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This study explored the free vibration problem in relation to glass fiber reinforced polymer 

(GFRP) plates with central cutouts and free boundaries using theoretical, experimental, and nu-

merical methods. The theoretical formulations were derived from the classical lamination plate 

theory. The rectangular cutout was mathematically modeled into the stiffness matrix of the plate 

by multiplying Heaviside distribution functions. The theoretical values for the fundamental fre-

quency were obtained by solving the standard eigenvalue problem, and the theoretical solution 

was validated by comparison to the literature. Modal testing was performed in the laboratory. 

For additional validation, the accuracy of theoretical and experimental results was checked using 

the finite element method and ABAQUS. The results of all three methods agreed; thus, the ap-

plicability of the Heaviside functions to stiffness modeling of structures with cutouts was proven. 

It was also observed that the fundamental frequency decreased when cutout size increased. 
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1. Introduction   

The free vibration problem related to composite 
plates has been extensively studied using theoretical, 
numerical, and experimental methods. Cutouts can 
be made in glass fiber reinforced polymer (GFRP) 
plates for practical purposes, such as decreasing 
structural weight and improving buckling behavior. 
To define cutout regions mathematically, some re-
searchers have used mapping functions, while others 
have utilized thickness distribution or stiffness dis-
tribution functions.  

Leissa [1] proposed closed form expressions for 
vibration frequencies of rectangular plates with var-
ious boundary conditions based on beam functions 
using the Ritz method. Singal et al. [2] carried out ex-
perimental analyses to evaluate the resonant fre-

quency values of isotropic plates with free bounda-
ries. Wang [3] analysed free vibrations of angle-ply 
symmetric laminated plates with free boundaries us-
ing discrete singular convolution, which provided ac-
curate results for high modes of frequency. Reddy [4] 
developed a shear deformable theory using the finite 
element method (FEM) to analyze the vibrations of 
layered composites with cutouts. Paramasivam [5] 
developed finite difference operators to study the ef-
fect of openings on the fundamental frequency of 
plates by considering different types of boundary 
conditions. Yettram and Brown [6] studied the elastic 
stability of square perforated plates with simply sup-
ported boundaries, subjected to bi-axial loading us-
ing a finite difference method. Choi et al. [7] proposed 
a finite element analysis for perforated plates with 
free boundaries by introducing cosine shape func-

  

mailto:davar78@gmail.com
mailto:a_davar@mut.ac.ir
http://dx.doi.org/10.22075/macs.2018.12167.1116


 

68 S. Soleimanian et al. / Mechanics of Advanced Composite Structures 5 (2018) 67-74 

 

tions. Talabatake et al. [8] presented material model-
ing using the unit step function to define structure 
stiffness based on Galerkin’s method to solve the dif‐
ferential equation of equilibrium. Rezaeepazhand 
and Jafari [9] presented a theoretical solution for 
stress analysis of composite plates with various cen-
tral cutout shapes using a general mapping function, 
stating its ability to change stress concentrations in 
perforated plates significantly. Azhari et al. [10] stud-
ied the buckling problem in stepped and perforated 
plates by defining subregions with different thick-
nesses using interpolation functions. Li and Cheng 
[11] presented Heaviside distribution functions to 
model the stiffness of orthogrid sandwich panels lo-
cally; due to the difficulty of improving local material 
modeling, the solution was simplified to consider 
only symmetric sandwich layups. Lee [12] studied 
the dynamic stability of laminated composite skew 
plates with or without cutouts using the FEM. Erklig 
et al. [13] studied the effect of cutouts on the natural 
frequency of composite plates using the FEM and ex-
perimental analyses. Chen et al. [14] presented a 
unique work that provided the energy functional of a 
plate with a cutout by integrating the plate domain to 
study the plate flexural and in-plane vibrations. They 
showed that the location of a cutout could signifi-
cantly affect structural vibration behavior. Narayana 
et al. [15] used the FEM to study the buckling behav-
ior of composite plates with cutouts subjected to lin-
early varying in-plane loads. Kalita and Haldar used 
the same method to study the static [16] and free vi-
bration [17] problems related to isotropic and ortho-
tropic plates with central cutouts. Joshi et al. [18] ex-
amined the stress concentration factor for isotropic 
and orthotropic plates with central cutouts using the 
FEM and showed that plates with square cutouts had 
higher stress concentrations than those with triangu-
lar cutouts. Rajana et al. [19] studied the effect of 
boundary conditions on the buckling characteristics 
of laminated composite plates with and without cut-
outs using the FEM and observed that the panel with 
a larger cutout offers had higher buckling resistance 
compared to the panel without a cutout. Dharshani 
[20] investigated the deflection and failure of GFRP 
stiffened composite plates with rectangular cutouts 
subjected to axial and lateral loading using a finite el-
ement analyses and experiments. 

In this study, a GFRP plate with a central cutout 
was modeled using a mathematical method. In com-
parison to numerical methods, mathematical tools 
can run analyses in less time and can be improved to 
obtain more accurate results for future plate theory 
research. Here, Heaviside distribution functions 
were used to define local stiffness tensor, and an an-
alytical solution to the free vibration problem was 

presented using the closed form Galerkin’s method. 
Galerkin method integrations are solved by symbolic 
computation using MATLAB. The main innovation of 
this analytical approach to the free vibration prob-
lem is that it considers free boundaries. A finite ele-
ment model of the problem was made based on S4R 
elements using ABAQUS. To perform modal experi-
ments, a GFRP plate was fabricated by hand layup, 
with a central cutout created by machining the plate. 
A system of linked devices for modal testing was cre-
ated to measure the fundamental frequency of the 
plate. Finally, the theoretical, ABAQUS, and experi-
mental results for different sized cutouts were com-
pared. The general mathematical model, which can 
be used to analyze symmetric and asymmetric lami-
nates with central cutouts, is the innovative result of 
the present work. Another novel contribution is the 
free boundary conditions applied at all edges of the 
structure. 

2. Analyses 
2.1 Theoretical approach 

A plate with a rectangular cutout was placed at 
(0,0,0) ≤ (𝑥, 𝑦, 𝑧) ≤ (𝑎, 𝑏, ℎ) (Figure 1).   
To define the cutout position, Heaviside distribution 
functions were introduced using Eqs. 1(a) and 1(b) 
[11],  
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 
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where (𝑥𝑐 , 𝑦𝑐) is the center of the cutout. The param-
eters c and d are the length and width of the cutout. 
The Heaviside distribution (HD) function is given by 
Eq. (2) [11].  

   1 .HD H x H y   (2) 

In Figure 2, values of one and zero are allocated to 
white and black regions.  

Figure 1. Plate with rectangular cutout 
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Figure 2. Plot of the HD function 

 

The stiffness matrix of a lamina with a central cutout 
can be given as 

 , .
k kQ x y Q HD  (3) 

where Qk is the stiffness matrix of an orthotropic lam-
ina given by Eq. 4 [6], 
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Here, E1, E2, υij, and G12 are longitudinal the elastic 
modulus, transverse elastic modulus, Poisson’s ratio, 
and shear modulus, respectively. The linear displace-
ment field is given as in [6]. 

     0 0,, , , , ,xu x y z u x y z zw x y   (5) 

     0 0,, , , , ,yv x y z v x y z zw x y   (6) 

   0, , ,w x y z w x y  (7) 

Using classical lamination plate theory, equilibrium 
equations were derived as in [6]. 

, , 0x x xy yN N hu  (8) 

, , 0xy x y yN N hv  (9) 

, , , 02x xx xy xy y yyM M M hw   (10) 

Force and moment results are given by [6].  
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Here, A, B, and D coefficients can be obtained by [6]. 
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The governing equilibrium equations can be ob-
tained by substituting Eq. (11) with Eqs. (8-10) as: 
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Here, the second indices are devoted to local deriva-
tives. Considering displacement shape functions cor-
responding to free edge conditions as in [18], 
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and using the Galerkin method, the system of partial 
differential equations given by Eqs. (15–17) lead to 
Eq. (21), 

      0M K     (21) 

where 𝐾 and 𝑀 refer to stiffness and the mass matrix 
coefficient, respectively. M is the mass matrix and δ is 
the displacement vector. 𝐾 and M matrices are ex-
panded in appendices A and B, which have been ob-
tained through MATLAB symbolic computations. The 
fundamental frequency can be obtained as 

   2( ) 0K M    (22) 

where 𝜔 is the Eigen frequency. By applying the 
MATLAB Eigen command, the frequency value can be 
achieved. 

2.2 FEM approach 

The FEM was used for the present problem and 
applied in ABAQUS. The structure was combined 
with S4R elements, and the FEM meshed model (Fig-
ure 3) was produced using S4R elements. Performing 
a numerical modal analysis using the Lanczos eigen-
solver, the fundamental structural frequency can be 
obtained in ABAQUS. 

 

2.3 Experimental approach 

2.3.1 Fabrication process 

The fabrication process is carried out in a work-
shop at 22°C and 33% humidity. A GFRP plate with a 
[0/90]5 layup was fabricated using a hand-layup. A 
cold-cure epoxy system was provided with a 100:55 
mixing ratio, and to reinforce the plate, a unidirec-
tional (UD) e-glass fiber (Figure 4) was used. Using a 
matrix-impregnated spatula, the UD fiber layer was 
completely covered by the epoxy matrix (Figure 5) 
and further impregnation of fibers was provided by a 
brush. 

 
Figure 3. Meshed FEM 

 
Figure 4. Epoxy impregnated UD e-glass fiber  

 

The GFRP plate was left to cure at room 
temperature for 48 hours, and the final product was 
machined to obtain an acceptable edge smoothness 
and accurate dimensions (Figure 5). The GFRP plate 
length was 0.35 m. The central cutout was also 
made during the machining process. 

2.3.2 Burn test 

 To measure the volume fraction of the fiber and 
matrix, six composite specimens were burned in a 
furnace at 550°C for one hour (Figure 6). Figures 7a 
and 7b show the composite specimens before and af-
ter the burn test, respectively. 

 
Figure 5. Machining of the GFRP plate 

 

Figure 6. Putting the GFRP specimens in the furnace 
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(a) 

 

(b) 

 
Figure 7. GFRP samples: (a) before burning; (b) after burning 

Based on the burn test, the volume fraction of the 
fibers was 45.77%. By applying micromechanical 
rules to the pure glass fiber and resin material prop-
erties, the GFRP lamina properties were calculated 
(Table 1).  

2.3.2 Experimental modal test 

The experimental modal test was carried out fol-
lowing a single-input, single-output scheme using a 
hammer, acceleration sensor, analyzer, and data col-
lector linked together. To provide the proper free 
edge conditions, the GFRP plate was hung from the 
ceiling using a narrow band (Figure 8). 

3. Results 

3.1 Verification of the theoretical solution 

As shown in Table 2, the accuracy of the present 
theoretical solution was examined using the results 
obtained by Leissa [1] relating to free vibration of 
rectangular plates with free boundaries, and the re-
sults agreed. 

Table 1. Mechanical and physical properties of the GFRP lamina 

 

 

 
 

 

Figure 8. Modal experiment setup, including the freely sus-
pended plate and the test devices 

Table 2. Comparison study results for non-dimensional fre-

quency parameter 𝜔𝑎2√12𝜌(1 − 𝜐2) 𝐸ℎ3⁄  

a 

[mm] 

b 

[mm] 
Theoretical 

Leissa 

(1992) 

Discrepancy 

(%) 

25.4 25.4 82.538 81.84 0.85 

25.4 38.1 55.026 54.21 1.5 

3.2 Parametric study of the size of the central cut-
out 

Parametric studies were carried out to deter-
mine variations in the fundamental frequency the 
plates by changing the cutout size. The volume frac-
tion of the central cutout is defined as 

100 x y

c d
R m n

a b


 


 (23) 

Considering R = 0, 10%, and 20%, the present 
study results are reported in Figures 9, 10, and 11, 
respectively. All theoretical, experimental, and FEM 
results indicate that the fundamental frequency de-
creased as the size of the cutout increased. By in-
creasing the cutout size, the thin plate became a 
square frame with a higher thickness-to-side length 
ratio near the boundaries; accordingly, the discrep-
ancy between theoretical and ABAQUS results in-
creased as the cutout size increased. The mode shape 
results showed that the free edge of the GFRP plates 
vibrated at the corresponding fundamental fre-
quency in a twisting behavior. 

]Hz[ 65=Experimental𝜔 

 
]Hz[ 73.52=Theoretical𝜔 

 
]Hz[ 72.78=ABAQUS𝜔 

 
Figure 9. Fundamental frequency and mode shape (R = 0%) 

 

E11 
[GPa] 

E22 
[GPa] 

G12 
[GPa] 

  υ12 ρ [kg/m3] 

40.745 10.395 3.242 0.254 1658.357 

Accelerometer 

Hammer 

Analyzer 

Data collector 



 

72 S. Soleimanian et al. / Mechanics of Advanced Composite Structures 5 (2018) 67-74 

 

]Hz[ 59.5=Experimental𝜔 

 

]Hz[ 63.67=Theoretical𝜔 

 

]Hz[ 67.62=ABAQUS𝜔 

 

Figure 10. Fundamental frequency and mode shape (R = 10%)  

]Hz[ 51.4=Experimental𝜔 

 

]Hz[ 53.64=Theoretical𝜔 

 

]Hz[ 62.827=ABAQUS𝜔 

 

Figure 11. Fundamental frequency and mode shape (R = 20%) 

The GFRP plate was fabricated by hand layup, 
which caused material inhomogeneity that may have 
affected the natural frequency and mode shape ob-
tained in the experiment. Furthermore, the damping 
effect, environmental conditions, and human error 

were not considered when using theoretical and nu-
merical methods, which could affect the mode shape 
during experiments. As a result, differences occurred 
when comparing theoretical and numerical mode 
shapes to experimental mode shapes. 

4. Conclusion 

Material modeling of GFRP plates with central 
cutouts can be successfully performed using Heavi-
side distribution functions. Difficulty in deriving and 
solving governing equations for asymmetric lami-
nated composites with rectangular cutouts was over-
come using MATLAB symbolic computations. Com-
paring present theoretical results and those obtained 
by Leissa [1], an acceptable agreement was achieved. 
Finally, a [0/90]5 GFRP plate with a central square 
cutout was fabricated for experimental modal test-
ing. By increasing the central cutout size, the results 
obtained using theoretical, numerical, and experi-
mental approaches demonstrated a decreasing be-
haviour. The primary reason for discrepancies in the 
theoretical results is that increasing the ratio of c/a  
eliminated the efficiency of classical lamination plate 
theory. A major cause for errors in the experimental 
results was the inhomogeneous distribution of mate-
rial in the GFRP plate. From these methods, the fun-
damental vibration mode shape for free edge GFRP 
plates is a twisting shape. 

Appendices: 

Appendix A: 

𝑘11 = 

∫ ∫ ((𝐴11,𝑥 + 𝐴16,𝑦)𝑢0,𝑥 + (𝐴16,𝑥 + 𝐴66,𝑦)𝑢0,𝑦

𝑎

0

𝑏

0

+ 𝐴16𝑢0,𝑥𝑥 + (𝐴12 + 𝐴66)𝑢0,𝑥𝑦

+ 𝐴26𝑢0,𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑥𝑑𝑦 

𝑘12 = 

∫ ∫ ((𝐴16,𝑥 + 𝐴66,𝑦)𝑣0,𝑥 + (𝐴12,𝑥 + 𝐴26,𝑦)𝑣0,𝑦+𝐴16𝑣0,𝑥𝑥

𝑎

0

𝑏

0

+ (𝐴12 + 𝐴66)𝑣0,𝑥𝑦

+ 𝐴26𝑣0,𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑥𝑑𝑦 

𝑘13 = 

∫ ∫ (−(𝐵11,𝑥 + 𝐵16,𝑦)𝑤0,𝑥𝑥 − 2(𝐵16,𝑥 + 𝐵66,𝑦)𝑤0,𝑥𝑦

𝑎

0

𝑏

0

− (𝐵12,𝑥 + 𝐵26,𝑦)𝑤0,𝑦𝑦 − 𝐵11𝑤0,𝑥𝑥𝑥 − 3𝐵16𝑤0,𝑥𝑥𝑦

− (𝐵12 + 2𝐵66)𝑤0,𝑥𝑦𝑦

− 𝐵26𝑤0,𝑦𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦)𝑑𝑥𝑑𝑦 
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𝑘21 = 

∫ ∫ ∫ ((𝐴16,𝑥 + 𝐴12,𝑦)𝑢0,𝑥 − (𝐴66,𝑥 +
ℎ/2

−ℎ/2

𝑎

0

𝑏

0

𝐴26,𝑦)𝑢0,𝑦 + 𝐴16𝑢0,𝑥𝑥 + (𝐴12 + 𝐴66)𝑢0,𝑥𝑦 +

𝐴26𝑢0,𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧        

𝑘22 = 

∫ ∫ ((𝐴66,𝑥 + 𝐴26,𝑦)𝑣0,𝑥 + (𝐴26,𝑥 + 𝐴22,𝑦)𝑣0,𝑦

𝑎

0

𝑏

0

+ 𝐴66𝑣0,𝑥𝑥 + 2𝐴26𝑣0,𝑥𝑦

+ 𝐴22𝑣0,𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦) 𝑑𝑥𝑑𝑦 

𝑘23 = 

∫ ∫ (−(𝐵16,𝑥 + 𝐵12,𝑦)𝑤0,𝑥𝑥 − 2(𝐵66,𝑥 + 𝐵26,𝑦)𝑤0,𝑥𝑦

𝑎

0

𝑏

0

− (𝐵26,𝑥 + 𝐵22,𝑦)𝑤0,𝑦𝑦 − 𝐵16𝑤0,𝑥𝑥𝑥 − (𝐵12 + 2𝐵66)𝑤0,𝑥𝑥𝑦

− 3𝐵26𝑤0,𝑥𝑦𝑦

− 𝐵22𝑤0,𝑦𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦)  𝑑𝑥𝑑𝑦          

𝑘31 = 

∫ ∫ ((𝐵11,𝑥𝑥 + 2𝐵16,𝑥𝑦 + 𝐵12,𝑦𝑦)𝑢0,𝑥

𝑎

0

𝑏

0

+ (𝐵16,𝑥𝑥 + 2𝐵66,𝑥𝑦 + 𝐵26,𝑦𝑦)𝑢0,𝑦 + 2(𝐵11,𝑥 + 𝐵16,𝑦)𝑢0,𝑥𝑥

+ 2(2𝐵16,𝑥 + 𝐵66,𝑦 + 𝐵12,𝑦)𝑢0,𝑥𝑦 + 2(𝐵66,𝑥 + 𝐵26,𝑦)𝑢0,𝑦𝑦

+ 𝐵11𝑢0,𝑥𝑥𝑥 + 3𝐵16𝑢0,𝑥𝑥𝑦 + (2𝐵66 + 𝐵12)𝑢0,𝑥𝑦𝑦

+ 𝐵26𝑢0,𝑦𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦)𝑑𝑥𝑑𝑦 

𝑘32 = 

∫ ∫ ∫ ((𝐵16𝑥,𝑥 + 2𝐵66,𝑥𝑦 + 𝐵26,𝑦𝑦)𝑣0,𝑥

ℎ/2

−ℎ/2

𝑎

0

𝑏

0

+ (𝐵12,𝑥𝑥 + 𝐵26,𝑥𝑦 + 𝐵22𝑦𝑦)𝑣0,𝑦 + 2(𝐵16,𝑥 + 𝐵66,𝑦)𝑣0,𝑥𝑥

+ 2(𝐵12,𝑥𝑥 + 2𝐵26,𝑦 + 𝐵66,𝑥)𝑣0,𝑥𝑦 + 2(𝐵26,𝑥 + 𝐵22,𝑦)𝑣0,𝑦𝑦

+ 𝐵16𝑣0,𝑥𝑥𝑥 + (𝐵12 + 2𝐵66)𝑣0,𝑥𝑥𝑦 + 3𝐵26𝑣0,𝑥𝑦𝑦

+ 𝐵22𝑣0,𝑦𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦)𝑑𝑥𝑑𝑦         

𝑘33 = 

∫ ∫ (−(𝐷11,𝑥𝑥 + 2𝐷16,𝑥𝑦 + 𝐷12,𝑦𝑦)𝑤0,𝑥𝑥 −
𝑎

0

𝑏

0

(2𝐷16,𝑥𝑥 + 4𝐷66,𝑥𝑦 + 2𝐷26,𝑦𝑦)𝑤0,𝑥𝑦 − (𝐷12,𝑥𝑥 +

2𝐷26,𝑥𝑦 + 𝐷22,𝑦𝑦)𝑤0,𝑦𝑦 − 2(𝐷11,𝑥 + 𝐷16,𝑦)𝑤0,𝑥𝑥𝑥 −

2(𝐷11,𝑥 + 𝐷16,𝑦)𝑤0,𝑥𝑥𝑥 − (6𝐷16𝑥 + 2𝐷12,𝑦 +

4𝐷66,𝑦)𝑤0,𝑥𝑥𝑦 − (2𝐷12,𝑥 + 6𝐷26,𝑦 + 4𝐷66,𝑥)𝑤0,𝑥𝑦𝑦 −

2(𝐷22,𝑦 + 𝐷26,𝑥)𝑤0,𝑦𝑦𝑦 − 𝐷11𝑤0,𝑥𝑥𝑥𝑥 − (2𝐷12 +

4𝐷66)𝑤0,𝑥𝑥𝑦𝑦 − 4𝐷26𝑤0,𝑥𝑦𝑦𝑦 −

𝐷22𝑤0,𝑦𝑦𝑦𝑦) 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝑛𝜋

𝑏
𝑦)  𝑑𝑥𝑑𝑦   

Appendix B: 
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