Improved hydrophobic and thermal stability of polyvinylpyrrolidone composites with the ingredients of Buxus sempervirens | ||
| شیمى کاربردى روز | ||
| Article 6, Volume 13, Issue 47, June 2018, Pages 69-82 PDF (1.16 M) | ||
| Document Type: Original Article | ||
| DOI: 10.22075/chem.2018.2900 | ||
| Authors | ||
| Hamed Nazarpour-Fard1; Kurosh Rad-Moghadam* 1; Farhad Shirini2 | ||
| 1Department of Chemistry, Faculty of sciences, University of Guilan, Rasht, Iran | ||
| 2Department of Chemistry, Faculty of sciences, University of Guilan, rasht, Iran | ||
| Receive Date: 06 June 2017, Revise Date: 16 August 2017, Accept Date: 26 August 2017 | ||
| Abstract | ||
| Three samples of polyvinylpyrrolidone (PVP) composites were prepared by solution casting with the leaf powder (LP), leaf carbon (LC) and leaf ash (LA) of Buxus sempervirens L. The bio-resource ingredients of the composites were obtained from the leaves of the plant on milling and heating at 250 °C or 700 °C, respectively. The resulting bio-composites were characterized by diffuse reflectance spectroscopy (DRS) and IR spectroscopy as well as by XRD analysis. Investigation of the thermal properties of these composites by TGA and DTA measurements has revealed some improvements in thermal properties of polyvinylpyrrolidone after composition with the powder, ash, and carbon of the leaf. Additional experiments exhibited considerable differences between hydrophilicity of the composites and PVP. ُSimple hydrophilicity tests showed that the prepared composites are less hydrophilic than pure PVP. | ||
| Keywords | ||
| Biocomposite; Buxus sempervirens; Polyvinylpyrrolidone; Thermal stability; Improved hydrophobicity | ||
| References | ||
|
[1] T. Y. Song , C. Yao , X. S. Li , Chinese Journal of Polymer Science. 28 (2010) 171.
[2] W. Nie, d. G. Yu, C. Branford-White, X. X. Shen, L. M. Zhu, Materials Research Innovations. 16 (2012) 14.
[3] I. S. Elashmawi, A. M. Abdelghany, N. A. Hakeem, Journal of Materials Science: Materials in Electronics. 24 (2013) 2956.
[4] E. Yan, G. Xu, S. Wang, C. Wang, C. Yang, Y. Xie, L. Lv, L. Ni, T. Jing,International Journal of Electrochemical Science. 8 (2013) 12683.
[6] S. Y. Kim, B. H. Kim, K. S. Yang, Journal of Electroanalytical Chemistry. 705 (2013) 52.
[7] J. Zhang, Y. Yuan, K. J. Kilpin, Y. Kou, P. J. Dyson, N. Yan, Journal of Molecular Catalysis A: Chemical. 371 (2013) 29.
[8] D. Archana, B. K. Singh, J. Dutta, P. K. Dutta, Carbohydrate Polymers. 95 (2013) 530.
[9] M. K. Mohamad Haafiz, A. Hassan, Z. Zakaria, I. M. Inuwa, M. S. Islam, M. Jawaid, Carbohydrate Polymers. 98 (2013) 139.
[10] M. N. Tchoul, W. T. Ford, M. L. P. Ha, I. Chavez-Sumarriva, B. P. Grady, G. Lolli, D. E. Resasco, S. Arepall, Chemistry of Materials. 20 (2008) 3120.
[11] J. Kowalonek, H. Kaczmarek, European Polymer Journal. 46 (2010), 345.
[12] G. Zou, M. Jain, H. Yang, Y. Zhang, D. Williams, Q. Jia, Nanoscale. 2 (2010), 418.
[13] M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, J. A. Rogers, Nano Letters. 4 (2004) 1953.
[14] A. L. Martínez-Hernández, C. Velasco-Santos, V. M. Castaño, Current Nanoscience. 6 (2010) 12.
[15] B. Ajitha, Y. A. K. Reddy, P. S. Reddy, Spectrochimica Acta Part A. 121 (2014) 164.
[16] A. E. Martins, M. S. Pereira, A. O. Jorgetto, M. A. U. Martines, R. I. V. Silva, M. J. Saeki and G. R. Castro, Applied Surface Science. 276 (2013) 24. | ||
|
Statistics Article View: 1,202 PDF Download: 753 |
||