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This study investigated bending, buckling, and free vibration responses of hyperbolic shear 

deformable functionally graded (FG) higher order beams. The material properties of FG beams 

are varied through thickness according to power law distribution; here, the FG beam was made 

of aluminium/alumina, and the hyperbolic shear deformation theory was used to evaluate the 

effect of shear deformation in the beam. The theory explains the hyperbolic cosine distribution 

of transverse shear stress through the thickness of a beam and satisfies zero traction boundary 

conditions on the top and bottom surfaces without requiring a shear correction factor. 

Hamilton’s principle was employed to derive the equations of motion, and analytical solutions 

for simply supported boundary conditions were obtained using Navier’s solution technique. The 

non-dimensional displacements, stress, natural frequencies, and critical buckling loads of FG 

beams were obtained for various values of the power law exponent. The numerical results were 

compared to previously published results and found to be in excellent agreement with these.  
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1. Introduction    

Fibrous composite laminated beams are often 
subjected to delamination and stress concentration 
problems. This leads to the development of beams 
made of functionally graded materials (FGMs). A FGM 
is formed by varying the microstructure from one 
material to another in a specific gradient. The most 
commonly used FGMs are ceramic and metal for 
application in many engineering industries. Some 
typical practical applications for FGMs are given 
below.  
1) Nuclear Projects: Fuel pellets and plasma walls of 

fusion reactors 
2) Aerospace and Aeronautics: Stealth aircraft, 

rocket components, space plane frames, and 
space vehicles 

3) Civil Engineering: Building materials, structural 
elements, and window glass 

4) Defense: Armor plates and bullet-proof vests  

5) Manufacturing: Machine tools, forming and 
cutting tools, metal casting, and forging processes 

6) Energy Sector: Thermoelectric generators, solar 
cells and sensors 
Detailed descriptions of applications of FGMs in 

various fields were presented by Koizumi [1, 2], 
Muller et al. [3], Pompe et al. [4], and Schulz et al. [5]. 
Increased use of beams, plates, and shells made of 
FGMs has led to the development of various 
analytical and numerical models for predicting 
accurate static bending, elastic buckling, and free 
vibration responses in these beams. Few studies 
have addressed the development of elasticity 
solutions for the analysis of FG beams, but those that 
have include Sankar [6], Zhong and Yu [7], Daouadji 
et al. [8], Ding et al. [9], Huang et al. [10], Ying et al. 
[11], Chu et al. [12], and Xu et al. [13].  

Two-dimensional elasticity solutions are 
analytically difficult and computationally 
cumbersome. Therefore, various approximate beam 
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theories have been developed to analyze FG beams. 
Recently, Sayyad and Ghugal [14, 15] presented a 
comprehensive literature survey on various 
analytical and numerical methods for the analysis of 
isotropic and anisotropic beams and plates using 
displacement-based shear deformation theories. 
Similarly, Carrera et al. [16] presented recent 
developments in refined beam theories and related 
applications.  

Since the effect of shear deformation is more 
pronounced in thick beams made of advanced 
composite materials, such as FGMs, classical beam 
theory (CBT)  [17, 18] and first-order shear 
deformation theory [19] are not suitable for the 
analysis of thick FG beams. Therefore, higher order 
shear deformation theories are preferable for 
accurate analysis of FG thick beams. Various higher 
order shear deformation theories have been 
developed by various researchers for the analysis of 
isotropic and anisotropic beams, such as those by 
Reddy [20], Soldatos [21], Touratier [22], Karama et 
al. [23], Mantari et al. [24, 25], Neves et al. [26, 27], 
Sayyad and Ghugal [28, 29], Sayyad et al. [30, 31], 
Carrera et al. [32], Zenkour [33], Carrera and Ginuta 
[34], Carrera et al. [35], and Giunta et al. [36]. Such 
theories address bending, buckling, and free 
vibration analyses of beams using Carrera’s unified 
formulation.  

Thai and Vo [37] obtained Navier-type analytical 
solutions for the bending and vibration of FG beams 
using various higher order shear deformation 
theories. Li and Batra [38] obtained the critical 
buckling load of FG beams in various boundary 
conditions using the first-order shear deformation 
theory and CBT. Simsek [39] presented free vibration 
analysis of FG beams with various boundary 
conditions based on higher order shear deformation 
theories. Nguyen et al. [40] presented a Navier-type 
closed form solution for the static deformation and 
free vibration of FG beams using the first-order shear 
deformation theory. Hadji et al. [41, 42] developed 
new first-order and higher order shear deformation 
models for static and free vibration analysis of simply 
supported FG beams. Bourada et al. [43] presented a 
trigonometric shear and normal deformation theory 
that considers the effects of transverse shear and 
normal deformations for the analysis of FG higher 
order beams. The theory included three unknowns, 
one of which was the effect of the transverse normal. 
Vo et al. [44, 45] presented static bending and free 
vibration analysis based on higher order shear 
deformation theories using the finite element 
method. Recently, Sayyad and Ghugal [46] developed 
a unified shear deformation theory for the bending of 
FG beams and plates. Hebali et al. [47] developed five 
variable quasi-three-dimensional hyperbolic shear 
deformation theories for static and free vibration 

behavior of FG plates. Bennoun et al. [48] also 
developed five new variable shear and normal 
deformation plate theories for free vibration analysis 
of FG sandwich plates. Beldjelili et al. [49] 
investigated hygro-thermo-mechanical bending 
behavior of sigmoid FG plates resting on elastic 
foundations using four variable trigonometric shear 
deformation theories. Bouderba et al. [50] developed 
a simple first-order shear deformation theory for 
thermal buckling responses of FG sandwich plates to 
various boundary conditions. Bousahla et al. [51] 
also developed a four-variable refined plate theory 
for buckling analysis of FG plates subjected to 
uniform, linear, and non-linear temperature 
increases for various thicknesses. Boukhari et al. [52] 
developed a four-variable refined plate theory for 
wave propagation analysis of an infinite FG plate in 
thermal environments. Rahmani and Pedram [53] 
applied Timoshenko beam theory for free vibration 
analysis of FG nanobeams. Akgoz and Civalek [54] 
studied the static bending response of single-walled 
carbon nanotubes embedded in an elastic medium 
using higher-order shear deformation microbeams 
and a modified strain gradient theory. Ebrahimi and 
Barati [55] obtained a Navier-type solution for free 
vibration characteristics of FG nanobeams based on 
the third-order shear deformation beam theory.  

In this paper, bending, buckling, and free 
vibration responses of hyperbolic shear deformable 
FG higher order beams were studied using the 
hyperbolic shear deformation theory of Soldatos 
[21]. Soldatos suggested using the hyperbolic 
function in the modeling and analysis of composite 
beams and plates in 1992, recommending that the 
hyperbolic function yields more accurate predictions 
of stress, frequencies, and the buckling loads of 
composite beams and plates. Since then, many 
researchers have used this function for the analysis 
of isotropic, laminated, and sandwich beams and 
plates. However, most research has not focused on 
the application of this function to evaluate the 
response of FG beams. Instead, researchers have 
applied hyperbolic shear deformation theory to 
bending, buckling, and free vibration analysis of FG 
beams.  

The material properties of FG beams are varied 
through the thickness of the beam according to 
power law distribution. Here, the FG beam was made 
of aluminum (Al)/alumina (Al2O3), and the 
hyperbolic cosine distribution of transverse shear 
stress through the thickness of the beam satisfied the 
zero traction boundary conditions on the top and 
bottom surfaces without using the shear correction 
factor. The variationally consistent governing 
differential equations and boundary conditions of 
the theory were obtained using Hamilton’s principle, 
and an analytical solution for simply supported 
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boundary conditions was obtained using Navier’s 
solution. The non-dimensional displacements, stress, 
natural frequencies, and critical buckling loads of FG 
beams were obtained for various values of the power 
law exponent. The numerical results were then 
compared to previously published results and were 
in excellent agreement with these. 

2. Variational formulation 

2.1 Kinematics 

Consider a FG beam with length L, width b, and 
thickness h made of Al/Al2O3 as shown in Figure 1. 
The bottom surface of the FG beam was ceramic-rich 
and top surface was metal-rich. The beam occupied 
the region 0≤ x ≤ L; -b/2≤ y ≤ b/2; -h/2≤ z ≤ h/2 in the 
Cartesian coordinate systems. The x-axis was 
coincident with the beam neutral axis. The z-axis was 
assumed to be downward positive, and the beam was 
assumed to be deformed in the x-z plane only. 
The mathematical formulation of the FG beam was 
based on the following kinematical assumptions. 
1) The axial displacement u consists of the 

extension, bending, and shear components as 

  extention bending shearu x,z u u u     ,                           (1) 

where  

 
 

     

0

extention 0 bending

shear cosh 1 2 sinh

dw x
u u x , u z ,

dx

u z / h z / h x

  

   

 .        (2) 

2) There is no relative motion in the y-direction at 
any point in the cross section of the beam. 

3) Transverse displacement is assumed to be a 
function of the x-coordinate only. 

 0w w x                                                                  (3)  

4) The theory applies to the hyperbolic cosine 
distribution of transverse shear stress through 
the thickness of the beam and satisfies zero 
traction boundary conditions on the top and 
bottom surfaces of the beam. 

5) The axial displacement, u, is such that the 

resultant axial stress  x , acting over the cross-

section, should result only in a bending moment 
and should not result in force in the x-direction. 

6) Displacements are small, compared to beam 
thickness. 

7) One-dimensional constitutive law is used to 
obtain stress values 

Based on these assumptions, the displacement 
field of the hyperbolic shear deformation theory is 
given by:  

       

     

0

0 0, ,

cosh 1/ 2 sinh /

dw
u x z u z f z x

dx

f z z h z h

xw w  

   


  ,      (4) 

where u0 is the axial displacement of a point on the 
neutral axis of the beam, w0 is the transverse 
displacement of a point on the neutral axis of the 
beam, and the hyperbolic function is assumed 
according to the transverse shearing strain 
distribution across the thickness of the beam (see 
Figures 2 and 3). The nonzero normal and shear 
strains at any point of the beam are 

   

     

2

0 0

2
, '

' cosh 1/ 2 cosh /

x zx

du d w d
z f z f z

dx dxdx

f z z h


     

   

    (5) 

 
Figure 1. FG beam under bending conditions in the x-z plane 

 
Figure 2. Through thickness distribution of the transverse 

shearing strain function 

 

Figure 3. Through thickness distribution of the derivative of 
transverse shearing strain function 
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2.2 Constitutive relations 

The FG beam was made of Al/Al2O3, and the 
properties of the material varied continuously 
throughout beam thickness, according to the power 
law distribution given by Equation (6).  

   

   

   

   

,

,

1/ 2 /

m c m c

m c m c

m c m c

p

c

E z E E E V

G z G G G V

z V

V z h

   

  

  

  

   

                                               (6) 

where E represents the Young’s modulus, G 
represents the shear modulus,  represents the 

Poisson’s ratio, and  represents mass density. 

Subscripts m and c represent the metallic and 
ceramic constituents, respectively, and p is the 
power law exponent. The variation of the Young’s 
modulus E(z) through the thickness z/h of the beam 
for various values of the power law exponent is 
shown in Figure 4. The stress–strain relationship at 
any point of the beam is given by one-dimensional 
Hooke’s law as follows. 

   andx x zx zxE z G z                                   (7) 

3. Equations of motion 

Equations of motion of hyperbolic shear 
deformable FG beam are derived using Hamilton’s 
principle,  

 
2

1

0
t

t
U V K dt      ,                                          (8) 

where , andU V K   denotes variations in total 

strain energy, potential energy, and kinetic energy 
respectively, and t1 and t2 are the lower and upper 
limits of desired time period, respectively. 

 

Figure 4. Variation in Young’s modulus E(z) through the 
thickness of the FG beam for various values of the power law 

exponent (p) 

 

The variation of the strain energy  U  can be 

stated as: 
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where andc s

xN ,M ,M Q are the axial force, 

bending moment, higher order moment, and shear 
force resultants, respectively. Additionally, 

   
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dx

Q b f ' z dz H
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


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, (10) 

where 

   
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,

'

h h

h h

h

h

h

h

h

h

h

h

h

h

A b E z dz B b E z z dz

C b E z f z dz

D b E z z dz

E b E z z f z dz

F b E z f z dz

H b G z f z dz

 










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





   

   

 











.             (11) 

The variation of the potential energy  V due to 

transverse and axial loads can be written as 


 

 
  

 
 00

L dw d w
V q w N dx

dx dx
 .                            (12) 

The variation of kinetic energy  K  can be 

written in following form 

  
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A
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I u I I dx
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 ,    (13)  
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where  z is the mass density, and , , , ,A B C DI I I I  

,E FI I are the inertia coefficients. 

 

 

 

   

 

   

   

/2

/2

/2

/2

/2

/2

/2
2

/2

/2

/2

/2 2

/2

,

,

,

,

,

h

A
h

h

B
h

h

C
h

h

D
h

h

E
h

h

F
h

I b z dz

I b z z dz

I b z f z dz

I b z z dz

I b z z f z dz

I b z f z dz



































   













                                       (14) 

Substituting Equations (9), (12), and (13) into 
Equation (8), doing the integrations and setting the 
coefficients of 0u ,

0w , and to equal zero, the 

following equations of motion are obtained. 

0

0

22

0

02 2

2

0 0

02

0

0

x

A B C

c

B D A E

s

C E F

dN dw
I u I I

dx dx

d wd M
q N

dx dx

du d w d
I I I w I

dx dxdx

dwdM
Q I u I I

dx dx







  

  

   

   

           (15) 

By substituting the stress resultants from 
Equation (10) into Equation (15), the following 
equations of motion can be obtained for unknown 
displacement variables. 

2 3 2

0 0

2 3 2

0

0

3 4 23

0 0 0

03 4 3 2

2

0 0

02

2 3 2

0 0

2 3 2

0

0

A B C

B D A E

C E F

d u d w d
A B C

dx dx dx

dw
I u I I

dx

d u d w d wd
B D E q N

dx dx dx dx

du d w d
I I I w I

dx dxdx

d u d w d
C E F H

dx dx dx

dw
I u I I

dx














 

  

    

   

  

  

            (16) 

4. Analytical solution 

Consider a simply supported FG beam with length 
‘L’ and rectangular cross-section ‘b×h’. For simply 
supported boundary conditions, according to 
Navier’s solution, the unknown displacement 
variables are expanded in a Fourier series as given 
below: 

0

1,3,5
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1,3,5

1,3,5

cos ,

sin ,

cos

i t
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m

i t
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i t
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u u x e

w w x e

x e


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



  

























                                             (17) 

where 1i   , /m L  , and  , ,m m mu w   are the 

unknown coefficients, and  is the natural frequency. 

The uniform transverse load (q) acting on the top 
surface of the beam was also expanded in the Fourier 
series as 

0

1,3,5

4
sin

m

q
q x

m








  ,                                                    (18) 

where q0 is the maximum intensity of the load at the 
center of the beam. By substituting Equations (17) 
and (18) into Equation (16), the analytical solution 
can be obtained from the following equations. 
For bending, ignore time derivatives and axial force.
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0
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     
       

          

 .       (19) 

 
For buckling, ignore time derivatives and 

transverse load. 
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,   (20) 

For free vibrations, ignore transverse load and 
axial force. 

 
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  
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
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

   
   
    

      
     

     
         

    
     

.   (21) 

5. Numerical results and discussion 

In this section, the accuracy of hyperbolic shear 
deformation theory for predicting bending, buckling, 
and vibration responses of FG higher order beams 
was investigated. The numerical results were 
obtained using Navier’s solution for simply 
supported boundary conditions. The beam was made 

of Al2O3 for ceramic ( cE = 380 GPa, c =3960 kg/m3, 

 = 0.3) and Al for metal ( mE = 70 GPa, m =2702 
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kg/m3,  = 0.3). The material properties of the beam 

were varied across beam thickness according to 
power law distribution. The bottom surface of the FG 
beam was ceramic-rich, and the top surface was 
metal-rich. 

5.1 Bending the FG beam 

The bending response of the FG beam under a 
uniform transverse load was investigated. The 
displacements and stress are presented in the 
following non-dimensional form. 
Axial displacement (u) at x = 0 and z = -h/2: 

3

0

100 mu E h
u

q L
 . 

Transverse displacement (w) at x = L/2 and z = 0: 
3

0

100 mw E h
w

q L
 . 

Axial stress ( x ) at x = L/2 and z = h/2:  

0

x
x

h

q L


  . 

Transverse shear stress ( xz ) at x = 0 and z = 0: 

0

xz
xz

h

q L


  . 

The numerical results obtained using the present 
theory were compared to those of other theories, 
which is shown in Table 1. Comparisons of numerical 
results are presented in Table 2. Through thickness 
distribution of displacements and stress are shown 
in Figure 5 (a–c). The displacements and stress are 
presented for various values of the power law 
exponent (p). The transverse shear stress was 
evaluated directly from constitutive relations. The 
present results were compared to higher order shear 
deformation theories of Reddy [20], Touratier [22], 
and Hadji et al. [42] and the CBT. The present results 
were in good agreement with those obtained using 
various shear deformation theories for all values of 
the power law exponent. Because the effect of 
transverse shear deformation is not included in the 
CBT, this theory underestimated displacement and 
stress. The stress presented by Hadji et al. [42] was 
higher compared to that obtained using shear 
deformation theories. The present theory gives a 
linear variation of axial stress  x through the 

thickness for p = 0 and p = ∞; however, for other 
values of the power law exponent, this is non-linear 
through the thickness (see Figure 5b). Displacements 
and stress are increased as the power law exponent 
increases, creating more flexibility in FG beams. 

 
 

Table 1. Displacement fields of the present and referred theories 

Reference Displacement field 

Present  
1

cosh sinh
2

z
f z z h

h

    
     

    
 

Hadji et al. [42]  
3

1 3
2

2

z z
f z

h h

    
     

     

 

Reddy [20]  
2

2

4
1

3

z
f z z

h

  
   

  
 

Touratier [22]   sin
h z

f z
h




  

TBT  f z z  

CBT   0f z   

Figure 5(b) shows that an increase in the power 
law exponent increased the compression zone in the 
beam, while Figure 5(c) shows the hyperbolic cosine 
variation of transverse shear stress  zx  that was 

across the thickness of the beam and that satisfied 
the traction free conditions at the top and bottom 
surfaces of the beam. Figure 5(c) also shows an 
increase in the power law exponent neutral axis that 
shifted toward the bottom. This was due to ceramic, 
with which metal has a low elastic modulus.  

5.2 Buckling an FG beam 

In this section, the buckling response of an FG 
beam subjected to axial force (N0) was investigated. 
A non-dimensional critical buckling load is presented 
in Table 3. The non-dimensional form of the buckling 
load was as follows: 

2

0

3

12
cr

m

N a
N

E h
 . 

The critical buckling load was obtained for 
various values regarding the power law exponent (p) 
and a length-to-thickness ratio (L/h). Results were 
compared with those presented by Li and Batra [38], 
Nguyen et al. [40], and Vo et al. [45]. Table 3 reveals 
that this study's results agreed with those available 
in the literature. Specifically, the critical buckling 
load was higher for a thin, slender beam and lower 
for a thick beam. However, the critical buckling load 
was in a non-dimensional form; non-dimensional 
quantities are reciprocal of dimensional quantities. 
According to Euler’s buckling theory, critical 
buckling loads are directly proportional to cross-
sections of beams (i.e., moments of inertia). 
Therefore, it can be noted that the dimensional 
critical buckling load for the slender beam was 
actually smaller than the load for the thicker beam. 
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Table 2. A comparison of the non-dimensional displacements and stress of the FG beams subjected to uniform loads with various power 
law exponent values 

  L/h = 5  L/h = 20 

p Theory u  w  x  
zx   u  w  x  

zx  

0 Present 0.9274 3.1224 3.7529 0.7259  0.2275 2.8585 14.8179 0.7259 

 Hadji et al. [42] 0.9233 3.1673 3.9129 0.7883  0.2290 2.8807 15.4891 0.7890 

 Reddy [20] 0.9397 3.1654 3.8019 0.7330  0.2306 2.8962 15.0129 0.7437 

 Touratier [22] 0.9409 3.1649 3.8053 0.7549  0.2306 2.8962 15.0138 0.7686 

 CBT 0.9211 2.8783 3.7500 -  0.2303 2.8783 15.0000 - 

1 Present 2.2735 6.2586 5.8077 0.7187  0.5611 5.7292 22.9038 0.7259 

 Hadji et al. [42] 2.2115 6.1805 6.0709 0.7883  0.5498 5.6965 24.0095 0.7890 

 Reddy [20] 2.3036 6.2594 5.8836 0.7330  0.5686 5.5685 23.2051 0.7432 

 Touratier [22] 2.3058 6.2586 5.8892 0.7549  0.5686 5.8049 23.2067 0.7686 

 CBT 2.2722 5.7746 5.7959 -  0.5680 5.7746 23.1834 - 

2 Present 3.0720 7.9627 6.7938 0.6573  0.7591 7.3450 26.7470 0.6648 

 Hadji et al. [42] 2.9629 7.9106 7.0925 0.7274  0.7366 7.2458 27.9844 0.728 

 Reddy [20] 3.1127 8.0677 6.8824 0.6704  0.7691 7.4421 27.0989 0.6812 

 Touratier [22] 3.1153 8.0683 6.8901 0.6933  0.7692 7.4421 27.1010 0.7069 

 CBT 3.0740 7.4003 6.7676 -  0.7685 7.4003 27.0704 - 

5 Present 3.6612 9.6986 8.0059 0.5786  0.9014 8.7031 31.3997 0.5863 

 Hadji et al. [42] 3.5429 9.6933 8.3581 0.6523  0.8775 8.6182 32.8183 0.6540 

 Reddy [20] 3.7097 9.8281 8.1104 0.5904  0.9134 8.8182 31.8127 0.6013 

 Touratier [22] 3.7140 9.8367 8.1222 0.6155  0.9134 8.8188 31.8159 0.6292 

 CBT 3.6496 8.7508 7.9428 -  0.9124 8.7508 31.7711 - 

10 Present 3.8351 10.7949 9.5870 0.6412  0.9412 9.5641 37.6432 0.6426 

 Hadji et al. [42] 3.7462 10.8680 9.9878 0.7064  0.9262 9.5513 39.2717 0.7091 

 Reddy [20] 3.8859 10.9381 9.7119 0.6465  0.9536 9.6905 38.1382 0.6586 

 Touratier [22] 3.8913 10.9420 9.7238 0.6708  0.9537 9.6908 38.1414 0.6858 

 CBT 3.8097 9.6072 9.5228 -  0.9524 9.6072 38.0913 - 

 

5.3 The free vibrations of FG beams 

The free vibration responses of FG beams were 
investigated. Fundamental frequencies were 
obtained for various power law exponent values and 
L/h ratios. The results were compared to those 
presented by Reddy [20], Simsek [39], Thai and Vo 
[37], Vo et al. [45], and Timoshenko [19] and those 
obtained with the CBT. Fundamental frequencies 
were presented in the following non-dimensional 
form: 

   2 / /m mL h E   . 

Table 4 shows the non-dimensional fundamental 
frequencies ( ) of simply supported FG beams. The 

natural frequencies of first three bending modes are 

presented. Table 4 reveals that the fundamental 
frequencies obtained using the theory presented in 
this research were in excellent agreement with those 
obtained by other researchers. The numerical results 
showed that all shear deformation theories predicted 
more or less the same frequencies, whereas the CBT 
overestimated all frequencies due to a neglect of 
shear deformation. The effects of a power law 
exponent, p, on the frequencies of FG beams are 
shown in Figure 6(b). It was observed that increases 
in power law exponent values led to reductions of 
fundamental frequencies. This was because the 
increases in power law exponent values resulted in 
decreases in elasticity modulus values. It should be 
noted that the fundamental frequencies were higher 
when there were higher modes of vibration. 

 



 

20 A. S. Sayyad, Y. M. Ghugal / Mechanics of Advanced Composite Structures 5 (2018) 13–24 

 

 

 

 
Figure 5. Through thickness distribution of the non-dimensional 

(a) axial displacement ( u ), (b) the axial stress (
x ), and (c) 

transverse shear stress (
zx ) simply supported the FG beam 

under a uniform load throughout various power law exponent 
values (L/h = 5) 

 

 

 
Figure 6. The variations in non-dimensional (a) critical buckling 
loads and (b) natural frequencies with respect to the power law 

exponents of simply supported FG beams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-4.0 -2.0 0.0 2.0 4.0

Axial Displacement (u)

-0.50

-0.25

0.00

0.25

0.50
T

h
ic

k
n

e
s
s
 c

o
o

rd
in

a
te

 (
z
/h

)

p = 0

p = 1

p = 2

p = 5

p = 10

(a)

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Axial Stress (x)

-0.50

-0.25

0.00

0.25

0.50

T
h
ic

k
n
e
s
s
 c

o
o

rd
in

a
te

 (
z
/h

)

p = 0

p = 1

p = 2

p = 5

p = 10

(b)

0.0 3.0 6.0 9.0

Transverse shear stress (zx)

-0.50

-0.25

0.00

0.25

0.50

T
h
ic

k
n
e
s
s
 c

o
o

rd
in

a
te

 (
z
/h

)

p = 0

p = 1

p = 2

p = 5

p = 10

(c)

0.0 2.0 4.0 6.0 8.0 10.0

Power law exponent (p)

10.0

20.0

30.0

40.0

50.0

60.0

C
ri

ti
c
a

l 
b

u
c
k
lin

g
 l
o

a
d

 (
N

c
r)

L / h = 5

L / h = 10

(a)

0.0 2.0 4.0 6.0 8.0 10.0

Power law exponent (p)

3.0

4.0

5.0

6.0

N
a

tu
ra

l 
F

re
q

u
e

n
c
ie

s
 (


)
L / h = 5

L / h = 10

(b)



 

A. S. Sayyad, Y. M. Ghugal / Mechanics of Advanced Composite Structures 5 (2018) 13–24 21 

 

 

Table 3. A comparison of the non-dimensional critical buckling loads (
crN ) of the FG beams subjected to axial forces in regards to various 

power law exponent values 

 

L/h 

 

Theory 

p 

0 1 2 5 10 

5 Present 48.596 24.584 19.071 15.645 14.052 

Li and Batra [38] 48.835 24.687 19.245 16.024 14.427 

Nguyen et al. [40] 48.835 24.687 19.245 16.024 14.427 

Vo et al. [45] 48.837 24.689 19.247 16.026 14.428 

Vo et al. [45] 48.840 24.691 19.160 16.740 14.146 

10 Present 52.238 26.141 20.366 17.082 15.500 

Li and Batra [38] 52.309 26.171 20.416 17.192 15.612 

Nguyen et al. [40] 52.309 26.171 20.416 17.194 15.612 

Vo et al. [45] 52.308 26.172 20.418 17.195 15.613 

Vo et al. [45] 52.308 26.172 20.393 17.111 15.529 

Table 4. A comparison of the first three non-dimensional fundamental frequencies of the FG beams in regards to various power law 
exponent values 

   p 
L/h Mode Theory 0 1 2 5 10 
5 1 Present 5.1527 3.9904 3.6264 3.4014 3.2816 
  Reddy [20] 5.1527 3.9904 3.6264 3.4012 3.2816 
  Simsek [39] 5.1527 3.9904 3.6264 3.4012 3.2816 
  Thai and Vo [37] 5.1527 3.9904 3.6264 3.4012 3.2816 
  Vo et al. [45] 5.1527 3.9716 3.5979 3.3742 3.2653 
  Timoshenko [19] 5.1524 3.9902 3.6343 3.4311 3.3134 
  CBT 5.3953 4.1484 3.7793 3.5949 3.4921 
 2 Present 17.881 14.010 12.640 11.544 11.024 
  Thai and Vo [37] 17.881 14.009 12.640 11.544 11.024 
  CBT 20.618 15.798 14.326 13.587 13.237 
 3 Present 34.202 27.098 24.316 21.720 20.556 
  Thai and Vo [37] 34.208 27.097 24.315 21.718 20.556 
  CBT 43.348 33.027 29.745 28.085 27.475 
20 1 Present 5.4603 4.2050 3.8361 3.6485 3.5390 
  Reddy [20] 5.4603 4.2050 3.8361 3.6485 3.5389 
  Simsek [39] 5.4603 4.2050 3.8361 3.6485 3.5389 
  Thai and Vo [37] 5.4603 4.2050 3.8361 3.6484 3.5389 
  Vo et al. [45] 5.4603 4.2038 3.8342 3.6466 3.5378 
  Timoshenko [19] 5.4603 4.2050 3.8367 3.6508 3.5415 
  CBT 5.4777 4.2163 3.8472 3.6628 3.5547 
 2 Present 21.573 16.634 15.161 14.374 13.926 
  Thai and Vo [37] 21.573 16.634 15.161 14.374 13.926 
  CBT 21.843 16.810 15.333 14.595 14.167 
 3 Present 47.593 36.768 33.469 31.579 30.095 
  Thai and Vo [37] 47.593 36.767 33.469 31.5789 30.537 
  CBT 48.899 37.617 34.295 32.6357 31.688 

 

6. Conclusions 

A hyperbolic shear deformation theory developed 
by Soldatos [21] was extended in this paper to 
conduct bending, buckling, and free vibration 
analyses of FG beams. With the theory,  hyperbolic 
cosine variations of transverse shear stress were 
found at the top and bottom surfaces of the beams. 
Subsequently, Hamilton’s principle was employed to 
derive equations of motion. The equations of motion, 
with the theory, were variationally consistent and 
allowed the avoidance of a shear correction factor. 
Then, an analytical solution for a simply supported 

boundary condition was obtained using Navier’s 
solution procedure.  

The numerical results were compared to those 
obtained by other researchers to determine the 
accuracy of the theory. Based on the comparisons 
and a discussion, it was concluded that the 
displacements, stress, critical buckling loads, and 
natural frequencies obtained using the theory were 
accurate and in agreement with those obtained using 
other refined shear deformation theories. It was seen 
that varying material properties had significant 
effects on the dimensionless stress, frequencies, and 
buckling loads of the FG beams. Increasing power law 
exponent values reduced the stiffnesses of the FG 
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beams and consequently led to increases in 
displacements and reductions of frequencies and 
buckling loads. Overall, the investigation of the 
bending, buckling, and free vibration responses of 
the FG beams confirmed the effects and credibility of 
the hyperbolic shear deformation theory. 
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