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Abstract

The purpose of this paper is to present some coupled fixed point results on a metric space endowed
with two b-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian
product of the given spaces endowed with directed graphs. Data dependence, well-posedness and
Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existence
and uniqueness of the solution for a system of integral equations.
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1. Introduction and Preliminaries

In the study of operator equation systems, a very useful concept is that of coupled fixed point.
Introduced by Opoitsev (see [15], [16]), the topic knew a fast expansion starting with the papers
of Guo and Lakshmikantam [12] and Gnana and Lakshmikantam [I0]. For related results regarding
coupled fixed point theory see [14], 4l 17, [5, [1§].

Regarding the theory of fixed points in metric spaces endowed with a graph, this research area was
initiated by Jachymski [13] and Gwoézdz-Lukawska, Jachymski [I1]. Other results for single-valued
and multivalued operators in such metric spaces were given by Beg et al. [I], Chifu and Petrusel [6],
[7], Dehkordi and Ghods [9].
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The purpose of this paper is to generalize some of these results, in special those from [7], using
the context of two b-metrics spaces endowed with a directed graph.

In what follow we shall recall some essential definitions and results which will be useful throughout
this paper.

Definition 1.1. ([§]) Let X be a nonempty set and let s > 1 be a given real number. A functional
d: X xX — [0,00) is said to be a b-metric with constant s, if all axioms of the metric space take
place with the following modification of the triangle axiom:

d(z,z) < sld(z,y) + d(y, 2)], for all z,y,z € X.
In this case the pair (X, d) is called a b-metric space with constant s.

Remark 1.2. Since a b-metric space is a metric space when s=1, the class of b-metric spaces is
larger than the class of metric spaces. For more details and examples on b-metric spaces, see e.g. [4].

Example 1.3. Let X =R, and d : X x X — R, such that d(z,y) = |[x —y[’,p > 1. It’s easy to
see that d is a b-metric with s = 2P, but is not a metric.

Let (X,d) and (Y, p) be two b-metric spaces, with the same constant s > 1, and let Z = X x Y.
Let us consider the functional d : Z x Z — [0, 00), defined by

d((z,y),(u,v)) =d(x,u) + p(y,v), forall (z,y), (u,v) € Z. (1.1)

Lemma 1.4. If (X,d) and (Y, p) are two complete b-metric spaces, with the same constant s > 1,

then d is a b-metric on Z = X x Y, with the same constant s > 1, and <Z, 5[) s a complete b-metric
space.

Definition 1.5. A mapping ¢ : [0,00) — [0, 00) is called a comparison function if it is increasing
and ¢"(t) — 0, as n — oo, for any ¢ € [0, c0).

Lemma 1.6. ([2]) If ¢ : [0,00) — [0, 00) is a comparison function, then:
(1) each iterate ©* of , k > 1, is also a comparison function;

(2) ¢ is continuous at 0;

(3) p(t) < t, for any t > 0.

In 1997, V. Berinde [2] introduced the concept of (c)-comparison function as follows:

Definition 1.7. ([2]) A function ¢ : [0,00) — [0, 00) is said to be a (c¢)-comparison function if

(1) ¢ is increasing;
(2) there exists kp € N, a € (0,1) and a convergent series of nonnegative terms » ., vy such that
(L) < apk(t) + v, for k > ko and any ¢ € [0, 00).

In order to give some fixed point results to the class of b-metric spaces, the notion of a (c)-
comparison function was extended to (b)-comparison function by V. Berinde [3].



Existence and uniqueness of the solution for a general system ... 8 (2017) No. 2, 263-276 265

Definition 1.8. ([3]) Let s > 1 be a real number. A mapping ¢ : [0,00) — [0,00) is called a
(b)-comparison function if the following conditions are fulfilled

(1) ¢ is monotone increasing;

(2) there exist ky € N, a € (0,1) and a convergent series of nonnegative terms » ;- vj, such that
sFHLOR (1) < ashpk(t) + vy, for k > ko and any t € [0, 00).

It is obvious that the concept of (b)-comparison function reduces to that of (¢)-comparison function
when s = 1.
The following lemma is very important in the proof of our results.

Lemma 1.9. ([]) If ¢ : [0,00) — [0,00) is a (b)-comparison function, then we have the following
conclusions:

(1) the series Y - s (¢) converges for any ¢ € [0, c0);
(2) the function S, : [0,00) — [0,00) defined by Sy(t) = D2, s*p"(t), t € [0,00), is increasing
and continuous at 0.

Due to the above lemma, any (b)-comparison function is a comparison function.

Let (X, d) be a b-metric space and A be the diagonal of X x X. Let G be a directed graph, such
that the set V(G) of its vertices coincides with X and A C F(G), where E(G) is the set of the edges
of the graph. Assume also that G has no parallel edges and, thus, G can be identified with the pair
(V(G), E(G)).

Definition 1.10. We say that G has the transitivity property if and only if, for all x,y,z € X,

(x,2) € E(G),(z,y) € E(G) = (x,y) € E(G).

Let us denote by G~! the graph obtained from G by reversing the direction of edges. Thus,
E(GT) ={(z.y) € X x X : (y,2) € E(G)}.

Remark 1.11. If G has the transitivity property, then G~! has the same property.

Throughout the paper we shall say that G with the above mentioned properties satisfies standard
conditions.

Definition 1.12. ([5]) Let (X, d) be a b-metric space, with constant s > 1, and G be a directed
graph. We say that the triple (X,d,G) has the property (A;), if for any sequence (z,)pen C
X with z,, = x, as n — oo, and (x,,, Tn41) € E(G), for n € N, we have that (z,,z) € E(G).

Definition 1.13. ([5]) Let (X,d) be a b-metric space, with constant s > 1, and G be a directed
graph. We say that the triple (X,d,G) has the property (As) if for any sequence (z,)neny C
X with x, — x, as n — oo, and (z,,, Z,11) € E(G™!), for n € N, we have that (z,,z) € E(G™).
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2. Existence and uniqueness results

Let (X, d) be a b-metric space with constant s > 1, endowed with a directed graph G satisfying the
standard conditions, and let (Y, p) be a b-metric space, with the same constant s > 1, endowed with
a directed graph G, also satisfying the standard conditions.

We shall consider a graph G on X x Y such that

((z,9), (u,v)) € E(G) & (z,u) € E(G1), (y,v) € E(G3").

Let F;: X xY — X and F5 : X XY — Y be two operators.
Throughout the paper the following notations will be used: Z := X xY and F:= (F|, F3) : Z —
Za F (‘Tay> = (Fl (iL‘,y) ) F2 (at,y)), for all (l‘,y) €Z

Definition 2.1. We say that the operator F' has the property (P) if:
(i) z,u € X such that (z,u) € E(Gy), then
(Fl (x7y)7F1 (U,y)) S E(G1)7 (F2 (:E7y) 7F2 (U,y)) S (G2_1) 7Vy S

(ii) y,v € Y such that (y,v) € E (G3'), then
(Fy (z,y), Fi (z,v)) € E(G1), (Fa (z,y), F> (z,v) € E(Gy') Vo € X.

Proposition 2.2. If the operator F has the property (P), then if x,u € X and y,v € Y are such
that ((z,v), (u,v)) € E(G), then

((F1 (z,9), B (2,9) , (F1 (u,0), B (u,0)) € E(G),

or

(F (z,y), F (u,v)) € E(G).

Proof . If ((z,y), (u,v)) € E(G), then (z,u) € E(G1), (y,v) € E(G3").
If (z,u) € E(Gy), from property (P) we have

(F1 (z,y), Fi (u,y)) € E(Gh), (2.1)
(P2 (2.y), P (uy) € E(Gy') Wy €Y. (2.2)
If (y,v) € E(G3'), from property (P) we have that
(Fy(z,y), Fi(z,v)) € E(Gy), (2.3)
(F> (z,y), F (z,v)) € E(G3') ,Vz € X. (2.4)

Considering x = win (2.3) , then (F (u,y) , F1 (u,v)) € E(Gy). Now from (2.1) and the transitivity
of G; we have
(F1(z,y), Fi (u,v)) € E(Gy). (2.5)

In we consider y = v in (2.2) , then (F; (z,v) , F» (u,v)) € E (G3') . From (2.4) and the transitivity
of G5 we have
(F (z,y), F» (u,v)) € E(G3'). (2.6)

From and we obtain
(F1 (z,y), F2 (2,y)), (F1 (w, ), Fo (u,0))) € E(G).
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Proposition 2.3. If the operator F' has property (P), then if x,u € X and y,v € Y are such that
((z,y), (u,v)) € E(G), then
(F" (z,y), F" (u,v)) € E(G).

Proof . From Proposition we have that if z,u € X and y,v € Y are such that ((z,y), (u,v)) €
E (G), then (2.5) and (2.6) take place. Using these relations and the fact that F' = (Fj, F3) has

property (P), we obtain:
For (z,u) € E(Gy),

(F1 (F1 (z,9),91) , B (F1 (w,0) 1)) € E(Gh) (2.7)
(B> (Fy (z,9) ,11) . B2 (Fy (u,0) 1)) € E (G ,Vys €Y. (2.8)
For (y,v) € E (GQ_I),
(Fy (z1, Fy (x,y)), Fi (21, Fy (u,v))) € E(Gy) (2.9)
(F2 (ZL’l, F2 (ZE,y)) s FQ (l‘l,FQ (u,v))) ek (GQ_I) ,le € X. (210)
If in (2.9) we consider x; = Fi (u,v) and in (2.7) we consider y; = F, (x,y), then we shall have
(Fy (Fy (u,v), By (x,y)), F1 (F1 (u,v), F3 (u,v))) € E(G1) (2.11)
(Fy (Fy(z,y), B2 (z,y))  Fy (Fy(u,v), By (2,y)) € E(GY). (2.12)
From and , using the transitivity of G; we obtain
(F1 (Fy (z,y), Fo (z,v)), F1 (F1 (u,v), Fy (u,v))) € E(Gy). (2.13)

In the same way we shall obtain

(B> (B (2,y) Fa (2,9), B (F1 (w,0), Fy (u,0))) € E(Gy ') - (2.14)

and are equivalent with
(F1 (F (2,9)) , F1 (F (u,v))) € E(Gy) (2.15)
(B> (F (z,y)), F> (F (u,v))) € E(G3'). (2.16)

From ([2.15)) and , using Proposition , we have
(F*(z,y),F* (u,v)) € E(G).
By induction we reach the conclusion. [J
Let us consider the set denoted by Z¥" and defined as:
z" ={(z,y) € Z: (z,F\ (z,y)) € E(Gy) and (y,F>(z,y)) € E(G3")}.
Consider the sequence (z,,),,cy in X and (yy), oy in Y defined by
Tni1 = F1 (Tn,Yn),  Yni1 = Fo (Tn,yn), for all n € N. (2.17)

Proposition 2.4. Suppose that the operator F has property (P) and (xo,y0) € Z¥. Then for any
sequence (2)en s 2n = (TnsYn) i Z, with (), and (Yn),en defined as above, we have (2, zny1) €
E(G), for alln € N.
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Proof . From the fact that (zg,y0) € Z¥ it follows that (zq, Fi (zo,%0)) € E (G1) and (yo, Fb (70, %0)) €
E (G3') which is equivalent with (z,z1) € E(G1) and (yo,11) € E (G37).
Now, from Proposition [2.2] we have

(F1 (%o, 90) , F1 (21,91)) € E(G),
(Fs (w0, 90) , F» (z1,11)) € E (G3),

which is equivalent with (z1,22) € E(G1) and (y1,30) € E (G3).
By induction we shall obtain that (z,,2,11) € E(G1) and (Y, yn41) € E (G3") which is equiva-
lent with ((l‘n, yn) ) ($n+1>yn+1)) S (G)7 Le. (Zn7 Zn-‘rl) S (G) g

Remark 2.5. It can be proved that x,, = FJ* (xq,yo) and y, = F3 (zo,yo) and thus, z, = F" (z),
for all n € N, where zy = (¢, 30) -

Definition 2.6. The operator F' = (Fy, Fy) : Z — Z is called (¢, G)-contraction of type (b) if:

i. F has property (P);
ii. there exists ¢ : [0,00) — [0,00) a (b)-comparison function such that

d(Fl (xvy>>F1 (u,v))+p(F2(:E,y),F2(u,v)) S@(d(l‘vu>+p(yvv))a
for all (z,u) € E(Gy), (y,v) € E(G31).

In what follows we shall consider the b—metric d defined by (1.1) .

Lemma 2.7. Let (X,d) be a b-metric space, with constant s > 1, endowed with a directed graph
G satisfying the standard conditions and (Y, p) be a b-metric space, with the same constant s > 1,
endowed with a directed graph Gy also satisfying the standard conditions. Let F' : Z — Z be a
(¢, G)-contraction of type (b). Consider the sequence (z,),cy as above. Then, if (zo,yo) € ZF, there
exists r(xg, o) > 0 such that

0 (2n, 2n1) < 9" (r(w0,30)) , for alln € N,

Proof . Let (z9,y) € Z¥. From Proposition[2.3|we have that (z,, 2,41) € E (G) which s (2,,, 7,11) €
E(G1) and (yYn, Yns1) € E(G3') for all n € N,
Since F'is a (¢, G)-contraction of type (b), we shall obtain

d (Zm szrl) = d(Fl (In,l, ynfl) aFl(xnv yn)) + p(F2 (Infla ynfl) 7F2(xnv yn))
< @ (d(Fy (Tn-2,Yn2) s F1(Tn-1,Yn1)) + p (F2 (Tn—2,Yn—2) , Fo(Tpn—1,Yn-1)))
<. 9" (d (o, ) + o (Yo, 1)) = @ (d (w0, F1 (%0, 90)) + £ (Yo, Fa (0, %0))) -

If we consider r(zo,yo) := d (20, F1 (0, Y0)) + p (Yo, F2 (20, y0)), then
Cfiv<Zn7 ZTH-I) < SO'IZ (7’([)’}07 yO)) ) for all n € N.
L]

Lemma 2.8. Let (X,d) be a complete b-metric space, with constant s > 1, endowed with a directed
graph Gy satisfying the standard conditions and (Y, p) be a complete b-metric space, with the same
constant s > 1, endowed with a directed graph Go also satisfying the standard conditions. Let
F:Z — Z be a (p,G)-contraction of type (b). Consider the sequence (z,),cy as above. Then, if
(20, y0) € Z*, there exists z* = (x*,y*) € Z, such that (z,),y converges to z*, as n — oo.
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Proof . Let (z9,y0) € Z*. From Lemma [2.7| we know that

d(’zn; ZnJrl) < gpn (T(x07 Z/O)) ) for all n € N.

Now we shall prove that (z,),.y is a Cauchy sequence. We have

dv(znv Zn+p) S Sg(Zn, Zn—i—l) + 5267(271-1—17 Zn+2) + sp_lg(zn—&—p—% Zn+p—1)

+ 5" d (Zngp1, Zngp) < 5" (r(w0,90)) + 520" (r(20, o))
e b SPTOMTPTR (r(2g, y0)) + SPOM TP (r (20, 10))

1 n+p—1
<5 > sk (r(wo,m)) -
k=n

Let S, =Y p_o s"¢" (r(z0,y0)) . Hence we have

d (Znu Zner) S

e (Sntp-1 — < Z (o, Yo)) -

k=0

From Lemma we have that the series is convergent. In this way, we shall obtain

o
d (2n, Zntp) < E r(zo,yo)) — 0, as n — oo.
k=0

In conclusion the sequence (z,) is a Cauchy sequence. Since <Z , 5[) is a complete b—metric, there
exists z* € Z, such that z, — 2*, as n — oo.

Remark 2.9. z, — 2* means that there exist z* € X and y* € Y such that z, — z* and y,, — y*,
as n — oo.

Let us now consider the following operator equation system

LZmen 219

Theorem 2.10. Let (X,d) be a complete b-metric space, with constant s > 1, endowed with a
directed graph Gy satisfying the standard conditions and (Y, p) be a complete b-metric space, with the
same constant s > 1, endowed with a directed graph Go also satisfying the standard conditions. Let
F:Z — Z be a (¢, G)-contraction of type (b). Suppose that the triple (X, d,G1) has property (A;)
and the triple (Y, p, Go) has property (Ay). If there exists (xq,y0) € Z¥, then the system has
at least one solution.

Proof . From Lemma [2.8] there exists z* € Z, such that z, — 2*, as n — co. We shall prove that
F (z*) = z*. From Remark 2.9 we have that 2* € X and y* € Y such that 2* = (z*,y*) € Z,

5(2*7 F <Z*)) = d(l‘*, Fy (x*v y*)) +p (y*7 Fy (x*ay*)) < s [d (l‘*, xn-l-l) +p (y*, yn-l-l)]
sd (Fy (2, yn)  F1 (27,97)) + p (Fa (20, yn) , F2 (27, 7))
< sld (2", Tpp1) + o (Y ynar)] + 59 (d (@0, 27) + p (Yn, y")) — 0, as n — oo.
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Hence F'(2*) = 2%, i.e.,

Let us suppose now that for every (z,v), (u,v) € Z, there exists (¢t,w) € Z such that
(z,t) € B(GY), (y,w) € E(G5Y),  (u,t) € BE(Gy), (v,w) € E(G51). (2.19)

Theorem 2.11. Adding the condition (2.19) to the hypotheses of Theorem we obtain the
uniqueness of the solution of the system (2.18)).

Proof . Let us suppose that there exist (z*,y*), (u*,v*) € Z two solutions of the system ({2.18]).
From ([2.19) we have that there exists (z,w) € Z such that

Using Lemma 2.7] we shall have

d(z*, u*) + p(y",v") :d(F"( Ly, B (W 0Y) 4 p(FS (27, "), FY (u”,07))
s |d (F"(ﬂf '), F1'(z,w)) + p(F3 (2", y7),

+8[ (FY' (2, w), FY" (u”,07)) + p(F3 (2, w)
< sle" (d(z*, 2) + p(y*, w)) + ¢"d(u*, z) + p(v*,w))] = 0, as n — 0.

Hence d(z*, u*) + p(y*,v*) = 0 and thus we obtain that z* = u* and y* = v*. O

Theorem 2.12. Let (X,d) be a complete b-metric space, with constant s > 1, endowed with a
directed graph Gy satisfying the standard conditions and (Y, p) be a complete b-metric space, with the
same constant s > 1, endowed with a directed graph Go also satisfying the standard conditions. Let
us consider F' = (F1, Fy) : Z — Z,H = (Hy, Hy) : Z — Z two operators. Suppose that

(i) F satisfies the conditions from Theorem [2.11}
(ii) there exists at least (u*,v*) € Z such that

H (u*,v*) = (u*,v") and (z*,u*) € E(Gy),(y*,v*) € E (G;l) ,

where (z*,y*) is a unique solution of the system (2.18)) .
(iii) there exist my,m2 > 0, such that

d(Fl (x>y) 7H1 (l‘,y)) S m,
p(FQ (xay)aH2 (x,y)) S 2.

(iv) t —sp(t) >0, for allt > 0 and tlim (t —sp(t)) = oo.
—00
In these conditions we have the following estimation:

d(z*,u”) + p(y™,v") <sup{t > 0]t —sp (t) < s(m +n2)}.
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Proof . From (i) there exists a unique pair (z*,y*) € Z such that F(z*,y*) = (z*,y*). Let (u*,v*) €
Z such that H (u*,v*) = (u*,v*).

d(z*,u") + p(y*, v") = d (Fi(2", y7), Hy (u”,07)) + p (Fa(2%, "), Ha (u”, 07))
sld (Fi(z%,y"), Fy (u',0%)) + d (Fy (u*, 0") , Hy (u®, 0%))]
s[p (Fa(a",y), Fo (u”,0")) + p (F2 (u”, 0") , Hy (u”, v7))]
< sp(d(a”,u") +p(y*,0")) + s (m +m2) -

Hence
d(z™, u”) + p(y*,v*) — sp (d(@*,u") + p (y*,v")) < s(m +m2).
Finally, we obtain that
d(z”,u") + p(y*,v*) <sup{t > 0|t —sp () < s(m +n2)}.

O

3. Well-posedness and Ulam-Hyers stability

Let us consider the operator equation system ([2.18))
{ T = Fl (ZL’, y)
Y= F2 (ilf, y)
Definition 3.1. By definition, the operator equation system ([2.18)) is said to be well-posed if:
(i) there exists a unique pair (z*,y*) € Z such that
{ vt = F (2%, y")
y* =y (r%y")

(ii) for any sequence (Zp,Yn), ey € Z for which

d(xnaFl (asn,yn)) — 0, p(ymFQ ($n>yn)) — 0

as n — 0o, we have that z, — z* and y, — y*, as n — oo.

Theorem 3.2. Suppose that all the hypotheses of Theorem holds. If the (b) —comparison func-
tion ¢ : [0,00) — [0,00) is such that ¢ (t) < ,¥t > 0 and for any sequence (T, Yn)pen € Z for
which

d(mel (xn7yn)) —)O, p(ynaFQ (xnayn)) — 0
as n — 00, we have that (x,,x*) € E(Gy) and (yn,y*) € £ (G;l) , then the operator equation system

(2.18]) is well-posed.

Proof . From Theorem we obtain that there exists a unique pair (z*,y*) € Z such that
{ rt=F (Qf*,y*)
y* = F2 (x*7y*)

Let (2, Yn),en be a sequence in Z such that d (v, Fi (2,,y,)) — 0 and p (Yn, F2 (Tn, yn)) — 0 as
n — co. In this way we have that (z,,2*) € E(G;) and (y,,y*) € E (G3") .
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It follows that

d(xnv$*) + p(yn,y*) <s [d (xn: Fy (2, yn)) + d (I} (mmyn) ax*)} +
+ 5[0 Uns F2 (Tns Yn)) + p (Fo (%0, 4n) , y7)]
= s[d(Fy (Tn, yn) , F1 (27, 97)) + p (F2 (%0, yn) , F2 (27, y7))]
+ s[d(xn, F1 (Tn, Yn)) + 0 (Y, F2 (20, Yn))]
< s (d(xn,2") + p (Yn, ¥")) + 8 [d (X0, F1 (T Yn)) + P (Yns F2 (T yn))] -

Hence we have the following inequality

d (@0, ") + p (Yn, ¥") < 59 (d (20, 27) + p (Yns ¥7))
+s (d ("Ena Fl (mna yn)) + p (yna F2 (xnayn))) :

Suppose that there exists § > 0 such that d(z,,z*) + p (yn,y*) — J, as n — oo. If in (3.1,
n — oo, we shall have

(3.1)

J <sp(d) <4,

which is a contradiction. Thus, § = 0 and hence d (z,,, 2*) + p (yn, y*) — 0, as n — oo. From here we
obtain the conclusion. [

Definition 3.3. By definition, the operator equation system ([2.18) is said to be generalized Ulam-
Hyers stable if and only if there exists ¢ : R2 — R, increasing, continuous in 0 with (0,0) = 0,
such that for each 1,e5 > 0 and for each solution (Z,7) € Z of the inequality system

{ d(z, F (x,y)) <&
Py, Fa(z,y)) <&

there exists a solution (z*,y*) € Z of the operator equation system (2.18) such that

d(T,2") +p @, y") S ¥ (e1,2). (3:2)

Theorem 3.4. Suppose that all the hypotheses of Theorem holds and the (b) —comparison func-
tion ¢ is such that  (t) < £Vt > 0. If there exists a function (3 : [0,00) — [0,00), B(r) := r —sp(r)
strictly increasing and onto, then the operator equation system (2.18)) is Ulam-Hyers stable.

Proof . From Theorem we obtain that there exists a unique pair (z*,y*) € Z such that
{ vt =F (2%, y")
yr=Fy (2 y)

Let £1,e9 > 0 and let (Z,7) € Z such that

where (Z,2%) € E(G), (7,y*) € E(G3") . We have

d(T,2") +p@y") =d@ F(z",y) +p @ F2 (z",y7))
<sld(z, I\ (7,9)) +p(y, F2 (7,7))]
+s[d(Fy (T, 79) . ]y (27, y7) + p (P2 (T.7) o (27, 7))
<s(e1+e) +sp(d@ ") +p(@y"))-
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Hence, we have
d(T,z%) +p(G,y") — s (d(T,2%) + p(F,y7) < s(e1 + &),
which is
B(d@,2")+p([,y")) <sler+e).
Hence
d(T,2") + p(G,y") <P (s(e1 +€2)).
Follows that the operator equation system ([2.18)) is Ulam-Hyers stable, where

V(er,e20) =B (s(e1+¢2)).
U

4. An application
In what follows we shall give an application for Theorem [2.10} Let us consider the following problem:

2"(t) = f(t, x(t), y(t))
y'(t) = g(t,x(1),y(t))  tel0,1]. (4.1)
z(0) =2'(1) =y (0) =y (1)

Notice now that the problem (4.1)) is equivalent with the following integral system

o(t) = [ K (t,) f(s,2(s), y(s))ds
’ telo,1], (4.2)

y(t) = be (t,5) g5, 2(s), y(s))ds

where
t,t <s

K(t’s>:{st>s

The purpose of this section is to give existence results for the solution of the system (4.2)), using

Theorem 2.101
Let us consider X := C([0, 1], R™) endowed with the following b-metric with s = 27, p > 1,

d = t)—yt)]”.

(z,y) = max [z(t) =y (¢)]

Let Y := C([0, 1], R™) endowed with the following b-metric with s = 27 ¢ > 1,
= t)y—y(t)]*.
p(z,y) nax |z(t) —y (1)]
Suppose that p < g. Consider also the graphs G and G, defined by the partial order relation, i.e.,

Gi:z,ue X,z <us x(t) <u(t), for any ¢t € [0, 1],
Gy:y,veY,y<uvey(t) <o(t), for any ¢t € [0,1].

Hence (X, d) is a complete b—metric space endowed with a directed graph G, and (Y, p) is a complete
b—metric space endowed with a directed graph Gs.

If we consider E(G1) = {(z,u) € X x X : 2 <u} and E(Gs) = {(y,v) €Y xY :y <wv}, then
the diagonal A; of X x X is included in E(G;) and the diagonal Ay of Y x Y is included in E(G2).
On the other hand E(G;') = {(z,u) € X x X :u < 2} and E(Gy") = {(y,v) €Y x Y :v < y}.

Moreover (X,d,G;) has the property (A;) and (Y, p,G5) has the property (Ay). In this case
ZF ={(z,y) € Z: 2 < Fy (x,y) and Fy (z,y) <y} where Z = X x Y.
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Theorem 4.1. Consider the system (4.1). Suppose:
(1) f:]0,1] x R* x R" — R"™ and g : [0,1] x R™ x R™ — R™ are continuous;
(i1) for all x,u € R™ with v < u we have f(t,z,y) < f(t,u,y) and g(t,x,y) > g(t,u,y), for all
y€R™ and t € [0,1];
(iii) for all y,v € R™ with v < y we have f(t,z,y) < f(t,z,v) and g(t,z,y) > g(t,z,v), for all
r€R" and t € [0,1];
(iv) there exists @, : [0,00) — [0,00), (b)-comparison functions and «,f3,7,0 € (0,00), with
max {a, f} < 1, and max{v,d} < 1 such that
(f(t.z,y) = f(tu,0))" < @ (alz —ulf’ + Bly — o),
for each t € [0,1],z,u € R" y,v € R™ z <wu,v <y.
]g(t,a:‘,y) - g(t,u,v)]q < QZ(PY |l' - u|q +9 |y - ,UllI) )
for each t € [0,1],z,u € R",y,v € R™ 2 <wu,v <y.

(v) there exists (xg,yo) € X X Y such that

(1)
Yo(?)

IN

o o .

K (t,s) f(s,20(s), yo(s))ds
,te0,1].
K (t

(t,5) g(s, x0(s), yo(s))ds

v

Then, there exists a unique solution of the integral system (4.2)).

Proof . Let F1 : Z — X, and I, : Z — Y, defined as

:/Kﬁqmw@w®MM€MH,

— /K(t,s)g(s,x(s),y(s))ds,t € [0,1]

In this way, the system (4.2)) can be written as

x = Fi(z,y)
{ y= Fz(l“j) ' (4:3)

It can be seen, from (4.3)), that a solution of this system is a coupled fixed point of the mapping
F. We shall verify if the conditions of Theorem are fulfilled.
Let x,u € X such that = < u.

/Kts (s, 2(s), y(s) @</Ktsf@mgmw@

— F1(U y)(t), for each y € R™ t € [0,1]. (4.4)

/Ktssx)( @>/Kts@m@mm@

= Fg(u,y)( ), for each y € R™,t € [0,1].
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Let now y,v € Y such that v <y,

/Kts s, x(s),y(s) ds</Ktsf(s:c(s)v(s))ds

- Fl(g; v)(t), for each x € R",t € [0,1]. (4.5)

/Kts s,2(s), y(s) ds>/Kts g(s, 2(s), v(s))ds

= Fg(x,v)( ), for each z € R",t € [0,1].

From (4.4) and (4.5)) , we have that the operator F' = (F}, F,) has the property (P).
On the other hand, by Cauchy-Buniakovski-Schwarz inequality, we have
1

Fu(.)(t) — Fi(u,0) () < [ /

0

(K (L) (f(s,2(s),y(s)) — f(s,uls), v(s)) dS]

< /Kp (t, 5) ds/\f(s,x<s),y(s)) — #(s,u(s), v(s))|" ds, for each t € [0,1].

0 0
We have
t 1

1
1
/Kp(t,s)dS:/spds+/tpds:tp (1— b t) < , for each t € [0,1].
p+1 p+1
0

Hence
. 1
Fi(e)(t) ~ Ao OF < o / (s, 2(s), y(s)) — f(s, uls), o(s))]” ds
< 1% / Plafz(s) —u(s)f +Bly(s) —v(s))ds
< 7P (o) +8p(00) €5 B o BHAE 1) + ().
Hence

d(Fl(xuy)>F1<uav)) < ﬁ&(ma}({aaﬁ} (d (*Tau) + p(y,v))) TS U, VS Y. (4'6)

In a similar way, for F5 we obtain
1 ~
p(FZ(‘ra y)? FQ(ua U)) < H—lw (max {77 6} (d (LL’, u) +p (ya U))) TS U, v S Y. (47)

By (4.6) and (4.7]) , we have

d(Fi(z,y), Fi(u,v)) + p (Fa(2,y), Fa(u, v))

< (e B} (d () (5,0) + = (max {36 (0 o) +  (3.0))
< 1 [Flmax {08} (@ e.0) + p (5,0) + 6 max (3,6} (0 (0 + p (0 0) ] 2 S v <
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Let us consider the function ¢ : [0,00) — [0,00), ¢ (t) = - (@(kt) +7$(lt)> 0 < kil <1,

p+1

which is a (b)-comparison function. Then, we have

d(Fl(xvy)7F1(u7U)) —i—p(FQ(IL‘,y),FQ(U,U)) S gp(d(x,u) +p(yvv)) » L S u,v S Y.

Thus we have that F' = (F1, F,) : Z — Z is a (p, G)-contraction of type (b).

Condition (iv) from Theorem [4.1] shows that there exists (g, yo) € Z such that zy < Fi (g, yo)

and Fy(xg,y0) < 9o which implies that Z¥ # @. On the other hand, (X,d,G;) and (Y, p,G5) have

the

Fli

properties (A;) and (Asg), so (i) from Theorem is fulfilled. In this way, we have that
Z — X and F, : Z — Y defined by (4.3)), verify the conditions of Theorem [2.10] Thus, there

exists (z*,y*) € Z solution of the problem (4.2)). O
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