈ C(0, T ;L2
g). (4.2)

Proof . The proof follows the lines of [10, Theorem 3.2] (see also [11]). In this case, because of the
compact embedding X0 ⊂ X1 we obtain for the associated norms that

e1(u(t)) ≤ e(u(t)),

where e1(u(t)) =: ||u||2D1,2 + ||ut||2L2
g

and e(u(t)) =: ||u||2D(A) + ||ut||2D1,2 . Following the same steps as

in Theorem 3.1 we take the inequality

e1(u(t)) ≤ e(u(t)) ≤ R2,

where R is a positive parameter. So, u is a solution such that

u ∈ L∞(0, T ; D1,2), ut ∈ L∞(0, T ; L2
g).

The continuity properties (4.2), are also proved with the methods indicated in [13, Sections II.3
and II.4]. �

Next, we prove a useful lemma.
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Lemma 4.3. The mapping S(t) : X0 ⊂ X1 → X1 is continuous, for all t ≥ 0.

Proof . Let u, v two solutions of our problem such that

utt − φ(x)||∇u||2∆u = −f(u),

vtt − φ(x)||∇v||2∆v = −f(v).

Let w = u− v. So, we have that

wtt − φ||∇u||2∆w = φ
{
||∇u||2 − ||∇v||2

}
∆v − (f(u)− f(v))

w(0) = 0, wt(0) = 0.

Multiplying the previous equation by 2gwt and integrating over RN , we get∫
RN
gwtwttdx− 2

∫
RN
||∇u||2∆wwtdx

=
{
||∇u||2 − ||∇v||2

}∫
RN

∆vwtdx

− 2

∫
RN
g (f(u)− f(v))wtdx.

(4.3)

Hence we get

d

dt
e∗(w) = (

d

dt
||∇u||2)||∇w||2 + 2

{
||∇u||2 − ||∇v||2

}
× (∆v , wt)− 2(f(u)− f(v) , wt)L2

g

≡ I1(t) + I2(t) + I3(t),

(4.4)

So
d

dt
e∗(w) = I1(t) + I2(t) + I3(t), (4.5)

where e∗(w) = ||wt||2L2
g

+ Cu||w||2D1,2 and Cu = ||u||2D1,2 . To estimate the above integrals, we observe

that we need more smoothness for the solutions u, v. From Theorem 3.1, we have unique local
solution in the space X0, if (u0, u1) ∈ X0.

Under of these lights of remarks, we assume that (u0, u1) ∈ X1. Then, again from Theorem 3.1,
we take that (u, ut) ∈ X1. Therefore we have that

I1(t) = (2

∫
RN

∆uutφ(x)g(x)dx)||∇w||2

≤ 2(||u||2D(A))
1/2(||ut||2L2

g
)1/2||∇w||2

≤ 2R∗k(||ut||2D1,2)1/2||∇w||2

≤ 2R2
∗k||∇w||2 ≤ C2e

∗(w),

(4.6)

where C2 = 2R2
∗k. We also obtain the following estimation

I3(t) ≤ |I3(t)| ≤ k1α
−1(||∇u||2 − ||∇v||2)||∇(u− v)|| ||wt||L2

g

≤ k1α
−12R2

∗||w||D1,2 ||wt||L2
g

≤ CA(
Cu
2Cu
||w||2D1,2 +

1

2
||wt||2L2

g
) (Young’s inequality)

≤ CACBe
∗(w),

(4.7)
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where CA = 2k1α
−1R2

∗, CB = max(1
2
, 1

2Cu
).

Finally,

I2(t) ≤ (||∇u||+ ||∇v||)(||∇(u− v)||)
(∫
RN

∆vwtdx

)
≤ 2R∗||w||D1,2(||v||2D(A))

1/2(||wt||2L2
g
)1/2

≤ 2R2
∗||w||D1,2(||wt||2L2

g
)1/2

≤ 2R2
∗(
Cu
2Cu
||w||2D1,2 +

1

2
||wt||2L2

g
)

≤ CΓCBe
∗(w),

(4.8)

where CΓ = 2R2
∗. So using relations (4.6)-(4.8), estimation (4.5) becomes

d

dt
e∗(w) ≤ (C2 + CACB + CΓCB)e∗(w)

≤ C∗∗e
∗(w),

(4.9)

where C∗∗ = C2 + CACB + CΓCB. The proof of lemma is now completed. �

Relation (4.9) shows that we have unique solution in X1, if we assume smoother initial data.
More precisely, we take (u0, u1) ∈ X1. Therefore, if we set ûa = (u0, u1), ûb = (u′0, u

′
1), from the

last inequality (4.9) we take

||S(t)ûa − S(t)ûb||X1 ≤ C(||ûa||X0 , ||ûb||X0)||ûa − ûb||X1 . (4.10)

Since we have uniqueness only for smoother data, see relation (4.9), many trajectories can start
from the initial value ûa ∈ X1. Let us now denote these trajectories by [xβ(τ, ûa)]τ∈[0,δ1], for short
xβ(·, ûa), β ∈ Γûa , where Γûa is the set of indices marking trajectories starting from ûa.

Definition 4.4. (Set of Short Trajectories). Let δ1 > 0. We define

Xδ1 ≡
⋃

ûa∈X1

⋃
β∈Γûa

xβ(·, ûa),

Xs
δ1
≡ Xδ1 ,

where the closure is with respect to the norm L2(0, δ1;X1).

Then the space Xs
δ1

equipped by the topology of L2(0, δ1;X1) is a metric space. Let us define the
operators Lt : Xs

δ1
→ Xs

δ1
by the relation

Lt(x
β(., ûa)) = x(., xβ(t, ûa)) : L2(0, δ1;X1)→ L2(0, δ1;X1),

if (xβ(., ûa)) ∈ Xδ1 and by the natural extension (as a limit of a Cauchy sequence) if xβ(·) ∈ Xs
δ1
\Xδ1 .

Due to Lipschitz continuity of Lt we will work with elements of Xδ1 .

Lemma 4.5.

(i) The operators (Lt)t≥0 form a semigroup on Xs
δ1
.

(ii) The mapping Lt : Xs
δ1
→ Xs

δ1
is continuous, for all t ≥ 0.
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Proof . (i) Follows from the fact that x(δ1, ûa) ∈ X0 and the operators S(t) : X0 → X0 defined
by S(t)(ûa) = ûb, have the semigroup property. (But it is not clear whether these operators are
continuous for fixed t ≥ 0 with respect to the X0 topology.)
(ii) We can rewrite relation (4.10) as

||Ltu0 − Ltu1||X1 ≤ C(||u0||X0 , ||u1||X0)||u0 − u1||X1 . (4.11)

The above inequality implies that Lt is Lipschitz continuous and the lemma is proved. �

Remark 4.6. According to Theorem 3.3 we have that the ball B0 =: BX0(0, R∗) is an absorbing
set in the space X0 ⊂ X1, compactly. Putting ρ0 = δ1R∗ we get that for ρ′ > ρ0, the ball B0

ρ′ is
an absorbing set in Xs

δ1
.

So, we obtain the following theorem.

Theorem 4.8. The dynamical system given by the semigroup (Lt)t≥0, possesses the global attractor,
denoted by

AXs
δ1

=
⋂
t≥0

⋃
s≥t

LsB0
ρ′ ⊂ Xs

δ1
.

Proof . For the proof we use the above results and the ideas developed in [13, Theorem 1.1]. We
also refer to [8, Theorem 4.14]). �

Remark 4.9. We must remark that the semigroup generated by the problem (1.1) actually possesses
an attractor like. To be more precise this problem possesses an attractor like invariant set because it
doesn’t attract all the trajectories. We call the set AXs

δ1
an attractor just for simplicity reasons.
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