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Abstract

In this paper, we present recent results in integral inequality theory. Our results are based on the
fractional integration in the sense of Riemann-Liouville
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1. Introduction

The integral inequalities involving functions of independent variables play a fundamental role in
the theory of differential equations. Motivated by certain applications, many such new inequalities
have been discovered in the past few years ( see [2, 5, 13, 14, 15]). Moreover, the fractional type
inequalities are of great importance. We refer the reader to [1, 16] for some applications. Let us now
turn our attention to some results that have inspired our work. We consider the quantity

Ra,b(p, q, f, g) :=

∫ b

a

pf 2 (x) dx

∫ b

a

qg2 (x) dx+

∫ b

a

qf 2 (x) dx

∫ b

a

pg2 (x) dx

−2
( ∫ b

a
p|fg| (x) dx

)( ∫ b
a
q|fg| (x) dx

)
− 2
( ∫ b

a
p|fg| (x) dx

)( ∫ b
a
q|fg| (x) dx

)
,

(1.1)

where f and g are two continuous functions on [a, b] and p and q are two positive and continuous
functions on [a, b].
In the case, when p = q, S.S. Dragomir [10] proved the inequality:

0 < R1,Ω(p, f, g) := RΩ(p, p, f, g) ≤ (M −m)2

2mM

(∫
Ω

p|fg| (x) dµ(x)
)
, (1.2)

∗Corresponding author
Email addresses: ah.anber@yahoo.fr (A. Anber ), zzdahmani@yahoo.fr (Z. Dahmani ),

b.bendoukha@yahoo.fr (B. Bendoukha)

Received: May 2012 Revised: January 2013

http://www.ijnaa.semnan.ac.ir


46 A. Anber, Z. Dahmani and B. Bendoukha

provided f and g are Lebesgue µ− measurable, pf 2, pg2 are Lebesgue µ− integrable on Ω and
0 < m ≤ |f(x)

g(x)
| ≤ M ≤ ∞, for µ a.e.x ∈ Ω. For other results related to the Cauchy-Schwarz

difference (1), in the case p = q, a number of valued extensions can be found in [3, 6, 7, 8, 9, 12, 18]
and the references cited therein.
The main aim of this paper is to establish some new fractional integral inequalities of Cauchy-Schwarz
type by giving an upper and a lower bound for the quantity (1.1) Some new fractional results related
to Cassel’s inequality [4], [17], [19] are also generated. For our results, some classical inequalities can
be deduced as some special cases. Our results have some relationships with [3], [10].

2. Description of the fractional calculus

We introduce some definitions and properties which will be used in this paper:

Definition 2.1. A real valued function f is said to be in the space Cµ([0,∞[), µ ∈ R if there exists
a real number r > µ, such that f(t) = trf1(t), where f1 ∈ C([0,∞)).

Definition 2.2. A function f is said to be in the space Cn
µ ([0,∞[), n ∈ N, if f (n) ∈ Cµ([0,∞[).

Definition 2.3. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a function
f ∈ Cµ([0,∞[), µ ≥ −1, is defined as

Jαf(t) =
1

Γ(α)

t∫
0

(t− τ)α−1f(τ)dτ ; α > 0, t > 0

J0f(t) = f(t).

(2.1)

For the convenience of establishing the results, we give the following property:

JαJβf(t) = Jα+βf(t). (2.2)

For the expression (2.1), when f(t) = tβ we get another expression that will be used later:

Jαtβ =
Γ(β + 1)

Γ(α + β + 1)
tα+β. (2.3)

For more details, see [11, 16].

3. Main results

Our first result is the following theorem:

Theorem 3.1. Suppose that f and g are two continuous functions on [0,∞[ and p and q are two pos-
itive continuous function on [0,∞[, such that p|f

g
|, p| g

f
|, q|f

g
|, q| g

f
|, pf 2, pg2, qf 2 and qg2 are integrable

functions on [0,∞[. If there exist m and M two positive real numbers, such that

0 < m ≤ |f(τ)g(τ)| ≤M ; τ ∈ [0, t], t > 0, (3.1)
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then we have

m2
(
Jα(q|f

g
|)(t)Jα(p| g

f
|)(t) + Jα(p|f

g
|)(t)Jα(|q g

f
|)(t)− 2Jαp(t)Jαq(t)

)
≤ Jαpf 2(t)Jαqg2(t) + Jαqf 2(t)Jαpg2(t)− 2Jα(p|fg|)(t)Jα(q|fg|)(t)

≤M2
(
Jα(p|f

g
|)(t)Jα(q| g

f
|)(t) + Jα(q|f

g
|)(t)Jα(p| g

f
|)(t)− 2Jαp(t)Jαq(t)

)
,

(3.2)

for any α > 0, t > 0.

Proof .
In the identity

u2 + v2

2
− uv =

1

2
uv
(√u

v
−
√
v

u

)2

;u > 0, v > 0,

we take u = |f(τ)g(ρ)| and v = |f(ρ)g(τ)|, τ, ρ ∈ [0, t], t > 0. Then we can write

f 2(τ)g2(ρ) + f 2(ρ)g2(τ)

2
− |f(τ)g(ρ)||f(τ)g(ρ)|

= 1
2
|f(τ)g(τ)||f(ρ)g(ρ)|

(√
|f(τ)
g(τ)
|| g(ρ)
f(ρ)
| −
√
|f(ρ)
g(ρ)
|| g(τ)
f(τ)
|
)2

.

(3.3)

On the other hand, we have

(√
|f(τ)

g(τ)
|| g(ρ)

f(ρ)
| −

√
|f(ρ)

g(ρ)
|| g(τ)

f(τ)
|
)2

= |f(τ)

g(τ)
|| g(ρ)

f(ρ)
|+ |f(ρ)

g(ρ)
|| g(τ)

f(τ)
| − 2. (3.4)

Using (3.4) and the condition (3.1) we can write

m2

2

(
|f(τ)

g(τ)
|| g(ρ)

f(ρ)
|+ |f(ρ)

g(ρ)
|| g(τ)

f(τ)
| − 2

)
≤ f2(τ)g2(ρ)+f2(ρ)g2(τ)

2
− |f(τ)g(τ)||f(ρ)g(ρ)|

≤ M2

2

(
|f(τ)
g(τ)
|| g(ρ)
f(ρ)
|+ |f(ρ)

g(ρ)
|| g(τ)
f(τ)
| − 2

)
.

(3.5)

Hence we get,

m2

2

(
| g(ρ)

f(ρ)
|Jα(p|f

g
|)(t) + |f(ρ)

g(ρ)
|Jα(p| g

f
|)(t)− 2Jαp(t)

)
≤ g2(ρ)Jαpf2(t)+f2(ρ)Jαpg2(t)

2
− |f(ρ)g(ρ)|Jα(p|fg|)(t)

≤ M2

2

(
| g(ρ)
f(ρ)
|Jα(p|f

g
|)(t) + |f(ρ)

g(ρ)
|Jα(p| g

f
|)(t)− 2Jαp(t)

)
.

(3.6)

Multiplying both sides of (3.6) by (t−ρ)α−1

Γ(α)
q(ρ), then integrating the resulting inequalities with respect

to ρ over [0, t], we obtain
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m2

2

(
Jα(q|f

g
|)(t)Jα(p| g

f
|)(t) + Jα(p|f

g
|)(t)Jα(q| g

f
|)(t)− 2Jαp(t)Jαq(t)

)
≤ Jαpf2(t)Jαqg2(t)+Jαqf2(t)Jαpg2(t)

2
− Jα(p|fg|)(t)Jα(q|fg|)(t)

≤ M2

2

(
Jα(p|f

g
|)(t)Jα(q| g

f
|)(t) + Jα(q|f

g
|)(t)Jα(p| g

f
|)(t)− 2Jαp(t)Jαq(t)

)
.

(3.7)

Theorem 3.1 is thus proved. �

Remark 3.2. Applying Theorem 3.1 for p = q, α = 1, dµ(τ) = dτ, we obtain Theorem 1 of [3] on
[0, t] = Ω.

The previous result can be generalized to the following:

Theorem 3.3. Suppose that f and g are two continuous functions on [0,∞[ and let p and q be two
positive continuous functions on [0,∞[, such that
p|f
g
|, p| g

f
|, q|f

g
|, q| g

f
|, pf 2, qf 2, pg2 and qg2 are integrable functions on [0,∞[. If there exist m and M

two positive real numbers, such that

0 < m ≤ |f(τ)g(τ)| ≤M ; τ ∈ [0, t], t > 0, (3.8)

then the inequalities

m2
(
Jα(p|f

g
|)(t)Jβ(q| g

f
|)(t) + Jβ(q|f

g
|)(t)Jα(p| g

f
|)(t)− 2Jαp(t)Jβq(t)

)
≤ Jαpf 2(t)Jβqg2(t) + Jβqf 2(t)Jαpg2(t)− 2Jα(p|fg|)(t)Jβ(q|fg|)(t)

≤M2
(
Jα(p|f

g
|)(t)Jβ(q| g

f
|)(t) + Jβ(q|f

g
|)(t)Jα(p| g

f
|)(t)− 2Jαp(t)Jβq(t)

) (3.9)

are valid for any α > 0, β >, t > 0.

Proof . Multiplying both sides of (3.6) by (t−ρ)β−1

Γ(β)
q(ρ), then integrating the resulting inequalities

with respect to ρ over [0, t], we obtain:

m2

2

(
Jα(p|f

g
|)(t)Jβ(q| g

f
|)(t) + Jβ(q|f

g
|)(t)Jα(p| g

f
|)(t)− 2Jαp(t)Jβq(t)

)
≤ Jαpf2(t)Jβqg2(t)+Jβqf2(t)Jαpg2(t)

2
− Jα(p|fg|)(t)Jβ(q|fg|)(t)

≤ M2

2

(
Jα(p|f

g
|)(t)Jβ(q| g

f
|)(t) + Jβ(q|f

g
|)(t)Jα(p| g

f
|)(t)− 2Jαp(t)Jβq(t)

)
.

(3.10)

The proof of Theorem 3.3 is thus achieved. �

Remark 3.4. It is clear that Theorem 3.1 would follow as a special case of of Theorem 3.3 when
α = β.

Now, we shall propose a new generalization of Cassel’s inequality. We have:
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Theorem 3.5. Let f, g be two continuous functions on [0,∞[ and let p and q be two positive con-
tinuous functions on [0,∞[, such that pf 2, qf 2, pg2 and qg2 are integrable on [0,∞[. If there exist m
and M two positive real numbers, such that

0 < m ≤ |f(τ)

g(τ)
| ≤M ; τ ∈ [0, t], t > 0, (3.11)

then we have
Jαpf 2(t)Jαqg2(t)− Jα(p|fg|)(t)Jα(q|fg|)(t)

≤ (M−m)2

4mM
Jα(p|fg|)(t)Jα(q|fg|)(t),

(3.12)

for any α > 0, t > 0.

Proof . From the condition |f(τ)
g(τ)
| ≤M ; τ ∈ [0, t] , t > 0, we have

f 2(τ) ≤M |f(τ)g(τ)|; τ ∈ [0, t] , t > 0. (3.13)

Therefore,

1

Γ (α)

t∫
0

(t− τ)α−1 p(τ)f 2(τ)dτ ≤ M

Γ (α)

t∫
0

(t− τ)α−1 p(τ)|f(τ)g(τ)|dτ. (3.14)

Consequently,
Jαpf 2(t) ≤MJα(p|fg|)(t). (3.15)

Now, using the condition m ≤ |f(τ)
g(τ)
|; τ ∈ [0, t], t > 0, we can write

mJαqg2(t) ≤ Jα(q|fg|)(t). (3.16)

Multiplying (3.15) and (3.16) we obtain

Jαpf 2(t)Jαqg2(t) ≤ M

m
Jα(p|fg|)(t)Jα(q|fg|)(t). (3.17)

Consequently, we get
Jαpf 2(t)Jαqg2(t)− Jα(p|fg|)(t)Jα(q|fg|)(t)

≤ M−m
m

Jα(p|fg|)(t)Jα(q|fg|)(t),
(3.18)

which implies (3.12) Theorem 3.5 is thus proved. �

Remark 3.6. If we take α = 1, p = q, then we obtain Cassel’s inequality [10],[19] on [0, t].

Also, with the same assumptions as before, we get the following generalization of Theorem 3.5:
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Theorem 3.7. Let f, g be two continuous functions on [0,∞[ and let p and q be two positive contin-
uous functions on [0,∞[, such that pf 2, qf 2, pg2 and qg2 are integrable on [0,∞[. If there exist m,M
positive real numbers, such that

0 < m ≤ |f(τ)

g(τ)
| ≤M, τ ∈ [0, t], t > 0, (3.19)

then, for any α > 0, β > 0, t > 0, the inequality

Jαpf 2 (t) Jβqg2 (t)− Jα(p|fg|)(t)Jβ(q|fg|)(t) ≤ (M −m)2

4mM
Jα(p|fg|) (t) Jβ(q|fg|)(t) (3.20)

is valid.

Proof . From the condition m ≤ |f(τ)
g(τ)
|; τ ∈ [0, t], t > 0, we can write

mJβqg2(t) ≤ Jβ(q|fg|)(t). (3.21)

Thanks to (3.16) and (3.21) we obtain

Jαpf 2(t)Jβqg2(t) ≤ M

m
Jα(p|fg|)(t)Jβ(q|fg|)(t). (3.22)

Therefore,
Jαpf 2(t)Jβqg2(t)− Jα(p|fg|)(t)Jβ(q|fg|)(t)

≤ M−m
m

Jα(p|fg|)(t)Jβ(q|fg|)(t).
(3.23)

Hence, we deduce the desired inequality (3.20). �
We give also the following corollaries:

Corollary 3.8. Let F,G be two continuous functions on [0,∞[ and let p and q be two positive
continuous functions on [0,∞[, such that p|F

G
|, p|G

F
|, q|F

G
|, q|G

F
|, pF 2, pG2, qF 2 and qG2 are integrable

functions on [0,∞[. If there exist n,N,M positive real numbers, such that |F (τ)G(τ)| ≤M and

0 < n ≤ |F (τ)

G(τ)
| ≤ N, τ ∈ [0, t], t > 0, (3.24)

then, for any α > 0, t > 0, the inequality

JαpF 2(t)JαqG2(t) + JαqF 2(t)JαpG2(t)− 2Jα(p|FG|)(t)Jα(q|FG|)(t)

≤ M2(N−n)2

2nN
JαpJαq(t)

(3.25)

is valid.

Proof . In Theorem 3.5, we take f :=
√
|F
G
|, g :=

√
|G
F
|. We constat that n ≤ f(τ)

g(τ)
≤ N ; τ ∈ [0, t], t >

0, and then

Jα(p|F
G
|)(t)Jα(q|G

F
|)(t)− Jαp(t)Jαq(t)

≤ (N−n)2

4nN
Jαp(t)Jαq(t).

(3.26)
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We have also

Jα(q|F
G
|)(t)Jα(p|G

F
|)(t)− Jαp(t)Jαq(t)

≤ (N−n)2

4nN
Jαp(t)Jαq(t).

(3.27)

Combining (3.26) and (3.27), we obtain

Jα(p|F
G
|)(t)Jα(q|G

F
|)(t) + Jα(q|F

G
|)(t)Jα(p|G

F
|)(t)− 2Jαp(t)Jαq(t)

≤ (N−n)2

2nN
Jαp(t)Jαq(t).

(3.28)

Since |F (τ)G(τ)| ≤M ; τ ∈ [0, t], t > 0, then thanks to the second inequality of (3.2) (Theorem 3.1),
we claim that

JαpF 2(t)JαqG2(t) + JαqF 2(t)JαpG2(t)− 2Jα(p|FG|)(t)Jα(q|FG|)(t)

≤M2
(
Jα(p|F

G
|)(t)Jα(q|G

F
|)(t) + Jα(q|F

G
|)(t)Jα(p|G

F
|)(t)− 2Jαp(t)Jαq(t)

)
.

(3.29)

Using (3.28) and (3.29), we obtain the desired inequality (3.25). �

Remark 3.9. If we take p = q, α = 1, dµ(τ) = dτ, then we obtain Corollary 3.8 on Ω provided that
Ω = [0, t].

Corollary 3.10. Let F,G, p and q satisfy the conditions of Corollary 3.8. Then, for any α > 0, β >
0, t > 0, we have

JαpF 2(t)JβqG2(t) + JβqF 2(t)JαpG2(t)− 2Jα(p|FG|)(t)Jβ(q|FG|)(t)

≤ M2(N−n)2

2nN
JαpJβq(t).

(3.30)

Proof . We apply Theorem 3.5 and Theorem ??. �

Remark 3.11. If we take α = β, then we obtain Corollary 3.8.
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