
Int. J. Nonlinear Anal. Appl. 4 (2013) No. 2, 53-61
ISSN: 2008-6822 (electronic)
http://www.ijnaa.semnan.ac.ir

Convergence Theorems of Iterative Approximation
for Finding Zeros of Accretive Operator and Fixed
Points Problems

V. Dadashia,∗, S. Ghafarib

aDepartment of Mathematics, Islamic Azad University–Sari Branch, Sari, Iran.
bDepartment of Mathematics, Islamic Azad University–Sari Branch, Sari, Iran.

Abstract

In this paper we propose and studied a new composite iterative scheme with certain control con-
ditions for viscosity approximation for a zero of accretive operator and fixed points problems in a
reflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequence
{xn} defined by the new introduced iterative sequence is proved. The main results improve and
complement the corresponding results of [1, 4, 10].
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1. Introduction and preliminaries

Let C be a nonempty closed convex subset of a real Banach space E with E∗ be dual space of E
and the value of x∗ ∈ E∗ will be denoted by 〈x∗, x〉. The normalized duality mapping J from E into
the family of nonempty w∗-compact subsets of its dual E∗ is defined by

J(x) = {x∗ ∈ E∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2} (1.1)

for each x ∈ E [5]. Recall that a mapping T : C → C is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖
for all x, y ∈ C and a self-mapping f : C → C is a contraction on C if there exists a constant
α ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ C. The set of all fixed points of T is
denoted by F (T ), that is F (T ) = {x ∈ C | x = Tx} and we use ΠC to denote the collection of all
contractions on C, that is ΠC = {f : C → C | f is a contraction with a constant α}. Note that
each f ∈ ΠC has a unique fixed point in C, and for any fixed element x0 ∈ C, Picard’s iteration
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xn+1 = fn(x0) converges strongly to a unique fixed point of f . However, a simple example shows
that Picard’s iteration cannot be used in the case of nonexpansive mappings.

An operator A : E → E is said to be accretive if for each (x1, y1), (x2, y2) ∈ Gph(A) there exists a
j ∈ J(x2−x1) such that 〈y2−y1, j〉 ≥ 0. An accretive operator A is m-accretive if R(I+rA) = E for
each r ≥ 0. The set of zeros of A is denoted by N(A) = A−1(0) = {z ∈ D(A) : 0 ∈ Az} it is always
assumed that A is accretive and N(A) is nonempty. For each r ≥ 0, we denote by Jr the resolvent
of A, that is Jr = (I + rA)−1. Note that, if A is m-accretive, then Jr : E → E is a nonexpansive
mapping and F (Jr) = N(A) for all r ≥ 0.

In 2008 Jung [9] introduced a new composite iterative scheme for a nonexpansive mapping T as
follows:

x1 = x ∈ C
yn = αnf(xn) + (1− αn)Txn, n ≥ 1,
xn+1 = (1− βn)yn + βnTyn, n ≥ 1,

(1.2)

where f ∈ ΠC and {αn}, {βn} ⊂ [0, 1]. He proved the strong convergence of the sequence {xn}
defined by (1.2) under suitable conditions of the control parameters {αn} and {βn} and asymptotic
regularity on {xn} in a reflexive Banach space with a uniformly Gateaux differentiable norm together
with the assumption that every weakly compact convex subset of E has the fixed point property for
nonexpansive mappings.

On the other hand, He, Xu and He [8] introduced an iteration scheme for viscosity approximation
for a zero of accretive operator and fixed points problems in a reflexive Banach space with weakly
continuous duality mapping as follows:{

x1 = x ∈ C
xn+1 = αnf(xn) + βnxn + γnTJrnxn, n ≥ 1,

(1.3)

where f ∈ ΠC , Jrn is the resolvent of A and T is nonexpansive mapping. They proved that {xn}
strongly convergence to a zero of accretive operator and fixed points problems under some control
conditions on {αn}, {βn} and {γn}.

In this paper, inspired and motivated by the above iterative schemes, we introduced and studied
a new composite iterative scheme as follows:{

yn = αnf(xn) + (1− αn)TJrnxn,
xn+1 = βnTyn + (1− βn)yn,

(1.4)

where f ∈ ΠC , {αn}, {βn} ⊂ [0, 1], Jrn is the resolvent of A and T is nonexpansive mapping. The
main results improve and complement the corresponding results of [1, 4, 10].

By a gauge function ϕ we mean a continuous strictly increasing function ϕ : [0,+∞)→ [0,+∞)
such that ϕ(0) = 0 and ϕ(t) → +∞ as t → +∞. Let E∗ be the dual space of E. The duality
mapping Jϕ : E → 2E

∗
associated to a gauge function ϕ is defined by

Jϕ(x) = {x∗ ∈ E∗ : 〈x∗, x〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)}, ∀x ∈ E.

In particular, the duality mapping with the gauge function ϕ(t) = t, denoted by J , is referred to

as the normalized duality mapping. Clearly, there holds the relation Jϕ(x) = ϕ(‖x‖)
‖x‖ J(x) for all

x 6= 0. Browder [2] initiated the study of certain classes of nonlinear operators by means of the
duality mapping Jϕ. Following Browder [2], we say that a Banach space E has a weakly continuous
duality mapping if there exists a gauge ϕ for which the duality mapping Jϕ(x) is single-valued and
continuous from the weak topology to the weak∗ topology, that is, for any {xn} with xn ⇀ x, the
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sequence {Jϕ(xn)} converges weakly∗ to Jϕ(x). It is known that lp has a weakly continuous duality
mapping with a gauge function ϕ(t) = tp−1 for all 1 < p < +∞. Set

φ(t) =

∫ t

0

ϕ(τ) dτ, ∀t ≥ 0, (1.5)

then

Jϕ(x) = ∂φ(‖x‖), ∀x ∈ E, (1.6)

where ∂ denotes the subdifferential in the sense of convex analysis that for each x ∈ X such that
f(x) ∈ R, the subdifferential of f at x defined by ∂f(x) = {x∗ ∈ X∗ | f(y)− f(x) ≥ 〈x∗, y − x〉∀x ∈
X}. The next lemma is an immediate consequence of the subdifferential inequality.

Lemma 1.1. Assume that E has a weakly continuous duality map Jϕ with gauge ϕ. Then, for each
x, y ∈ E, one has

φ (‖x+ y‖) ≤ φ (‖x‖) + 〈y, Jϕ (x+ y)〉 . (1.7)

Lemma 1.2. [11] Assume that {αn} is a sequence of nonnegative real numbers such that αn+1 ≤
(1− γn)αn + σnγn, n ≥ 1, where {γn} ⊆ (0, 1) and {σn} is a sequence in R such that

(i) lim
n→∞

γn = 0 and
∞∑
n=1

γn =∞,

(ii) lim sup
n→∞

σn ≤ 0 or
∞∑
n=1

|σnγn| <∞.

Then lim
n→∞

αn = 0.

Lemma 1.3. [3] For λ > 0, µ > 0 and x ∈ E,

Jλx = Jµ

(µ
λ
x+

(
1− µ

λ

)
Jλx
)
.

Lemma 1.4. [6] Let E be a reflexive Banach space, C a nonempty closed convex subset of E and
T : C → E a nonexpansive mapping. Suppose that E admits a weakly sequentially continuous duality
mapping. Then the mapping I − T is demiclosed on C, where I is the identity mapping, i.e., if
xn ⇀ x and ‖xn − Txn‖ → 0, then x = Tx.

Let D be a subset of C. Then Q : C → D is called a retraction from C onto D if Q(x) = x for all
x ∈ D. A retraction Q : C → D is said to be sunny if Q(Qx + t(x − Qx)) = Qx for all x ∈ C and
t ≥ 0 whenever Qx + t(x − Qx) ∈ C. A subset D of C is said to be a sunny nonexpansive retract
of C if there exists a sunny nonexpansive retraction of C onto D. In a smooth Banach space E, it
is known ([7] p. 48) that Q : C → D is a sunny nonexpansive retraction if and only if the following
condition holds:

〈x−Q(x), J(z −Q(x))〉 ≤ 0 x ∈ C, x ∈ D.

Lemma 1.5. [12] Let E be a reflexive Banach space and have a weakly continuous duality map J with
gauge ϕ. Let C be a closed convex subset of E and let T : C → C be a nonexpansive mapping. Fix
u ∈ C and t ∈ (0, 1). Let xt ∈ C be the unique solution in C to equation xt = tu+ (1− t)Txt. Then
T has a fixed point if and only if {xt} remains bounded as t→ 0+, and in this case, {xt} converges
as t→ 0+ strongly to a fixed point of T . If we define Q : C → F (T ) by Q(u) := lim

t→0
xt, u ∈ C, then

Q(u) solves the variational inequality

〈u−Q(u), J(Q(u)− p)〉 ≤ 0 u ∈ C, p ∈ F (T ).

where Q is the sunny nonexpansive retraction from C onto F (T ).



56 Dadashi and Ghafari

Lemma 1.6. [8] Let E be a reflexive Banach space and have a weakly continuous duality map J
with gauge ϕ. Let C be a closed convex subset of E and let T : C → C be a nonexpansive mapping,
f ∈ ΠC. Let zt ∈ C be the unique solution in C to equation zt = tf(zt) + (1− t)Tzt, t ∈ (0, 1). Then
T has a fixed point if and only if {zt} remains bounded as t → 0+, and in this case, {zt} converges
as t → 0+ strongly to a fixed point of T . If we define Q : ΠC → F (T ) by Q(f) := lim

t→0
zt, f ∈ ΠC;

then Q(f) is a solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, p ∈ F (T ),

where Q is the sunny nonexpansive retraction from C onto F (T ).

2. Main Results

In this section, we prove several strong convergence theorems of the iterative scheme (1.4).

Theorem 2.1. Let E be a real reflexive Banach space and have a weakly continuous duality map
Jϕ with gauge ϕ and A a m-accretive maps in E such that C = D(A) is convex. let T : C → C be
a nonexpansive mapping with F = F (T ) ∩ N(A) 6= ∅ and f : C → C a fixed contraction mapping
with contract constant α. Suppose that {αn}, {βn} ⊂ (0, 1), rn ∈ R+ which satisfy the following
conditions:

(C1) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(C2) lim
n→∞

βn
αn

= 0,

(C3) lim
n→∞

rn = r, r ∈ R+.

Let x1 ∈ C be chosen arbitrarily and {xn} be a sequence generated by (1.4) Suppose that
∞∑
n=1

sup{‖TJrn+1z − TJrnz‖ ; z ∈ B} < ∞ for any bounded subset B of C. If {xn} is asymptotic

regular, then {xn} converges strongly to p ∈ F , where p is the unique solution of the variational
inequality

〈(I − f)(p), J(p− q)〉 ≤ 0, q ∈ F. (2.1)

Proof . First, we note that by Lemma 1.6 with the contraction f and TJrn : E → C nonexpansive
mapping instead of a mapping T, there exists the unique solution p of a variational inequality

〈(I − f)(p), J(p− q)〉 ≤ 0, q ∈ F.

where p = lim
t→0

zt and zt is defined by zt = tf (zt) + (1− t)TJr (zt) for each r > 0 and 0 < t < 1.

Second, we claim that {xn} is bounded. Indeed, take an arbitrary fixed p ∈ F so using the definition
of {xn}, we have

‖xn+1 − p‖ = ‖(1− βn)yn + βnTyn − p‖
≤ (1− βn)‖yn − p‖+ βn‖Tyn − p‖
≤ (1− βn)‖yn − p‖+ βn‖yn − p‖
= ‖yn − p‖.
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and hence by the definition of {yn}, we obtain

‖yn − p‖ = ‖αnf(xn) + (1− αn)TJrnxn − p‖
= ‖αn(f(xn)− f(p)) + αn(f(p)− p) + (1− αn)(TJrnxn − p)‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖TJrnxn − p‖
≤ ααn‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖
= (1− (1− α)αn)‖xn − p‖+ αn‖f(p)− p‖

≤ max{‖xn − p‖+
1

1− α
‖f(p)− p‖}.

By induction on n, we obtain that ‖xn−p‖ ≤ max{‖f(p)−p‖
1−α , ‖x1−p‖} for all n ∈ N and all p ∈ F (T ).

Hence, the sequence {xn} is bounded and so {yn}, {Txn}, and {f(xn)} are bounded sequences.
From (C2), we can assume, without loss of generality, that βn ≤ αn for each n ≥ 1. By (C1) and the
definition of {xn}, we have

‖xn+1 − yn‖ = βn ‖Tyn − yn‖ → 0, n→∞,

and hence asymptotic regularity of {xn} implies that

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0, n→∞. (2.2)

Then, from (C1) and (2.2) we obtain

‖yn − TJrnyn‖ = ‖αnf (xn) + (1− αn)TJrnxn − TJrnyn‖
= ‖αn (f (xn)− TJrnxn) + TJrnxn − TJrnyn‖
≤ αn ‖ f (xn)− TJrnxn‖+ ‖xn − yn‖ → 0 , n→∞. (2.3)

From Lemma 1.3 and (C3), we get

‖TJrnyn − TJryn‖ ≤ ‖ Jrnyn − Jryn‖

=

∥∥∥∥Jr ( r

rn
yn +

(
1− r

rn

)
Jrnyn

)
− Jryn

∥∥∥∥
≤
∥∥∥∥( r

rn
yn +

(
1− r

rn

)
Jrnyn

)
− yn

∥∥∥∥
=

∣∣∣∣1− r

rn

∣∣∣∣ ‖Jrnyn − yn‖ → 0, n→∞. (2.4)

Therefore, (2.3) and (2.4) imply that

‖yn − TJryn‖ ≤ ‖yn − TJrnyn‖+ ‖TJrnyn − TJryn‖ → 0 , n→∞.

Now, we prove that

lim sup
n→∞

〈f (p)− p, Jϕ (yn − p)〉 ≤ 0, p ∈ F. (2.5)

Take a subsequence {ynk
} of {yn} such that

lim sup
n→∞

〈 f (p)− p, Jϕ (yn − p)〉 = lim
k→∞
〈f (p)− p, Jϕ (ynk

− p)〉 .
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Since E is reflexive, we may further assume that ynk
⇀ y. Moreover, since ‖yn − TJryn‖ → 0 and

demicloseness of I − TJryn and using Lemma 1.4 we know that y ∈ F (TJr). Hence, by Lemma 1.5
we get

lim sup
n→∞

〈f (p)− p, Jϕ (yn − p)〉 = 〈f (p)− p, Jϕ (y − p)〉 ≤ 0.

Finally, we claim that {xn} strongly convergence to p. Indeed, we have

φ (‖yn − p‖) = φ (‖αnf (xn) + (1− αn)TJrnxn − p‖)
= φ (‖αn (f (xn)− f (p)) + αn (f (p)− p) + (1− αn) (TJrnxn − p)‖)
≤ φ (αn ‖ f (xn)− f (p)‖+ αn ‖ f (p)− p‖+ (1− αn) ‖TJrnxn − p‖)
≤ φ (ααn ‖xn − p‖+ αn ‖f (p)− p‖+ (1− αn) ‖TJrnxn − p‖)
≤ φ (ααn ‖xn − p‖+ (1− αn) ‖xn − p‖) + αn 〈f (p)− p, Jϕ (yn − p)〉
= (1− (1− α)αn)φ (‖xn − p‖) + αn 〈f (p)− p, Jϕ (yn − p)〉 (2.6)

and also

φ ( ‖xn+1 − p‖) = φ (‖(1− βn) yn + βnTyn − p‖)
= φ (‖βn (Tyn − p) + (1− βn) (yn − p)‖)
= φ (‖βn (Tyn − T (p)) + βn (T (p)− p) + (1− βn) (yn − p) ‖)
≤ φ (‖βn (Tyn − T (p)) + (1− βn) (yn − p)‖) + βn 〈T (p)− p, Jϕ (xn+1 − p)〉
≤ φ (βn ‖yn − p‖+ (1− βn) ‖yn − p‖) + βn 〈T (p)− p, Jϕ (xn+1 − p)〉
= φ (‖yn − p‖) + βn 〈T (p)− p, Jϕ (xn+1 − p)〉 . (2.7)

Substituting (2.6) into (2.7), we obtain

φ ( ‖xn+1 − p‖) ≤ (1− αn (1− α))φ ( ‖xn − p‖) + αn 〈f (p)− p, Jϕ (yn − p)〉
+βn 〈T (p)− p, Jϕ (xn+1 − p)〉

= (1− αn (1− α))φ ( ‖xn − p‖)

+αn (1− α)

[
〈f (p)− p, Jϕ (yn − p)〉

1− α
+
βn
αn

〈T (p)− p, Jϕ (xn+1 − p)〉
1− α

]
= (1− γn)φ ( ‖xn − p‖) + σnγn,

where γn = αn (1− α) and σn =
[
〈f(p)−p,Jϕ(yn−p)〉

1−α + βn
αn

〈T (p)−p,Jϕ(xn+1−p)〉
1−α

]
. Then, (C2) and (2.5) imply

that

lim sup
n→∞

σn ≤ lim sup
n→∞

〈f (p)− p, Jϕ (yn − p)〉
1− α

+ lim sup
n→∞

βn
αn

〈T (p)− p, Jϕ (xn+1 − p)〉
1− α

≤ lim sup
n→∞

βn
αn

‖T (p)− p‖‖xn+1 − p‖
1− α

= 0,

and using Lemma 1.2, {xn} convergence strongly to p ∈ F . �

Theorem 2.2. Let E be a real reflexive Banach space and have a weakly continuous duality map Jϕ
with gauge ϕ and A a m-accretive maps in E such that C = D(A) is convex. Let T : C → C be a
nonexpansive mapping with F = F (T ) ∩N(A) 6= ∅ and f : C → C a fixed contraction mapping with
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contract constant α. Suppose that {αn}, {βn} ⊂ [0, 1], rn ∈ R+ which satisfy in conditions (C1),
(C2), (C3) and

(C4)
∞∑
n=1

|αn+1 − αn| <∞,

(C5)
∞∑
n=1

|βn+1 − βn| <∞.

Let x1 ∈ C be chosen arbitrarily and {xn} be a sequence generated by (1.4). Suppose that
∞∑
n=1

sup{‖TJrn+1z − TJrnz‖ ; z ∈ B} < ∞ for any bounded subset B of C, then {xn} converges

strongly to p ∈ F , where p is the unique solution of the variational inequality (2.1).

Proof . From the definition of {yn} for each n ∈ N we have

‖yn − yn−1‖ = ‖αnf (xn) + (1− αn)TJrnxn − αn−1f (xn−1) − (1− αn−1)TJrn−1 xn−1‖
≤ αn ‖f (xn)− f (xn−1)‖+ (1− αn)

∥∥TJrnxn − TJrn−1xn−1
∥∥

+
∥∥f (xn−1) (αn − αn−1)− (αn − αn−1)TJrn−1xn−1

∥∥
≤ ααn ‖xn − xn−1‖+ (1− αn)

∥∥TJrnxn − TJrn−1xn−1
∥∥

+ |αn − αn−1|
∥∥f (xn−1)− TJrn−1xn−1

∥∥
≤ ααn ‖xn − xn−1‖+ (1− αn) ‖TJrnxn − TJrnxn−1‖

+ (1− αn)
∥∥TJrnxn−1 − TJrn−1xn−1

∥∥
+ |αn − αn−1|

∥∥f (xn−1)− TJrn−1xn−1
∥∥

≤ ααn ‖xn − xn−1‖+ (1− αn) ‖xn − xn−1‖
+ (1− αn)

∥∥TJrnxn−1 − TJrn−1xn−1
∥∥

+ |αn − αn−1|
∥∥f (xn−1)− TJrn−1xn−1

∥∥
≤ (1− (1− α)αn) ‖xn − xn−1‖+

∥∥TJrnxn−1 − TJrn−1xn−1
∥∥

+ |αn − αn−1|
∥∥f (xn−1)− TJrn−1xn−1

∥∥ , (2.8)

and from the definition of {xn} for each n ∈ N we have

‖xn+1 − xn‖ = ‖((1− βn) yn + βnTyn)− ((1− βn−1) yn−1 + βn−1Tyn−1)‖
≤ (1− βn) ‖yn − yn−1‖+ βn ‖Tyn − Tyn−1‖

+ ‖(βn−1 − βn) yn−1 + Tyn−1 (βn − βn−1)‖
= (1− βn) ‖yn − yn−1‖+ βn ‖Tyn − Tyn−1‖+ |βn − βn−1| ‖Tyn−1 − yn−1‖
≤ (1− βn) ‖yn − yn−1‖+ βn ‖yn − yn−1‖+ |βn − βn−1| ‖Tyn−1 − yn−1‖
= ‖yn − yn−1‖+ |βn − βn−1| ‖Tyn−1 − yn−1‖ . (2.9)

Substituting (2.8) into (2.9), we obtain

‖xn+1 − xn‖ ≤ (1− (1− α)αn) ‖xn − xn−1‖+M (|αn − αn−1|+ |βn − βn−1|)
+
∥∥TJrnxn−1 − TJrn−1xn−1

∥∥
= (1− γn) ‖xn − xn−1‖+ µn,
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where

M = max

{
sup
n

∥∥f (xn−1)− TJrn−1xn−1
∥∥ , sup

n
‖Tyn−1 − yn−1‖

}
,

and

µn = M (|αn − αn−1|+ |βn − βn−1|) +
∥∥TJrnxn−1 − TJrn−1xn−1

∥∥ , n ≥ 2.

Hence

∞∑
n=2

µn ≤M

∞∑
n=2

(|αn − αn−1|+ |βn − βn−1|) +
∞∑
n=2

sup
{∥∥TJrnz − TJrn−1z

∥∥ : z ∈ {xk}
}
<∞.

Therefore Lemma 1.2 implies that lim
n→∞

‖xn+1 − xn‖ = 0. Hence {xn} is asymptotic regular, then by

Theorem 2.1 the proof is complete. �

Corollary 2.3. Let E be a real reflexive Banach space and have a weakly continuous duality map
Jϕ with gauge ϕ and A a m-accretive maps in E such that C = D(A) is convex. Let T : C → C be a
nonexpansive mapping with F = F (T ) ∩N(A) 6= ∅ and f : C → C a fixed contraction mapping with
contract constant α. Suppose that {αn} ⊂ [0, 1], rn ∈ R+ which satisfy in conditions (C1), (C3) and
(C4). Let x1 ∈ C be chosen arbitrarily and {xn} be a sequence generated by

xn+1 = αnf(xn) + (1− αn)TJrnxn.

Suppose that
∞∑
n=1

sup{‖TJrn+1z − TJrnz‖ ; z ∈ B} <∞ for any bounded subset B of C, then {xn}

converges strongly to p ∈ F , where p is the unique solution of the variational inequality (2.1).

Proof . It is sufficient that assume βn = 0 in Theorem 2.2. �

Corollary 2.4. Let E be a real reflexive Banach space and have a weakly continuous duality map
Jϕ with gauge ϕ and A a m-accretive maps in E such that C = D(A) is convex. Let N(A) 6= ∅ and
f : C → C a fixed contraction mapping with contract constant α. Suppose that {αn}, {βn} ⊂ [0, 1],
rn ∈ R+ which satisfy in conditions (C1)-(C5). Let x1 ∈ C be chosen arbitrarily and {xn} be a
sequence generated by

xn+1 = αnf(xn) + (1− αn)Jrnxn.

Suppose that
∞∑
n=1

sup{‖Jrn+1z − Jrnz‖ ; z ∈ B} < ∞ for any bounded subset B of C, then {xn}

converges strongly to p ∈ F , where p is the unique solution of the variational inequality

〈(I − f)(p), J(p− q)〉 ≤ 0, q ∈ N(A).

Proof . It is sufficient that assume T = I in Theorem 2.2. �
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