
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,831 |
تعداد دریافت فایل اصل مقاله | 7,656,340 |
بررسی تأثیر مصالح تشکیلدهنده بر عملکرد بتن غلتکی رویه راه با استفاده از روش کاهش ابعاد و شبیهسازی مونت کارلو | ||
مهندسی زیر ساخت های حمل و نقل | ||
مقاله 4، دوره 3، شماره 4 - شماره پیاپی 12، اسفند 1396، صفحه 49-64 اصل مقاله (716.56 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/jtie.2018.13502.1265 | ||
نویسندگان | ||
مصطفی علی احمد1؛ محمود میری* 2؛ محسن راشکی3 | ||
1دانشجوی کارشناسی ارشد، گروه عمران، دانشگاه سیستان و بلوچستان، زاهدان | ||
2دانشیار گروه عمران، دانشکده مهندسی، دانشگاه سیستان و بلوچستان، زاهدان | ||
3استادیار گروه معماری، دانشگاه سیستان و بلوچستان، زاهدان | ||
تاریخ دریافت: 04 دی 1396، تاریخ بازنگری: 11 بهمن 1396، تاریخ پذیرش: 03 اسفند 1396 | ||
چکیده | ||
سازههای مهندسی، در مراحل ساخت و بهرهبرداری، تحت تأثیر عدم قطعیتهای ناشی از پارامترهای ابعادی، خصوصیات مواد و بارگذاری قرار دارند، که عملکرد سازه ساخته شده را تحت تأثیر قرار میدهند. در این میان، سازههای بتنی، به دلیل مشکلات اجرایی، شرایط محیطی و تنوع مواد تشکیلدهنده، بیش از سایر سازهها تحت تأثیر اینگونه عدم قطعیتها قرار دارند. در مقاله حاضر، عملکرد احتمالاتی بتن غلتکی مورد استفاده در راهسازی، حاوی مصالح ریزدانه لوماشل و پوزولان مورد بررسی قرار گرفته است. برای این منظور، نسبت آب به سیمان، مقدار پوزولان و مقدار مصالح ریزدانه لوماشل به عنوان متغیرهای تصادفی دارای عدم قطعیت در نظر گرفته شده و از ترکیب روش کاهش ابعاد و شبیهسازی مونتکارلو به منظور ارزیابی احتمالاتی این نوع بتن استفاده شده است. طراحی آزمایش بر مبنای روش کاهش ابعاد انجام گرفته و نمونههای ساخته شده تحت آزمایشهای مقاومت فشاری و جذب آب قرار گرفتهاند. نتایج نشان میدهد که احتمال خرابی ناشی از جذب آب مقدار 17/0 میباشد که بیشتر از احتمال خرابی ناشی از مقاومت فشاری (021/0) در بتن غلتکی است. همچنین، با در نظر گرفتن عملکرد بتن غلتکی به صورت سیستم، احتمال خرابی افزایش پیدا میکند و به مقدار 24/0 میرسد. | ||
کلیدواژهها | ||
بتن غلتکی روسازی راه؛ مقاومت فشاری؛ جذب آب؛ قابلیت اطمینان؛ احتمال خرابی | ||
عنوان مقاله [English] | ||
Investigation of the Effect of Materials on Performance of RCC Using Dimension Reduction Method and Monte Carlo Simulation | ||
نویسندگان [English] | ||
Mostafa Ali ahmad1؛ Mahmoud Miri2؛ Mohsen Rashki3 | ||
1MSc. Student, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran. | ||
2Associate Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran. | ||
3Assistant Professor, Department of Architectural Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran. | ||
چکیده [English] | ||
Engineering structures, during construction and operation, are under the influence of uncertainties including: dimensional parameters, materials specification, and loading. Among engineering structures, concrete structures are more sensitive to these uncertainties with respect to performance problems, environmental conditions and diversity of the components. In this study, the probability performance of roller compacted concrete (RCC), used in pavements, was investigated with different amounts of Lumachelle and pozzolan. The water to cement ratio and the amount of pozzolan and Lumachelle fine aggregates were considered as random variables and also the dimension reduction method (DRM), in combination with Monte Carlo simulation, were used for reliability and sensitivity analysis of this kind of concrete. The experimental design was based on the DRM, and compressive strength and water adsorption tests were performed on the specimens. Results showed that the probability of failure due to water adsorption is 0.17, which is more than the probability failure of compressive strength (0.021) in the RCC. Also, the probability of failure increased to 0.24 by assuming the concrete as a system. | ||
کلیدواژهها [English] | ||
Compressive Strength, Pozzolan, Mechanical properties, Water adsorption, Lumachelle fine aggregate, failure probability | ||
مراجع | ||
عمادی، م. و مدنی، س. ح. 1396. "مدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان". مهندسی زیرساختهای حمل و نقل، 11(3): 55-79. کریمی گوغری، م.، حسنی، ا. و صفرنیا کپته، ت. 1394. "ارائه مدل رگرسیون خطی جهت پیشبینی درصد مجاز استفاده از خرده آسفالت بازیافتی به عنوان جایگزین سنگدانه در مخلوط بتن غلتکی روسازی". مهندسی حمل ونقل، 6(4): 671-684. معاونت برنامهریزی و نظارت راهبردی رئیس جمهور. 1388. "راهنمای طراحی و اجرای بتن غلتکی در روسازی راههای کشور". نشریه 354. ACI 325.10R-95. 2001. “Report on roller-compacted concrete pavements”. American Concrete Institute.
ASTM C 127. 2001. “Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate”. American Society for Testing and Materials.
ASTM C 128. 2001. “Standard test method for density, relative density (specific gravity), and absorption of fine aggregate”. American Society for Testing and Materials.
ASTM C 1435. 1999. “Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer”. American Society for Testing and Materials.
ASTM C 188. 2003. “Standard test method for density of hydraulic cement”. American Society for Testing and Materials.
ASTM C 39. 2014. “Standard test method for compressive strengh of cylindrical concrete specimens”. American Society for Testing and Materials.
ASTM C 642. 2006. “Standard test method for density, absorption, and voids in hardened concrete”. American Society for Testing and Materials.
Bonstrom, H. and Corotis, R. B. 2015. “Building portfolio seismic loss assessment using the first-order reliability method”. Struct. Safety, 52: 113-120.
Cho, T. 2007. “Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method”. Constr. Build. Mater., 21(12): 2031-2040.
Ghasemi, S. A. and Nowak, A. S. 2017a. “Target reliability for bridges with consideration of ultimate limit state”. Eng. Struct., 152: 226-237.
Ghasemi, S. A. and Nowak, A. S. 2017b. “Reliability index for non-normal distributions of limit state functions”. Struct. Eng. Mech., 62(3).
Güneyisi, E., Gesoğlu, M., Algın, Z. and Mermerdaş, K. 2014. “Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method”. Compos. Part B: Eng., 60: 707-715.
Jansson, T., Nilsson, L. and Moshfegh, R. 2008. “Reliability analysis of a sheet metal forming process using Monte Carlo analysis and metamodels”. J. Mater. Process. Technol., 202(1-3): 255-268.
Keshtegar, B. 2016. “Chaotic conjugate stability transformation method for structural reliability analysis”. Comp. Meth. Appl. Mech. Eng., 310: 866-885.
Kong, J. S., Ababneh, A. N., Frangopol, D. M. and Xi, Y. 2002. “Reliability analysis of chloride penetration in saturated concrete”. Probab. Eng. Mech., 17(3): 305-315.
Lee, G., Yook, S., Kang, K. and Choi, D. H. 2012. “Reliability-based design optimization using an enhanced dimension reduction method with variable sampling points”. Int. J. Precis. Eng. Man., 13(9): 1609-1618.
Lee, I., Choi, K .K. and Gorsich, D. 2010. “System reliability-based design optimization using the MPP-based dimension reduction method”. Struct. Multidisc Optim., 41(6): 823-839.
Lee, I., Choi, K. K., Du, L. and Gorsich, D. 2008. “Inverse analysis method using MPP-based dimension reduction for reliability-based design optimization of nonlinear and multi-dimensional systems”. Comp. Meth. Appl. Mech. Eng., 198(1): 14-27.
Li, G. and Zhang, K., 2011. “A combined reliability analysis approach with dimension reduction method and maximum entropy method”. Struct. Multidisc Optim., 43(1): 121-134.
Liu, L. L. and Cheng, Y. M. 2016. “Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation”. Comp. Geotech., 79: 41-54.
Lopez, R. H., Miguel, L. F .F., Belo, I. M. and Souza Cursi, J. E. 2014. “Advantages of employing a full characterization method over FORM in the reliability analysis of laminated composite plates”. Compos. Struct., 107: 635-642.
Metropolis, N. and Ulam, S. 1949. “The Monte Carlo method”.The Am. Stat. Assoc., 44(247): 335-41.
Naess, A., Leira, B. J. and Batsevych, O. 2009. “System reliability analysis by enhanced Monte Carlo simulation”. Struct. Safety, 31(5): 349-355.
Nowak, S. A. and Collins, K. R. 2000. “Reliability of structures”. McGraw-Hill, New York.
Rahman, S. and Xu, H. 2004. “A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics”. Probab. Eng. Mech., 19(4): 393-408.
Rashki, M., Miri, M., Azhdary Moghaddam, M. 2014. “A simulation-based method for reliability based design optimization problems with highly nonlinear constraints”. Autom. Constr., 47: 24-36.
Rezaifar, O., Hasanzadeh, M. and Gholhaki, M. 2016. “Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method”. Constr. Build. Mater., 123: 59-68.
Schueremans, L. and Van Gemert, D. 2005. “Benefit of splines and neural networks in simulation based structural reliability analysis”. Struct. Safety, 27(3): 246-261.
Shi, X., Teixeira, A. P., Zhang, J. and Guedes Soares, C. 2015. “Kriging response surface reliability analysis of a ship-stiffened plate with initial imperfections”. Struct. Infrastruct. Eng., 11(3): 1450-1465.
Wang, G. and Ma, Z. 2017. “Hybrid particle swarm optimization for first-order reliability method”. Comp. Geotech., 81: 49-58.
Yang, H. Z. and Zheng, W. 2011. “Metamodel approach for reliability-based design optimization of a steel catenary riser”. J. Mar. Sci. Technol., 16(2): 202-213.
Youn, B. D. and Wang, P., 2008. “Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method”. Struct. Multidisc Optim., 36(2): 107-123.
Zhang, X. and Pandey, M. D. 2014. “An effective approximation for variance-based global sensitivity analysis”. Reliab. Eng. Sys. Safety, 121: 164-174.
Zhang, H., Mullen, R. L. and Muhanna, R. L. 2010. “Interval Monte Carlo methods for structural reliability”. Struct. Safety, 32: 183-190.
Zhao, Y. G. and Ono, T. 1999. “A general procedure for first/second-order reliability method (FORM/SORM)”. Struct. Safety, 21(2): 95-112. | ||
آمار تعداد مشاهده مقاله: 1,047 تعداد دریافت فایل اصل مقاله: 747 |