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Abstract

The purpose of this paper is to present some coupled fixed point results on a metric space endowed
with two b-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian
product of the given spaces endowed with directed graphs. Data dependence, well-posedness and
Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existence
and uniqueness of the solution for a system of integral equations.
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1. Introduction and Preliminaries

In the study of operator equation systems, a very useful concept is that of coupled fixed point.
Introduced by Opoitsev (see [15], [16]), the topic knew a fast expansion starting with the papers
of Guo and Lakshmikantam [12] and Gnana and Lakshmikantam [10]. For related results regarding
coupled fixed point theory see [14, 4, 17, 5, 18].

Regarding the theory of fixed points in metric spaces endowed with a graph, this research area was
initiated by Jachymski [13] and Gwóźdź-Lukawska, Jachymski [11]. Other results for single-valued
and multivalued operators in such metric spaces were given by Beg et al. [1], Chifu and Petruşel [6],
[7], Dehkordi and Ghods [9].
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The purpose of this paper is to generalize some of these results, in special those from [7], using
the context of two b-metrics spaces endowed with a directed graph.

In what follow we shall recall some essential definitions and results which will be useful throughout
this paper.

Definition 1.1. ([8]) Let X be a nonempty set and let s ≥ 1 be a given real number. A functional
d : X ×X → [0,∞) is said to be a b-metric with constant s, if all axioms of the metric space take
place with the following modification of the triangle axiom:

d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

In this case the pair (X, d) is called a b-metric space with constant s.

Remark 1.2. Since a b-metric space is a metric space when s=1, the class of b-metric spaces is
larger than the class of metric spaces. For more details and examples on b-metric spaces, see e.g. [4].

Example 1.3. Let X = R+ and d : X ×X → R+ such that d (x, y) = |x− y|p , p > 1. It’s easy to
see that d is a b-metric with s = 2p, but is not a metric.

Let (X, d) and (Y, ρ) be two b-metric spaces, with the same constant s ≥ 1, and let Z = X × Y .

Let us consider the functional d̃ : Z × Z → [0,∞), defined by

d̃ ((x, y) , (u, v)) = d (x, u) + ρ (y, v) , for all (x, y) , (u, v) ∈ Z. (1.1)

Lemma 1.4. If (X, d) and (Y, ρ) are two complete b-metric spaces, with the same constant s ≥ 1,

then d̃ is a b-metric on Z = X×Y, with the same constant s ≥ 1, and
(
Z, d̃

)
is a complete b-metric

space.

Definition 1.5. A mapping ϕ : [0,∞) → [0,∞) is called a comparison function if it is increasing
and ϕn(t)→ 0, as n→∞, for any t ∈ [0,∞).

Lemma 1.6. ([2]) If ϕ : [0,∞)→ [0,∞) is a comparison function, then:

(1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;

(2) ϕ is continuous at 0;

(3) ϕ(t) < t, for any t > 0.

In 1997, V. Berinde [2] introduced the concept of (c)-comparison function as follows:

Definition 1.7. ([2]) A function ϕ : [0,∞)→ [0,∞) is said to be a (c)-comparison function if

(1) ϕ is increasing;

(2) there exists k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∑∞

k=1 vk such that
ϕk+1(t) ≤ aϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

In order to give some fixed point results to the class of b-metric spaces, the notion of a (c)-
comparison function was extended to (b)-comparison function by V. Berinde [3].
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Definition 1.8. ([3]) Let s ≥ 1 be a real number. A mapping ϕ : [0,∞) → [0,∞) is called a
(b)-comparison function if the following conditions are fulfilled

(1) ϕ is monotone increasing;

(2) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative terms
∑∞

k=1 vk such that
sk+1ϕk+1(t) ≤ askϕk(t) + vk, for k ≥ k0 and any t ∈ [0,∞).

It is obvious that the concept of (b)-comparison function reduces to that of (c)-comparison function
when s = 1.

The following lemma is very important in the proof of our results.

Lemma 1.9. ([4]) If ϕ : [0,∞) → [0,∞) is a (b)-comparison function, then we have the following
conclusions:

(1) the series
∑∞

k=0 s
kϕk(t) converges for any t ∈ [0,∞);

(2) the function Sb : [0,∞) → [0,∞) defined by Sb(t) =
∑∞

k=0 s
kϕk(t), t ∈ [0,∞), is increasing

and continuous at 0.

Due to the above lemma, any (b)-comparison function is a comparison function.
Let (X, d) be a b-metric space and ∆ be the diagonal of X ×X. Let G be a directed graph, such

that the set V (G) of its vertices coincides with X and ∆ ⊆ E(G), where E(G) is the set of the edges
of the graph. Assume also that G has no parallel edges and, thus, G can be identified with the pair
(V (G), E(G)).

Definition 1.10. We say that G has the transitivity property if and only if, for all x, y, z ∈ X,

(x, z) ∈ E (G) , (z, y) ∈ E (G)⇒ (x, y) ∈ E (G) .

Let us denote by G−1 the graph obtained from G by reversing the direction of edges. Thus,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)} .

Remark 1.11. If G has the transitivity property, then G−1 has the same property.

Throughout the paper we shall say that G with the above mentioned properties satisfies standard
conditions.

Definition 1.12. ([5]) Let (X, d) be a b-metric space, with constant s ≥ 1, and G be a directed
graph. We say that the triple (X, d,G) has the property (A1), if for any sequence (xn)n∈N ⊂
X with xn → x, as n→∞, and (xn, xn+1) ∈ E(G), for n ∈ N, we have that (xn, x) ∈ E(G).

Definition 1.13. ([5]) Let (X, d) be a b-metric space, with constant s ≥ 1, and G be a directed
graph. We say that the triple (X, d,G) has the property (A2) if for any sequence (xn)n∈N ⊂
X with xn → x, as n→∞, and (xn, xn+1) ∈ E(G−1), for n ∈ N, we have that (xn, x) ∈ E(G−1).
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2. Existence and uniqueness results

Let (X, d) be a b-metric space with constant s ≥ 1, endowed with a directed graph G1 satisfying the
standard conditions, and let (Y, ρ) be a b-metric space, with the same constant s ≥ 1, endowed with
a directed graph G2, also satisfying the standard conditions.

We shall consider a graph G on X × Y such that

((x, y) , (u, v)) ∈ E (G)⇔ (x, u) ∈ E(G1), (y, v) ∈ E
(
G−12

)
.

Let F1 : X × Y → X and F2 : X × Y → Y be two operators.
Throughout the paper the following notations will be used: Z := X×Y and F := (F1, F2) : Z →

Z, F (x, y) = (F1 (x, y) , F2 (x, y)), for all (x, y) ∈ Z.

Definition 2.1. We say that the operator F has the property (P ) if:

(i) x, u ∈ X such that (x, u) ∈ E(G1), then

(F1 (x, y) , F1 (u, y)) ∈ E(G1), (F2 (x, y) , F2 (u, y)) ∈ E
(
G−12

)
,∀y ∈ Y.

(ii) y, v ∈ Y such that (y, v) ∈ E
(
G−12

)
, then

(F1 (x, y) , F1 (x, v)) ∈ E(G1), (F2 (x, y) , F2 (x, v)) ∈ E
(
G−12

)
,∀x ∈ X.

Proposition 2.2. If the operator F has the property (P ), then if x, u ∈ X and y, v ∈ Y are such
that ((x, y) , (u, v)) ∈ E (G), then

((F1 (x, y) , F2 (x, y)) , (F1 (u, v) , F2 (u, v))) ∈ E (G) ,

or
(F (x, y) , F (u, v)) ∈ E (G) .

Proof . If ((x, y) , (u, v)) ∈ E (G) , then (x, u) ∈ E(G1), (y, v) ∈ E
(
G−12

)
.

If (x, u) ∈ E(G1), from property (P ) we have

(F1 (x, y) , F1 (u, y)) ∈ E(G1), (2.1)

(F2 (x, y) , F2 (u, y)) ∈ E
(
G−12

)
,∀y ∈ Y. (2.2)

If (y, v) ∈ E
(
G−12

)
, from property (P ) we have that

(F1 (x, y) , F1 (x, v)) ∈ E(G1), (2.3)

(F2 (x, y) , F2 (x, v)) ∈ E
(
G−12

)
,∀x ∈ X. (2.4)

Considering x = u in (2.3) , then (F1 (u, y) , F1 (u, v)) ∈ E(G1). Now from (2.1) and the transitivity
of G1 we have

(F1 (x, y) , F1 (u, v)) ∈ E(G1). (2.5)

In we consider y = v in (2.2) , then (F2 (x, v) , F2 (u, v)) ∈ E
(
G−12

)
. From (2.4) and the transitivity

of G−12 we have
(F2 (x, y) , F2 (u, v)) ∈ E

(
G−12

)
. (2.6)

From (2.5) and (2.6) we obtain

((F1 (x, y) , F2 (x, y)) , (F1 (u, v) , F2 (u, v))) ∈ E (G) .

�
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Proposition 2.3. If the operator F has property (P ), then if x, u ∈ X and y, v ∈ Y are such that
((x, y) , (u, v)) ∈ E (G), then

(F n (x, y) , F n (u, v)) ∈ E (G) .

Proof . From Proposition 2.2 we have that if x, u ∈ X and y, v ∈ Y are such that ((x, y) , (u, v)) ∈
E (G), then (2.5) and (2.6) take place. Using these relations and the fact that F = (F1, F2) has
property (P ), we obtain:
For (x, u) ∈ E(G1),

(F1 (F1 (x, y) , y1) , F1 (F1 (u, v) , y1)) ∈ E (G1) (2.7)

(F2 (F1 (x, y) , y1) , F2 (F1 (u, v) , y1)) ∈ E
(
G−12

)
,∀y1 ∈ Y. (2.8)

For (y, v) ∈ E
(
G−12

)
,

(F1 (x1, F2 (x, y)) , F1 (x1, F2 (u, v))) ∈ E (G1) (2.9)

(F2 (x1, F2 (x, y)) , F2 (x1, F2 (u, v))) ∈ E
(
G−12

)
,∀x1 ∈ X. (2.10)

If in (2.9) we consider x1 = F1 (u, v) and in (2.7) we consider y1 = F2 (x, y), then we shall have

(F1 (F1 (u, v) , F2 (x, y)) , F1 (F1 (u, v) , F2 (u, v))) ∈ E (G1) (2.11)

(F1 (F1 (x, y) , F2 (x, y)) , F1 (F1 (u, v) , F2 (x, y))) ∈ E (G1) . (2.12)

From (2.11) and (2.12), using the transitivity of G1 we obtain

(F1 (F1 (x, y) , F2 (x, y)) , F1 (F1 (u, v) , F2 (u, v))) ∈ E (G1) . (2.13)

In the same way we shall obtain

(F2 (F1 (x, y) , F2 (x, y)) , F2 (F1 (u, v) , F2 (u, v))) ∈ E
(
G−12

)
. (2.14)

(2.13) and (2.14) are equivalent with

(F1 (F (x, y)) , F1 (F (u, v))) ∈ E (G1) (2.15)

(F2 (F (x, y)) , F2 (F (u, v))) ∈ E
(
G−12

)
. (2.16)

From (2.15) and (2.16), using Proposition 2.2, we have(
F 2 (x, y) , F 2 (u, v)

)
∈ E (G) .

By induction we reach the conclusion. �

Let us consider the set denoted by ZF and defined as:

ZF =
{

(x, y) ∈ Z : (x, F1 (x, y)) ∈ E (G1) and (y, F2 (x, y)) ∈ E
(
G−12

)}
.

Consider the sequence (xn)n∈N in X and (yn)n∈N in Y defined by

xn+1 = F1 (xn, yn) , yn+1 = F2 (xn, yn) , for all n ∈ N. (2.17)

Proposition 2.4. Suppose that the operator F has property (P ) and (x0, y0) ∈ ZF . Then for any
sequence (zn)n∈N , zn = (xn, yn) in Z, with (xn)n∈N and (yn)n∈N defined as above, we have (zn, zn+1) ∈
E (G) , for all n ∈ N.
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Proof . From the fact that (x0, y0) ∈ ZF it follows that (x0, F1 (x0, y0)) ∈ E (G1) and (y0, F2 (x0, y0)) ∈
E
(
G−12

)
which is equivalent with (x0, x1) ∈ E (G1) and (y0, y1) ∈ E

(
G−12

)
.

Now, from Proposition 2.2 we have

(F1 (x0, y0) , F1 (x1, y1)) ∈ E(G1),

(F2 (x0, y0) , F2 (x1, y1)) ∈ E
(
G−12

)
,

which is equivalent with (x1, x2) ∈ E (G1) and (y1, y2) ∈ E
(
G−12

)
.

By induction we shall obtain that (xn, xn+1) ∈ E (G1) and (yn, yn+1) ∈ E
(
G−12

)
which is equiva-

lent with ((xn, yn) , (xn+1, yn+1)) ∈ E (G), i.e. (zn, zn+1) ∈ E (G) . �

Remark 2.5. It can be proved that xn = F n
1 (x0, y0) and yn = F n

2 (x0, y0) and thus, zn = F n (z0) ,
for all n ∈ N, where z0 = (x0, y0) .

Definition 2.6. The operator F = (F1, F2) : Z → Z is called (ϕ,G)-contraction of type (b) if:

i. F has property (P );

ii. there exists ϕ : [0,∞)→ [0,∞) a (b)-comparison function such that

d (F1 (x, y) , F1 (u, v)) + ρ (F2 (x, y) , F2 (u, v)) ≤ ϕ (d (x, u) + ρ (y, v)) ,

for all (x, u) ∈ E(G1), (y, v) ∈ E(G−12 ).

In what follows we shall consider the b−metric d̃ defined by (1.1) .

Lemma 2.7. Let (X, d) be a b-metric space, with constant s ≥ 1, endowed with a directed graph
G1 satisfying the standard conditions and (Y, ρ) be a b-metric space, with the same constant s ≥ 1,
endowed with a directed graph G2 also satisfying the standard conditions. Let F : Z → Z be a
(ϕ,G)-contraction of type (b). Consider the sequence (zn)n∈N as above. Then, if (x0, y0) ∈ ZF , there
exists r(x0, y0) ≥ 0 such that

d̃ (zn, zn+1) ≤ ϕn (r(x0, y0)) , for all n ∈ N.

Proof . Let (x0, y0) ∈ ZF . From Proposition 2.3 we have that (zn, zn+1) ∈ E (G) which is (xn, xn+1) ∈
E (G1) and (yn, yn+1) ∈ E

(
G−12

)
for all n ∈ N.

Since F is a (ϕ,G)-contraction of type (b), we shall obtain

d̃ (zn, zn+1) = d(F1 (xn−1, yn−1) , F1(xn, yn)) + ρ(F2 (xn−1, yn−1) , F2(xn, yn))

≤ ϕ (d (F1 (xn−2, yn−2) , F1(xn−1, yn−1)) + ρ (F2 (xn−2, yn−2) , F2(xn−1, yn−1)))

≤ . . . ≤ ϕn (d (x0, x1) + ρ (y0, y1)) = ϕn (d (x0, F1 (x0, y0)) + ρ (y0, F2 (x0, y0))) .

If we consider r(x0, y0) := d (x0, F1 (x0, y0)) + ρ (y0, F2 (x0, y0)), then

d̃ (zn, zn+1) ≤ ϕn (r(x0, y0)) , for all n ∈ N.

�

Lemma 2.8. Let (X, d) be a complete b-metric space, with constant s ≥ 1, endowed with a directed
graph G1 satisfying the standard conditions and (Y, ρ) be a complete b-metric space, with the same
constant s ≥ 1, endowed with a directed graph G2 also satisfying the standard conditions. Let
F : Z → Z be a (ϕ,G)-contraction of type (b). Consider the sequence (zn)n∈N as above. Then, if
(x0, y0) ∈ ZF , there exists z∗ = (x∗, y∗) ∈ Z, such that (zn)n∈N converges to z∗, as n→∞.
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Proof . Let (x0, y0) ∈ ZF . From Lemma 2.7 we know that

d̃ (zn, zn+1) ≤ ϕn (r(x0, y0)) , for all n ∈ N.

Now we shall prove that (zn)n∈N is a Cauchy sequence. We have

d̃ (zn, zn+p) ≤ sd̃ (zn, zn+1) + s2d̃ (zn+1, zn+2) + · · ·+ sp−1d̃ (zn+p−2, zn+p−1)

+ sp−1d̃ (zn+p−1, zn+p) ≤ sϕn (r(x0, y0)) + s2ϕn+1 (r(x0, y0))

+ · · ·+ sp−1ϕn+p−2 (r(x0, y0)) + spϕn+p−1 (r(x0, y0))

≤ 1

sn−1

n+p−1∑
k=n

skϕk (r(x0, y0)) .

Let Sn =
∑n

k=0 s
kϕk (r(x0, y0)) . Hence we have

d̃ (zn, zn+p) ≤
1

sn−1
(Sn+p−1 − Sn−1) ≤

1

sn−1

∞∑
k=0

skϕk (r(x0, y0)) .

From Lemma 1.9 we have that the series is convergent. In this way, we shall obtain

d̃ (zn, zn+p) ≤
1

sn−1

∞∑
k=0

skϕk (r(x0, y0))→ 0, as n→∞.

In conclusion the sequence (zn) is a Cauchy sequence. Since
(
Z, d̃

)
is a complete b−metric, there

exists z∗ ∈ Z, such that zn → z∗, as n→∞. �

Remark 2.9. zn → z∗ means that there exist x∗ ∈ X and y∗ ∈ Y such that xn → x∗ and yn → y∗,
as n→∞.

Let us now consider the following operator equation system{
x = F1 (x, y)
y = F2 (x, y)

. (2.18)

Theorem 2.10. Let (X, d) be a complete b-metric space, with constant s ≥ 1, endowed with a
directed graph G1 satisfying the standard conditions and (Y, ρ) be a complete b-metric space, with the
same constant s ≥ 1, endowed with a directed graph G2 also satisfying the standard conditions. Let
F : Z → Z be a (ϕ,G)-contraction of type (b). Suppose that the triple (X, d,G1) has property (A1)
and the triple (Y, ρ,G2) has property (A2). If there exists (x0, y0) ∈ ZF , then the system (2.18) has
at least one solution.

Proof . From Lemma 2.8, there exists z∗ ∈ Z, such that zn → z∗, as n → ∞. We shall prove that
F (z∗) = z∗. From Remark 2.9, we have that x∗ ∈ X and y∗ ∈ Y such that z∗ = (x∗, y∗) ∈ Z,

d̃ (z∗, F (z∗)) = d (x∗, F1 (x∗, y∗)) + ρ (y∗, F2 (x∗, y∗)) ≤ s [d (x∗, xn+1) + ρ (y∗, yn+1)]

+ s [d (F1 (xn, yn) , F1 (x∗, y∗)) + ρ (F2 (xn, yn) , F2 (x∗, y∗))]

≤ s [d (x∗, xn+1) + ρ (y∗, yn+1)] + sϕ (d (xn, x
∗) + ρ (yn, y

∗))→ 0, as n→∞.
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Hence F (z∗) = z∗, i.e., {
x∗ = F1 (x∗, y∗)
y∗ = F2 (x∗, y∗)

.

�

Let us suppose now that for every (x, y), (u, v) ∈ Z, there exists (t, w) ∈ Z such that

(x, t) ∈ E(G1), (y, w) ∈ E(G−12 ), (u, t) ∈ E(G1), (v, w) ∈ E(G−12 ). (2.19)

Theorem 2.11. Adding the condition (2.19) to the hypotheses of Theorem 2.10, we obtain the
uniqueness of the solution of the system (2.18).

Proof . Let us suppose that there exist (x∗, y∗), (u∗, v∗) ∈ Z two solutions of the system (2.18).
From (2.19) we have that there exists (z, w) ∈ Z such that

(x∗, z) ∈ E(G1), (y
∗, w) ∈ E(G−12 ),

(u∗, z) ∈ E(G1), (v
∗, w) ∈ E(G−12 ).

Using Lemma 2.7 we shall have

d(x∗, u∗) + ρ(y∗, v∗) = d(F n
1 (x∗, y∗), F n

1 (u∗, v∗)) + ρ(F n
2 (x∗, y∗), F n

2 (u∗, v∗))

≤ s [d(F n
1 (x∗, y∗), F n

1 (z, w)) + ρ(F n
2 (x∗, y∗), F n

2 (z, w))] +

+ s [d(F n
1 (z, w), F n

1 (u∗, v∗)) + ρ(F n
2 (z, w), F n

2 (u∗, v∗))]

≤ s [ϕn (d(x∗, z) + ρ(y∗, w)) + ϕnd(u∗, z) + ρ(v∗, w))]→ 0, as n→∞.

Hence d(x∗, u∗) + ρ(y∗, v∗) = 0 and thus we obtain that x∗ = u∗ and y∗ = v∗. �

Theorem 2.12. Let (X, d) be a complete b-metric space, with constant s ≥ 1, endowed with a
directed graph G1 satisfying the standard conditions and (Y, ρ) be a complete b-metric space, with the
same constant s ≥ 1, endowed with a directed graph G2 also satisfying the standard conditions. Let
us consider F = (F1, F2) : Z → Z,H = (H1, H2) : Z → Z two operators. Suppose that

(i) F satisfies the conditions from Theorem 2.11;

(ii) there exists at least (u∗, v∗) ∈ Z such that

H (u∗, v∗) = (u∗, v∗) and (x∗, u∗) ∈ E (G1) , (y
∗, v∗) ∈ E

(
G−12

)
,

where (x∗, y∗) is a unique solution of the system (2.18) .

(iii) there exist η1, η2 > 0, such that

d (F1 (x, y) , H1 (x, y)) ≤ η1,

ρ (F2 (x, y) , H2 (x, y)) ≤ η2.

(iv) t− sϕ (t) ≥ 0, for all t ≥ 0 and lim
t→∞

(t− sϕ (t)) =∞.

In these conditions we have the following estimation:

d(x∗, u∗) + ρ(y∗, v∗) ≤ sup {t ≥ 0| t− sϕ (t) ≤ s (η1 + η2)} .
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Proof . From (i) there exists a unique pair (x∗, y∗) ∈ Z such that F (x∗, y∗) = (x∗, y∗). Let (u∗, v∗) ∈
Z such that H (u∗, v∗) = (u∗, v∗) .

d(x∗, u∗) + ρ(y∗, v∗) = d (F1(x
∗, y∗), H1 (u∗, v∗)) + ρ (F2(x

∗, y∗), H2 (u∗, v∗))

≤ s [d (F1(x
∗, y∗), F1 (u∗, v∗)) + d (F1 (u∗, v∗) , H1 (u∗, v∗))]

+ s [ρ (F2(x
∗, y∗), F2 (u∗, v∗)) + ρ (F2 (u∗, v∗) , H2 (u∗, v∗))]

≤ sϕ (d(x∗, u∗) + ρ (y∗, v∗)) + s (η1 + η2) .

Hence
d(x∗, u∗) + ρ(y∗, v∗)− sϕ (d(x∗, u∗) + ρ (y∗, v∗)) ≤ s (η1 + η2) .

Finally, we obtain that

d(x∗, u∗) + ρ(y∗, v∗) ≤ sup {t ≥ 0| t− sϕ (t) ≤ s (η1 + η2)} .

�

3. Well-posedness and Ulam-Hyers stability

Let us consider the operator equation system (2.18){
x = F1 (x, y)
y = F2 (x, y)

.

Definition 3.1. By definition, the operator equation system (2.18) is said to be well-posed if:

(i) there exists a unique pair (x∗, y∗) ∈ Z such that{
x∗ = F1 (x∗, y∗)
y∗ = F2 (x∗, y∗)

.

(ii) for any sequence (xn, yn)n∈N ∈ Z for which

d (xn, F1 (xn, yn))→ 0, ρ (yn, F2 (xn, yn))→ 0

as n→∞, we have that xn → x∗ and yn → y∗, as n→∞.

Theorem 3.2. Suppose that all the hypotheses of Theorem 2.11 holds. If the (b)−comparison func-
tion ϕ : [0,∞) → [0,∞) is such that ϕ (t) < t

s
,∀t > 0 and for any sequence (xn, yn)n∈N ∈ Z for

which
d (xn, F1 (xn, yn))→ 0, ρ (yn, F2 (xn, yn))→ 0

as n→∞, we have that (xn, x
∗) ∈ E (G1) and (yn, y

∗) ∈ E
(
G−12

)
, then the operator equation system

(2.18) is well-posed.

Proof . From Theorem 2.11 we obtain that there exists a unique pair (x∗, y∗) ∈ Z such that{
x∗ = F1 (x∗, y∗)
y∗ = F2 (x∗, y∗)

.

Let (xn, yn)n∈N be a sequence in Z such that d (xn, F1 (xn, yn))→ 0 and ρ (yn, F2 (xn, yn))→ 0 as
n→∞. In this way we have that (xn, x

∗) ∈ E (G1) and (yn, y
∗) ∈ E

(
G−12

)
.
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It follows that

d (xn, x
∗) + ρ (yn, y

∗) ≤ s [d (xn, F1 (xn, yn)) + d (F1 (xn, yn) , x∗)] +

+ s [ρ (yn, F2 (xn, yn)) + ρ (F2 (xn, yn) , y∗)]

= s [d (F1 (xn, yn) , F1 (x∗, y∗)) + ρ (F2 (xn, yn) , F2 (x∗, y∗))]

+ s [d (xn, F1 (xn, yn)) + ρ (yn, F2 (xn, yn))]

≤ sϕ (d (xn, x
∗) + ρ (yn, y

∗)) + s [d (xn, F1 (xn, yn)) + ρ (yn, F2 (xn, yn))] .

Hence we have the following inequality

d (xn, x
∗) + ρ (yn, y

∗) ≤ sϕ (d (xn, x
∗) + ρ (yn, y

∗))

+ s (d (xn, F1 (xn, yn)) + ρ (yn, F2 (xn, yn))) .
(3.1)

Suppose that there exists δ > 0 such that d (xn, x
∗) + ρ (yn, y

∗) → δ, as n → ∞. If in (3.1) ,
n→∞, we shall have

δ ≤ sϕ (δ) < δ,

which is a contradiction. Thus, δ = 0 and hence d (xn, x
∗) + ρ (yn, y

∗)→ 0, as n→∞. From here we
obtain the conclusion. �

Definition 3.3. By definition, the operator equation system (2.18) is said to be generalized Ulam-
Hyers stable if and only if there exists ψ : R2

+ → R+, increasing, continuous in 0 with ψ(0, 0) = 0,
such that for each ε1, ε2 > 0 and for each solution (x, y) ∈ Z of the inequality system{

d (x, F1 (x, y)) ≤ ε1
ρ (y, F2 (x, y)) ≤ ε2

,

there exists a solution (x∗, y∗) ∈ Z of the operator equation system (2.18) such that

d (x, x∗) + ρ (y, y∗) ≤ ψ (ε1, ε2) . (3.2)

Theorem 3.4. Suppose that all the hypotheses of Theorem 2.11 holds and the (b)−comparison func-
tion ϕ is such that ϕ (t) < t

s
,∀t > 0. If there exists a function β : [0,∞)→ [0,∞), β(r) := r− sϕ(r)

strictly increasing and onto, then the operator equation system (2.18) is Ulam-Hyers stable.

Proof . From Theorem 3.2 we obtain that there exists a unique pair (x∗, y∗) ∈ Z such that{
x∗ = F1 (x∗, y∗)
y∗ = F2 (x∗, y∗)

.

Let ε1, ε2 > 0 and let (x, y) ∈ Z such that{
d (x̄, F1 (x, y)) ≤ ε1
ρ (ȳ, F2 (x, y)) ≤ ε2

,

where (x, x∗) ∈ E (G1), (y, y∗) ∈ E
(
G−12

)
. We have

d (x, x∗) + ρ (y, y∗) = d (x, F1 (x∗, y∗)) + ρ (y, F2 (x∗, y∗))

≤ s [d (x̄, F1 (x, y)) + ρ (ȳ, F2 (x, y))]

+ s [d (F1 (x, y) , F1 (x∗, y∗)) + ρ (F2 (x, y) , F2 (x∗, y∗))]

≤ s (ε1 + ε2) + sϕ (d (x, x∗) + ρ (y, y∗)) .
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Hence, we have
d (x, x∗) + ρ (y, y∗)− sϕ (d (x, x∗) + ρ (y, y∗)) ≤ s (ε1 + ε2) ,

which is
β (d (x, x∗) + ρ (y, y∗)) ≤ s (ε1 + ε2) .

Hence
d (x, x∗) + ρ (y, y∗) ≤ β−1 (s (ε1 + ε2)) .

Follows that the operator equation system (2.18) is Ulam-Hyers stable, where

ψ (ε1, ε2) = β−1 (s (ε1 + ε2)) .

�

4. An application

In what follows we shall give an application for Theorem 2.10. Let us consider the following problem:
x′′(t) = f(t, x(t), y(t))
y′′(t) = g(t, x(t), y(t))

x (0) = x′ (1) = y (0) = y′ (1)
, t ∈ [0, 1] . (4.1)

Notice now that the problem (4.1) is equivalent with the following integral system
x(t) =

1∫
0

K (t, s) f(s, x(s), y(s))ds

y(t) =
1∫
0

K (t, s) g(s, x(s), y(s))ds

, t ∈ [0, 1] , (4.2)

where

K (t, s) =

{
t, t ≤ s
s, t > s

The purpose of this section is to give existence results for the solution of the system (4.2), using
Theorem 2.10.

Let us consider X := C([0, 1],Rn) endowed with the following b-metric with s = 2p, p > 1,

d (x, y) = max
t∈[0,1]

|x(t)− y (t)|p .

Let Y := C([0, 1],Rm) endowed with the following b-metric with s = 2q, q > 1,

ρ (x, y) = max
t∈[0,1]

|x(t)− y (t)|q .

Suppose that p < q. Consider also the graphs G1 and G2 defined by the partial order relation, i.e.,

G1 : x, u ∈ X, x ≤ u⇔ x(t) ≤ u(t), for any t ∈ [0, 1] ,

G2 : y, v ∈ Y, y ≤ v ⇔ y(t) ≤ v(t), for any t ∈ [0, 1] .

Hence (X, d) is a complete b−metric space endowed with a directed graph G1 and (Y, ρ) is a complete
b−metric space endowed with a directed graph G2.

If we consider E(G1) = {(x, u) ∈ X ×X : x ≤ u} and E(G2) = {(y, v) ∈ Y × Y : y ≤ v}, then
the diagonal ∆1 of X ×X is included in E(G1) and the diagonal ∆2 of Y × Y is included in E(G2).
On the other hand E(G−11 ) = {(x, u) ∈ X ×X : u ≤ x} and E(G−12 ) = {(y, v) ∈ Y × Y : v ≤ y} .

Moreover (X, d,G1) has the property (A1) and (Y, ρ,G2) has the property (A2). In this case
ZF = {(x, y) ∈ Z : x ≤ F1 (x, y) and F2 (x, y) ≤ y} where Z = X × Y.
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Theorem 4.1. Consider the system (4.1). Suppose:

(i) f : [0, 1]× Rn × Rn → Rn and g : [0, 1]× Rm × Rm → Rm are continuous;

(ii) for all x, u ∈ Rn with x ≤ u we have f(t, x, y) ≤ f(t, u, y) and g(t, x, y) ≥ g(t, u, y), for all
y ∈ Rm and t ∈ [0, 1] ;

(iii) for all y, v ∈ Rm with v ≤ y we have f(t, x, y) ≤ f(t, x, v) and g(t, x, y) ≥ g(t, x, v), for all
x ∈ Rn and t ∈ [0, 1] ;

(iv) there exists ϕ̃, ψ̃ : [0,∞) → [0,∞) , (b)-comparison functions and α, β, γ, δ ∈ (0,∞), with
max {α, β} < 1, and max {γ, δ} < 1 such that

(f(t, x, y)− f(t, u, v))p ≤ ϕ̃ (α |x− u|p + β |y − v|p) ,
for each t ∈ [0, 1] , x, u ∈ Rn, y, v ∈ Rm, x ≤ u, v ≤ y.

|g(t, x, y)− g(t, u, v)|q ≤ ψ̃ (γ |x− u|q + δ |y − v|q) ,
for each t ∈ [0, 1] , x, u ∈ Rn, y, v ∈ Rm, x ≤ u, v ≤ y.

(v) there exists (x0, y0) ∈ X × Y such that

x0(t) ≤
1∫
0

K (t, s) f(s, x0(s), y0(s))ds

y0(t) ≥
1∫
0

K (t, s) g(s, x0(s), y0(s))ds

, t ∈ [0, 1] .

Then, there exists a unique solution of the integral system (4.2).

Proof . Let F1 : Z → X, and F2 : Z → Y , defined as

F1(x, y)(t) =

1∫
0

K (t, s) f(s, x(s), y(s))ds, t ∈ [0, 1] ,

F2(x, y)(t) =

1∫
0

K (t, s) g(s, x(s), y(s))ds, t ∈ [0, 1]

In this way, the system (4.2) can be written as{
x = F1(x, y)
y = F2(x, y)

. (4.3)

It can be seen, from (4.3), that a solution of this system is a coupled fixed point of the mapping
F. We shall verify if the conditions of Theorem 2.10 are fulfilled.

Let x, u ∈ X such that x ≤ u.

F1(x, y)(t) =

1∫
0

K (t, s) f(s, x(s), y(s))ds ≤
1∫

0

K (t, s) f(s, u(s), y(s))ds

= F1(u, y)(t), for each y ∈ Rm, t ∈ [0, 1] .

F2(x, y)(t) =

1∫
0

K (t, s) g(s, x(s), y(s))ds ≥
1∫

0

K (t, s) g(s, u(s), y(s))ds

= F2(u, y)(t), for each y ∈ Rm, t ∈ [0, 1] .

(4.4)
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Let now y, v ∈ Y such that v ≤ y,

F1(x, y)(t) =

1∫
0

K (t, s) f(s, x(s), y(s))ds ≤
1∫

0

K (t, s) f(s, x(s), v(s))ds

= F1(x, v)(t), for each x ∈ Rn, t ∈ [0, 1] .

F2(x, y)(t) =

1∫
0

K (t, s) g(s, x(s), y(s))ds ≥
1∫

0

K (t, s) g(s, x(s), v(s))ds

= F2(x, v)(t), for each x ∈ Rn, t ∈ [0, 1] .

(4.5)

From (4.4) and (4.5) , we have that the operator F = (F1, F2) has the property (P ) .
On the other hand, by Cauchy-Buniakovski-Schwarz inequality, we have

|F1(x, y)(t)− F1(u, v)(t)|p ≤

 1∫
0

|K (t, s)| (f(s, x(s), y(s))− f(s, u(s), v(s)) ds

p

≤
1∫

0

Kp (t, s) ds

1∫
0

|f(s, x(s), y(s))− f(s, u(s), v(s))|p ds, for each t ∈ [0, 1] .

We have
1∫

0

Kp (t, s) ds =

t∫
0

spds+

1∫
t

tpds = tp
(

1− p

p+ 1
t

)
≤ 1

p+ 1
, for each t ∈ [0, 1] .

Hence

|F1(x, y)(t)− F1(u, v)(t)|p ≤ 1

p+ 1

1∫
0

|f(s, x(s), y(s))− f(s, u(s), v(s))|p ds

≤ 1

p+ 1

1∫
0

ϕ̃(α |x (s)− u (s)|p + β |y (s)− v (s)|p)ds

≤ 1

p+ 1
ϕ̃ (αd (x, u) + βρ (y, v)) ≤≤ 1

p+ 1
ϕ̃ (max {α, β} (d (x, u) + ρ (y, v))) .

Hence

d (F1(x, y), F1(u, v)) ≤ 1

p+ 1
ϕ̃ (max {α, β} (d (x, u) + ρ (y, v))) , x ≤ u, v ≤ y. (4.6)

In a similar way, for F2 we obtain

ρ (F2(x, y), F2(u, v)) ≤ 1

q + 1
ψ̃ (max {γ, δ} (d (x, u) + ρ (y, v))) , x ≤ u, v ≤ y. (4.7)

By (4.6) and (4.7) , we have

d (F1(x, y), F1(u, v)) + ρ (F2(x, y), F2(u, v))

≤ 1

p+ 1
ϕ̃ (max {α, β} (d (x, u) + ρ (y, v))) +

1

q + 1
ψ̃ (max {γ, δ} (d (x, u) + ρ (y, v)))

≤ 1

p+ 1

[
ϕ̃ (max {α, β} (d (x, u) + ρ (y, v))) + ψ̃ (max {γ, δ} (d (x, u) + ρ (y, v)))

]
, x ≤ u, v ≤ y.
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Let us consider the function ϕ : [0,∞) → [0,∞), ϕ (t) = 1
p+1

(
ϕ̃ (kt) + ψ̃ (lt)

)
, 0 ≤ k, l < 1,

which is a (b)-comparison function. Then, we have

d (F1(x, y), F1(u, v)) + ρ (F2(x, y), F2(u, v)) ≤ ϕ (d (x, u) + ρ (y, v)) , x ≤ u, v ≤ y.

Thus we have that F = (F1, F2) : Z → Z is a (ϕ,G)-contraction of type (b).
Condition (iv) from Theorem 4.1, shows that there exists (x0, y0) ∈ Z such that x0 ≤ F1(x0, y0)

and F2(x0, y0) ≤ y0 which implies that ZF 6= ∅. On the other hand, (X, d,G1) and (Y, ρ,G2) have
the properties (A1) and (A2), so (ii) from Theorem 2.10 is fulfilled. In this way, we have that
F1 : Z → X and F2 : Z → Y defined by (4.3), verify the conditions of Theorem 2.10. Thus, there
exists (x∗, y∗) ∈ Z solution of the problem (4.2). �
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