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Abstract

In this study, we present the new Hermite-Hadamard type inequality for functions which are h-convex
on fractal set R* (0 < a < 1) of real line numbers. Then we provide the special cases of the result
using different type of convex mappings.
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1. Introduction

Let f: I CR — R be a convex function on the interval I of real numbers and a,b € I with a < b.
If f is a convex function then the following double inequality holds [3]:

(55 < i [ e < L0, (1)

2 2

The above inequality which is well known in the literature as the Hermite-Hadamard in-
equality, is the most fundamental and interesting inequality for classical convex functions. This
inequality provides a lower and an upper estimations for the integral average of any convex functions
defined on a compact interval. For numerous interesting results which generalize, improve and extend
the classical Hermite-Hadamard inequality see for instance [3], [I0] and references therein.
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2. The preliminaries

The concepts of fractional calculus [6] and local fractional calculus (also called fractal calculus)
(see, for details, [18], [19] and [20]) are becoming increasingly useful in a wide variety of problems
in mathematical, physical and engineering sciences (see, for example, [21] to [24]). We need the
following notations and preliminaries to define the local fractional derivative and the local fractional
integral.

Recall the set R® of real line numbers and use the Gao-Yang-Kang’s idea to describe the definition
of the local fractional derivative and local fractional integral, (see [18], [19], [20]) and so on. Recently,
the theory of Yang’s fractional sets [19] was introduced as follows:

For 0 < a < 1, we have the following a-type set of element sets:

Z% : The a-type set of integer is defined as the set {0%, £1%, £2% ..., +n®, ...}.

Q“: The a-type set of the rational numbers is defined as the set {m® = <§>a :p,q €Z,q#0}.

J* : The a-type set of the irrational numbers is defined as the set {m®* # <§> :p,q €7, q+# 0}.
R® : The a-type set of the real line numbers is defined as the set R* = Q* U J°.
If a®, 6™ and ¢ belongs the set R of real line numbers, then

) a® + b* and a*b™ belongs the set RY;
a*+b*=b"+a*=(a+b)" = (b+a);

a®+ (b* +c¢*) = (a+b)* + %

a®b® = b*a® = (ab)® = (ba)”;

a® (baca) — (aaba) Ca;

a® (ba + ca) — aaboz + aaca;

) a® + 0% = 0% + a® = a® and a®1* = 1% = a®.

(1

(2)
(3)
(4)
(5)
(6)
(7

The definition of the local fractional derivative and local fractional integral can be given as follows:

Definition 2.1. (Yang [19]) A non-differentiable function f : R — R* x — f(z) is called to be
local fractional continuous at xg, if for any € > 0, there exists § > 0, such that

|f (@) = f ()| <&

holds for |z — x¢| < d, where €,0 € R. If f(z) is local continuous on the interval (a,b), we denote

f(z) € Cu(a,b).

Definition 2.2. (Yang [19]) The local fractional derivative of f(z) of order a at x = x¢ is defined

by
d*f(x) _ lim A% (f(x) = f(20))

dr® | ,_, ~— #—o (x — x0)”

F1 (o) =

Y

k+1 times

——
where A (f(x) — f(z0)) =0(1 4+ a) (f(z) — f(x0)) . If there exists f*+V(z) ="D2...D% f(x) for any
x € I CR, then we denoted f € Dyi1)a(I), where £ =0,1,2, ...
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Definition 2.3. (Yang [19]) Let f(z) € C, [a,b]. Then the local fractional integral is defined by,

o I .
T 1@ = T / O = o im, D 600"

with At; = t;1; —t; and At = max {Aty, Aty, ..., Aty_1}, where [t;,t;11], j = 0,...,N — 1 and
a=1ty <ty <..<ty_1 <ty =Dbis partition of interval [a,d].

Here, it follows that I f(z) = 0if a = b and I f(x) = =I5 f(x) if a < b. If for any x € [a, b],
there exists ,I% f(x), then we denoted by f(x) € I [a,b].

Lemma 2.4. (Yang [19])

(i) (Local fractional integration is anti-differentiation) Suppose that f(z) = ¢ (x) € Cy[a,b],
then we have

o' f(z) = g(b) — g(a).
(ii) (Local fractional integration by parts) Suppose that f(z), g(z) € D, [a,b] and £ (), g/ (z) €
Ca [a,b], then we have

o5 f(2)g' (@) = f(2)g(@)ly —a 15 [ (2)g(2).

Lemma 2.5. (Yang [19])

a ko
(1) dx F( + k’Oé) m(kfl)a.
@@ n1+w 1 a) ’
b (1 + ka)
ka (k+Da _ 4 (k+1)ex
(i) 1+a S @) = s e U "), kER

Now, we give some definitions which are used in our results:

Definition 2.6. (Mo, Sui, Yu [7]) Let f : I C R — R®. For any z;,22 € I and A € [0, 1], if the
following inequality
Fzy + (1= A)za) < A%f(21) + (1 = A)*f(22)

holds, then f is called a generalized convex function on I. If this inequality reversed, then f is called
a generalized concave function.

Here are two basic examples of generalized convex functions:

(i) f(z) =2, 2>0,p>1;

(ii) f(x) = Ea(z®), © € R where E,(z%) = ) F(%:,a) is the Mittag-Leffer function.
k=0

In [7], Mo et al. proved the following generalized Hermite-Hadamard inequality for generalized
convex function:

Theorem 2.7. Let f(x) € I¢ [a,b] be generalized convex function on [a,b] with a < b. Then

a+b 'l+a) fla)+ f(b)
H(*57) < o ats ey < LU0
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In [I7], the definition of h—convex functions on fractal sets was established by Vivas et al., as
follows:

Definition 2.8. Let h : J — R® be a non-negative function and h # 0, defined over an interval
J C R and such that (0,1) C J. We say that f : I — R defined over an interval I C R, is h— convex
if f is non-negative and we have

[tz + (1 =)o) < h(t)f(x1) + h(1 — 1) f(22)

for all t € (0,1) and xq,29 € I.

Example 2.9. Let 0 < s < 1, h : (0,1) — R* defined as h(t) = t** and a®,b*, ¢ € R*. For
r € Ry =10,00), define

«

a®, r=0
f($)_{ba$sa+ca7 l’>0

In [8], Mo and Sui introduced the definitions of two kinds of generalized s—convex functions on
fractal sets such as follows:

Definition 2.10. (i) Let Ry = [0,00). A function f : Ry — R is said to be generalized s-convex
(0 < s < 1) in the first sense, if

FAu+ Av) < A f(u) + A% f(v),

for all u,v € Ry and all A\;, Ay > 0 with A\{ + A3 = 1. One denotes by f € GK.
(ii) A function f: R, — R* is said to be generalized s-convex (0 < s < 1) in the second sense, if

FOuu + Av) < X f(u) + A2 f(v),
for all u,v € R, and all A\;, Ay > 0 with A\; + Xy = 1. One denotes by f € GK2.
Note that, if s = 1 in Definition [2.10 then we have the generalized convex function.
For more information and recent developments on local fractional theory, please refer to [I],[2],

The main goal of this article is to establish new Hermite-Hadamard type inequalities for h—convex.

3. The main results

We start with the following important theorem for our work.

Theorem 3.1. Let h: [0,1] — R® be a non-negative function and f : I — R* be a h-convex function
such that h (3) # 0% and oIPh(t) > (1), then

1 a-+b 'l+a«a) .
220‘[h(%)}2f< 2 > < AIS_(b_a)a a]bf()

< st |[F@+so{n(3) + (5) ] arno
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where | - _—
a—+ a—+
A pu—
gl () )]
and ; ;
+ +
Ay =T(1+ ) [w + f <a 5 >] ol{h(t).
Proof . Firstly, we divide interval [a,b] into [a, %$?] and [“E2,b] . Since f function is h-convex
function, for [a, “TH’] we have

a+ 4\ ta+ (1 —t)2t 4 (1 —t)a -+ttt
(552) - [y

2
h<%> {f <ta+(1—t)a;b> +f((1—t)a+ta;b)].

Integrating both sides of above inequality with respect to ¢ on [0, 1], we obtain

IA

1 3a+0b I'l+a)
< b ) 1
! (7)< e il 3
Similarly, for [“TH’, b} we have
otb 4 tetb 4+ (1—t)b+ (1 — )%+ tb
=3 =/ 2

< h(%) [f <ta;b+(1—t)b) +f<(1—t)a7+b+tb>}.

Integrating both sides of above inequality with respect to ¢ on [0, 1], we obtain

By el @) (32

1 s a+ 3b - I'l+a)
g’
By adding inequalities (3.1)) and (3.2)), it yields

N 22&;(%) [f (ang) +f<3a4+b”

I'(l+ )

< W o1y f(7)

o P(l + oz) [ 2¢ o 2 [

- A @)+ s T
<

w :{f(a) +f (“;b)} off“h(t)] + w Hf (“;b) + f(b>} off‘h(ﬂ}

IF'l+a) |
20é
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On the other hand, since f is h-convex function and T'(1 + a)oI{h(t) > ()%, we deduce that

1 f<a—|—b> B 1 f<13a+b+1a+3b>
N AN A I 10 A CRE N

s V) ()
= wgy P C) ()]
m [h (%) {f(a) NIOREY] (‘“2”)) H
()]

Py [f@) 4 £

IN

IN

IN

IN

(
I'l+a) :2—a+h<
(

= r+a i@+ o1 {n
This completes the proof. [

Corollary 3.2. If we choose h(t) =t* in Theorem 3.1, we obtain
a+b I'(1l+«
(%) = sos =

. (b—a)*

< AQS[f(a)JFf(b)]%’
here n= L () e ()]
and

= [H010) (0] Ko

Corollary 3.3. Let f : I — R® be a generalized s-convex function in the second sense where s € (0, 1]
such that D(1 + a)oIft* > (1), then

2(2572)04]0 (a ;_ b) < A < % all?lf(z)

s oG )

IN




788 Tung, Budak, Usta, Sarikaya

A, — oo {f (ang) Ly (:m: b)]

fla)+ f(b) a+b\] I'(1+sa)l'(1+ )
20 +f( 2 )} M1+ (s+1a)

where

and

|

Definition 3.4. A function f : I — R® is said to be generalized P-convex function, if f is non-
negative and for all z,y € I and t € |0, 1], we have

[tz + (1 =t)y) < fx) + fy). (3.3)

Corollary 3.5. Let f: I — R® be a generalized P-convex function, then

1 a+b rl+a«a) .,
el (%57) = =g i)

IN

2a< (3) @+ 50,

R 2) (52

A, [f<a>+ (b)+f<a+b>}

where

and

2« 2

Remark 3.6. If we choose a = 1 in the above results, then we obtain the inequalities given by Noor
et al. in [9].
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