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Abstract

In this paper we propose and studied a new composite iterative scheme with certain control con-
ditions for viscosity approximation for a zero of accretive operator and fixed points problems in a
reflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequence
{z,} defined by the new introduced iterative sequence is proved. The main results improve and
complement the corresponding results of [I], 4 [10].
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1. Introduction and preliminaries

Let C be a nonempty closed convex subset of a real Banach space E with E* be dual space of
and the value of z* € E* will be denoted by (z*, z). The normalized duality mapping J from FE into
the family of nonempty w*-compact subsets of its dual E* is defined by

J@)={2" € B" : (2", 2) = [|l=[|* = [[2"]]"} (1.1)

for each = € F [5]. Recall that a mapping 7" : C' — C'is called nonexpansive if |Tx —Ty|| < ||z —y||
for all z,y € C and a self-mapping f : C' — C is a contraction on C if there exists a constant
a € (0,1) such that ||f(x) — f(y)|| < af||lx — y]| for all z,y € C. The set of all fixed points of T is
denoted by F(T), that is F(T) = {x € C' | x = Tz} and we use Il to denote the collection of all
contractions on C, that is llc = {f : C — C' | f is a contraction with a constant a}. Note that
each f € Il has a unique fixed point in C', and for any fixed element xy € C', Picard’s iteration
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Tpi1 = [™(xo) converges strongly to a unique fixed point of f. However, a simple example shows
that Picard’s iteration cannot be used in the case of nonexpansive mappings.

An operator A : E — FE is said to be accretive if for each (x1,y1), (x2,y2) € Gph(A) there exists a
j € J(xg—x1) such that (y, —yi1,j) > 0. An accretive operator A is m-accretive if R(I+rA) = E for
each r > 0. The set of zeros of A is denoted by N(A) = A71(0) = {z € D(A) : 0 € Az} it is always
assumed that A is accretive and N(A) is nonempty. For each r > 0, we denote by J, the resolvent
of A, that is J, = (I +rA)~!. Note that, if A is m-accretive, then J, : E — E is a nonexpansive
mapping and F(J,) = N(A) for all » > 0.

In 2008 Jung [9] introduced a new composite iterative scheme for a nonexpansive mapping 7" as
follows:

r1 =T € C
Yn = anf(2n) + (1 — )Tz, n>1, (1.2)
Tnt1 = (1 - ﬁn)yn + 5nTyna n Z 17

where f € Ilg and {a,}, {Bn} C [0,1]. He proved the strong convergence of the sequence {z,}
defined by under suitable conditions of the control parameters {a,} and {5,} and asymptotic
regularity on {z,} in a reflexive Banach space with a uniformly Gateaux differentiable norm together
with the assumption that every weakly compact convex subset of E has the fixed point property for
nonexpansive mappings.

On the other hand, He, Xu and He [§] introduced an iteration scheme for viscosity approximation
for a zero of accretive operator and fixed points problems in a reflexive Banach space with weakly
continuous duality mapping as follows:

{xlszC

Tp+1 = anf(xn) + ann + ’YnTJrnxny n > 17 (13)

where f € Il¢g, J,., is the resolvent of A and T' is nonexpansive mapping. They proved that {x,}
strongly convergence to a zero of accretive operator and fixed points problems under some control
conditions on {a,}, {B.} and {7,}.

In this paper, inspired and motivated by the above iterative schemes, we introduced and studied
a new composite iterative scheme as follows:

{ Yn = nf () + (1 = an)T T, 20,

Tpy1 = BnTyn + (1 - 5n)yna (14)

where f € Il¢, {an}, {5} C [0,1], J,, is the resolvent of A and 7" is nonexpansive mapping. The
main results improve and complement the corresponding results of [11 4] [10].

By a gauge function ¢ we mean a continuous strictly increasing function ¢ : [0, +00) — [0, +00)
such that ¢(0) = 0 and ¢(t) — +oo as t — +oo. Let E* be the dual space of E. The duality
mapping J, : E — 2F" associated to a gauge function ¢ is defined by

Jo(w) ={e" € E* = (2", 2) = [lz]le(llzl)), lz7] = o(z])}, Ve € E.

In particular, the duality mapping with the gauge function ¢(t) = ¢, denoted by J, is referred to

as the normalized duality mapping. Clearly, there holds the relation J,(z) = %J (x) for all
x # 0. Browder [2] initiated the study of certain classes of nonlinear operators by means of the
duality mapping J,. Following Browder [2], we say that a Banach space E has a weakly continuous
duality mapping if there exists a gauge ¢ for which the duality mapping J,(z) is single-valued and

continuous from the weak topology to the weak* topology, that is, for any {x,} with x,, — z, the
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sequence {J,(z,)} converges weakly* to J,(x). It is known that [P has a weakly continuous duality
mapping with a gauge function o(t) = tP~! for all 1 < p < +oo. Set

o) = [ etrydr, w20, (15)
then
Jolw) = 08(lal), Vi€ B, (16)

where 0 denotes the subdifferential in the sense of convex analysis that for each x € X such that

f(z) € R, the subdifferential of f at x defined by 0f(z) = {2* € X* | f(y) — f(x) > (a*,y — x)Vx €

X}. The next lemma is an immediate consequence of the subdifferential inequality.

Lemma 1.1. Assume that E has a weakly continuous duality map J, with gauge p. Then, for each
x,y € E, one has

¢l +yll) <olzl) + (v Jp (z + 1)) (1.7)

Lemma 1.2. [T1] Assume that {a,} is a sequence of nonnegative real numbers such that ap,yq <
(1 —y)an + 0pyn, n > 1, where {v,} C (0,1) and {o,} is a sequence in R such that
(1) im v, =0 and > 7, = o0,
n—oo —

n=1

oo
(it) lim sup o, <0 or > o, 7] < oc.
n—oo n=1

Then lim o, = 0.
n—oo

Lemma 1.3. [3] For A >0, u >0 and x € E,

Hha = J, (ga: + (1 - g) Jpc) )

Lemma 1.4. [0] Let E be a reflexive Banach space, C' a nonempty closed convex subset of E and
T : C — E a nonexpansive mapping. Suppose that E admits a weakly sequentially continuous duality
mapping. Then the mapping I — T is demiclosed on C, where I is the identity mapping, i.e., if
z, =z and ||z, — Tx,| — 0, then z = Tx.

Let D be a subset of C. Then Q) : C'— D is called a retraction from C onto D if Q(z) = z for all
x € D. A retraction @ : C' — D is said to be sunny if Q(Qx + t(x — Qx)) = Qz for all x € C' and
t > 0 whenever Qz + t(z — Qx) € C. A subset D of C' is said to be a sunny nonexpansive retract
of C if there exists a sunny nonexpansive retraction of C' onto D. In a smooth Banach space F, it
is known ([7] p. 48) that @ : C'— D is a sunny nonexpansive retraction if and only if the following
condition holds:

(x —Qx),J(z—Q(x))) <0 z€C, x€D.

Lemma 1.5. [12] Let E be a reflexive Banach space and have a weakly continuous duality map J with
gauge . Let C be a closed conver subset of E and let T': C' — C' be a nonexpansive mapping. Fiz
ue Candt e (0,1). Let x; € C be the unique solution in C to equation v, = tu+ (1 —t)Tx,. Then

T has a fived point if and only if {x;} remains bounded as t — 0T, and in this case, {x;} converges
as t = 07 strongly to a fized point of T. If we define Q : C' — F(T) by Q(u) := Pn%xt, u € C, then
%

Q(u) solves the variational inequality

(u—CQu), J(Qu) —p)) <0 wel, pe F(T).

where Q) is the sunny nonexpansive retraction from C onto F(T).
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Lemma 1.6. [8] Let E be a reflexive Banach space and have a weakly continuous duality map J
with gauge @. Let C be a closed convex subset of E and let T : C' — C' be a nonezxpansive mapping,
fellg. Let z € C be the unique solution in C' to equation zz = tf(z)+ (1 —1t)T2, t € (0,1). Then
T has a fived point if and only if {z;} remains bounded as t — 07, and in this case, {z} converges
as t — 07 strongly to a fized point of T. If we define Q : e — F(T) by Q(f) = li_r)%zt, fellg;

then Q(f) is a solution of the variational inequality

(I = NR), J(Q(f) —p)) <0, pe F(T),

where @ is the sunny nonexpansive retraction from C onto F(T).

2. Main Results

In this section, we prove several strong convergence theorems of the iterative scheme ([1.4)).

Theorem 2.1. Let E be a real reflexive Banach space and have a weakly continuous duality map

J, with gauge ¢ and A a m-accretive maps in E such that C = D(A) is convex. let T : C' — C' be
a nonexpansive mapping with F = F(T)NN(A) # 0 and f : C — C a fized contraction mapping
with contract constant . Suppose that {ay,}, {Bn} C (0,1), r,, € RT which satisfy the following
conditions:

(C1) nh_)rgo ay, =0, Zan = 00,

n=1

(C2) lim o _ 0,

n—oo an

(C3) lim r, =r,vr € R,

n—oo

Let x1 € C be chosen arbitrarily and {x,} be a sequence generated by Suppose that
Yosup{||TJy, .,z — T 2| 5 2 € B} < oo for any bounded subset B of C. If {x,} is asymptotic
n=1

reqular, then {x,} converges strongly to p € F, where p is the unique solution of the variational
inequality

(I=f)p),Jp—q) <0, g€F. (2.1)

Proof . First, we note that by Lemma [I.6] with the contraction f and TJ,, : E — C nonexpansive
mapping instead of a mapping T, there exists the unique solution p of a variational inequality

(I =), J(p—q) <0, g€F.
where p = lim 2z and z; is defined by z, = tf (2;) + (1 —¢)TJ, (2) for each r > 0 and 0 < t < 1.

—0

Second, we claim that {x,} is bounded. Indeed, take an arbitrary fixed p € F so using the definition
of {z,}, we have

Hanrl _pH = ”(1 - Bﬂ)yn + BnTYn _pH
S (1 - Bn)”yn _pH + 5n||Tyn - p”

< (1= Bu)llyn — pll + Ballyn — pl|
= |lyn — pl|-
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and hence by the definition of {y,}, we obtain

9 — 2l = llanf(zn) + (1 = an)TJ,, 2, — D

= llan(f(zn) = f(p)) + an(f(p) —p) + (1 — ) (TJp, 20 — D)l

<
<

anllf(zn) = F) + anll f(p) = pll + (1 = an) [T Jr, 20 —
aon|[xn = pll + an [ f(p) = pll + (1 = an) [l — pl|
= (1= (1 = a)an)||zn — pll + anllf(p) — 1l

< {20 — pll + T /) ).

57

By induction on n, we obtain that ||z, —p|| < max{w, |1 —pl|} for all n € N and all p € F(T).
Hence, the sequence {x,} is bounded and so {y,}, {Tx,}, and {f(z,)} are bounded sequences.
From (C2), we can assume, without loss of generality, that 8, < «,, for each n > 1. By (C1) and the

definition of {z,}, we have

and hence asymptotic regularity of {x,} implies that

” Tp — ynH < ”‘Tn - $n+1|l + ||xn+1 - yn“ — 0, n — oo.

Then, from (C1) and (2.2) we obtain

Ny =TT, Ynll = | anf (2n) + (1 = )Ty, 20 — Ty, Yull
= |lon (f (zn) =TI zn) + T T 20 — Ty Y|

< o [ f(@n) = Ty anll + |20 = yull = 0 ;0 — o0,

From Lemma |1.3|and (C3), we get

N Tty = TToyull <N Tt — Jryn|

T'n

r
1— —

n

Therefore, (2.3)) and (2.4)) imply that

Jr <Lyn + (1 - L) Jrnyn> - ern
T'n Tn

T

_) Jrnyn> — Yn

Tn

e Y — Ynll = 0, n — 0.

Hyn - TernH < ||yn - Tjrnyn” + || TJr,yn — TjrynH =0,

Now, we prove that

limsup (f (p) = p, Jp (yn — p)) <0,

n—oo

Take a subsequence {y,, } of {y,} such that

limsup ( f (p) = p, Jo (yn — p)) = lim (f (p) = p, Ty (Yn,

n—o0 k—o0

p € F.

-p))-

n — oQ.

(2.2)

(2.5)



58 Dadashi and Ghafari

Since E is reflexive, we may further assume that y,, — 7. Moreover, since ||y, — T'J,y,|| — 0 and
demicloseness of I — T'J,.y, and using Lemma we know that 7 € F'(T'J,.). Hence, by Lemma
we get

limsup (f (p) = p, Jo (Yyn —p)) = (f (p) =D, Jp, (¥ —p)) < 0.

n—o0

Finally, we claim that {z,} strongly convergence to p. Indeed, we have

¢ (lyn = pll) = ¢ ([lwf (22) + (1 = ) T Jp,, 0 — pl|)

[ (f (20) = f(P)) + an (f (p) —p) + (1 — ) (TJp, 0 — D))

an || f(n) = fF (O +anll f () = pll + (1 = an) | T, 20 — pll)

aay ||z, —pll + an |1 (p) = pll + (1 = ) | T Ty, w0 — D)

ay ||z, = pll + (1 = an) |20 = pll) + an (f (0) = P, T (Yn — )

= (1= (1 =a)ay) ¢ ([lzn = pll) + an (f (P) = P, Jp (Y — D)) (2.6)

and also

(H(l - ﬁn) Yn + ﬁnTyn _pH)

(180 (Tyn = p) + (1 = Bn) (Yn — D)II)

(180 (Tyn — T (p)) + Bu (T (p) = p) + (1 = Bn) (yn — 1) ||)
(

(

¢ ([lznr —pll) =

%@%\&@%\

180 (Tyn — T (p)) + (1 = Bn) (Yn — D)) + Bu (T' () — 15 Sy (T2 — D))
B llyn — ol + (1 — )||yn pll) + Ba T (p) — p, Jp (Tny1 — p))
(1yn = pII) + Bu T (p) — P, Jo (Tn11 — p)) - (2.7)

Substituting (2.6]) into (2.7, we obtain

¢ ([[wn —pll) £ A —an(l =) ¢ (lzn —pl) + an{f () =0 Jp (Yn — )
+ﬁn <T (p) - D, J<p (17714—1 - )>
=(1—a,(1-0a))é ([, pH)

oy (1—a) [<f (0) =2, Jo (o =) | Bu (T (1) =, Ty (Tnia —p)>}

1—a Qy, l—«a

IAINA

= (1 =7)0 (llzn = pll) + 007,

where v, = oy, (1 — ) and 0, = [< P)=p.Jolyn=p)) | 5” {r (p)*p"]“"(“"“*p»]. Then, (C2) and ( .D imply

11—« 1—a
that
lim sup o, < lim sup (f ) = p, Jy (yn — p)) 4 Tim sup B (T (p) = p, Jy (Tp41 — p))
n—00 n—00 11—« n—oo O 11—«
< tomony B0 170 = Pl =l
n—oo Qp 1l -«

and using Lemma {x,} convergence strongly to p € F. [

Theorem 2.2. Let E be a real reflevive Banach space and have a weakly continuous duality map J,

with gauge ¢ and A a m-accretive maps in E such that C' = D(A) is conver. Let T : C — C be a
nonexpansive mapping with F = F(T)NN(A) # 0 and [ : C — C a fized contraction mapping with
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contract constant o. Suppose that {can}, {Bn} C [0,1], rn € RT which satisfy in conditions (C1),
(C2), (C3) and

(C4) Z |1 — | < 00,

n=1

(C5) Z ‘5n+1 - 5n‘ < 0.
n=1

Let 1 € C be chosen arbitrarily and {x,} be a sequence generated by (1.4). Suppose that
Yosup{||TJ,,,,2 — T, 2| ; 2 € B} < oo for any bounded subset B of C, then {z,} converges
n=1

strongly to p € I, where p is the unique solution of the variational inequality (2.1)).

Proof . From the definition of {y,} for each n € N we have

19 = yn1ll = llanf (zn) + (1 = an) TJp 2n — ana f (2n1) — (L= ona) Ty, T
< o ||f (@) = f(@p-1)[| + (1 — o) HTJrnxn - TJTn—lxn—lH
+ Hf (Xn1) (@ — Q1) — (o — Oén—1)TJrn,1$n—1H
< aay || — Taaa|l + (1= an) [|[Tr,xn — Ty, @0 |
+ o, — a1 Hf (Tpo1) — TJrn_la:n_lH
aay, Ty — Tpoa || + (1 — ap) [T, @0 — T, T ||
+ (1= an) [T, 201 — Ty |
+ | — ap_1] Hf (Tp_1) — TJrn_1$n—1H
o167 Hxn - xn—IH + (1 - an) Hxn - xn—lH
+ (1= an) [T, 201 — Ty |
+ oy — ap_1] Hf (Tp_1) — TJrn,@n—lH
<=1 =a)a)l|zn — ol + | T, 201 — Ty ||
+ |, — a1 Hf (Tp_1) — TJrn_lxn,lH , (2.8)

IN

IA

and from the definition of {x,} for each n € N we have

[Zns1 = @all = [((1 = Bn) yn + BuTYn) — (1 = Buc1) Yn1 + Bua Ty
< (1= B2) 1Yn = Yn-all + Ba ITYn — Tyn||
+ | (Br=1 = Bn) Yn—1 + Tyn—1(Bn — Bn-1)|
= (1= Bu) lyn = Ynall + Bu I TYn — Tynall + 180 = Ba-al 1TYn-1 — Yn-
< (=B 1y = Yn-all + Ballyn = Yn-1ll + B0 = Bua L 1TYn-1 — Yn-1l
= |Yn — Yn—-1ll + [Bn — Br=1| 1T Yn-1 — Yn-1]| - (2.9)

Substituting (2.8]) into (2.9)), we obtain

21 = 2al < (1= (1 = a)an) 20 = zpa |l + M (Jan = ana| + 180 = P
+ HTJTnxTL—l - TJrnflxn—lH
= (1 =) llzn — |l + i,
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where

M = max {Sup ||f (l’n,1> - TJTn_lxnle , SUp HTynfl - ynlu} )

and
Mn = M <|an - an—1| + |ﬁn - 5n—1|) + HTJrnxn—l - TJrn,lxn—IH , n Z 2.
Hence
Z,un < MZ (Jow — an—1| + Bn — Bn-al) + Zsup {\T T,z =T, 2| : 2 € {zs}} < 0.
n=2 n=2 n=2
Therefore Lemma [1.2] implies that lim ||z,4; — x| = 0. Hence {z,} is asymptotic regular, then by
n—oo

Theorem [2.1] the proof is complete. [J

Corollary 2.3. Let E be a real reflexive Banach space and have a weakly continuous duality map
J, with gauge ¢ and A a m-accretive maps in E such that C = D(A) is convex. LetT : C — C be a
nonexpansive mapping with F = F(T)NN(A) # 0 and f : C — C a fized contraction mapping with
contract constant a.. Suppose that {a,} C [0, 1], 7, € RY which satisfy in conditions (C1), (C3) and
(C4). Let 1 € C be chosen arbitrarily and {z,} be a sequence generated by

Tpi1 = anf(zn) + (1 — )T, Ty

Suppose that > sup{||T"J,

n=1

converges strongly to p € I, where p is the unique solution of the variational inequality ([2.1]).

z—TJ,. 2| ; z € B} < oo for any bounded subset B of C, then {x,}

n+1

Proof . It is sufficient that assume £, = 0 in Theorem [2.2] O

Corollary 2.4. Let E be a real reflexive Banach space and have a weakly continuous duality map
J, with gauge ¢ and A a m-accretive maps in E such that C' = D(A) is convex. Let N(A) # 0 and
f:C — C a fixred contraction mapping with contract constant «. Suppose that {a,,}, {8,} C [0, 1],
r, € RY which satisfy in conditions (C1)-(C5). Let x; € C be chosen arbitrarily and {z,} be a
sequence generated by

Tpi1 = anf(zn) + (1 — )y, .

z—J, 2| ; 2 € B} < oo for any bounded subset B of C, then {z,}

n+1

Suppose that > sup{||J,
n=1

converges stronély to p € F', where p is the unique solution of the variational inequality

(I =D)p),J(p—1q) <0, qe N(A).

Proof . It is sufficient that assume 7" = I in Theorem 2.2l [
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