Int. J. Nonlinear Anal. Appl. 4 (2013) No. 2, 53-61

ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

Convergence Theorems of Iterative Approximation for Finding Zeros of Accretive Operator and Fixed Points Problems

V. Dadashi^{a,*}, S. Ghafari^b

Abstract

In this paper we propose and studied a new composite iterative scheme with certain control conditions for viscosity approximation for a zero of accretive operator and fixed points problems in a reflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequence $\{x_n\}$ defined by the new introduced iterative sequence is proved. The main results improve and complement the corresponding results of [1, 4, 10].

Keywords: Accretive operator, Fixed points, Composite iterative schemes, Resolvent operator. 2000 MSC: Primary 47H06, 47H09 Secondary 47H10 46E35.

1. Introduction and preliminaries

Let C be a nonempty closed convex subset of a real Banach space E with E^* be dual space of E and the value of $x^* \in E^*$ will be denoted by $\langle x^*, x \rangle$. The normalized duality mapping I from E into the family of nonempty w^* -compact subsets of its dual E^* is defined by

$$J(x) = \{x^* \in E^* : \langle x^*, x \rangle = ||x||^2 = ||x^*||^2\}$$
(1.1)

for each $x \in E$ [5]. Recall that a mapping $T: C \to C$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$ and a self-mapping $f: C \to C$ is a contraction on C if there exists a constant $\alpha \in (0,1)$ such that $||f(x) - f(y)|| \le \alpha ||x - y||$ for all $x, y \in C$. The set of all fixed points of T is denoted by F(T), that is $F(T) = \{x \in C \mid x = Tx\}$ and we use Π_C to denote the collection of all contractions on C, that is $\Pi_C = \{f: C \to C \mid f \text{ is a contraction with a constant } \alpha\}$. Note that each $f \in \Pi_C$ has a unique fixed point in C, and for any fixed element $x_0 \in C$, Picard's iteration

Email addresses: vahid.dadashi@iausari.ac.ir (V. Dadashi), Sobhanghafari@gmail.com (S. Ghafari)

Received: June 2012 Revised: April 2013

^aDepartment of Mathematics, Islamic Azad University-Sari Branch, Sari, Iran.

^bDepartment of Mathematics, Islamic Azad University-Sari Branch, Sari, Iran.

^{*}Corresponding author

 $x_{n+1} = f^n(x_0)$ converges strongly to a unique fixed point of f. However, a simple example shows that Picard's iteration cannot be used in the case of nonexpansive mappings.

An operator $A: E \to E$ is said to be accretive if for each $(x_1, y_1), (x_2, y_2) \in Gph(A)$ there exists a $j \in J(x_2 - x_1)$ such that $\langle y_2 - y_1, j \rangle \geq 0$. An accretive operator A is m-accretive if R(I + rA) = E for each $r \geq 0$. The set of zeros of A is denoted by $N(A) = A^{-1}(0) = \{z \in D(A) : 0 \in Az\}$ it is always assumed that A is accretive and N(A) is nonempty. For each $r \geq 0$, we denote by J_r the resolvent of A, that is $J_r = (I + rA)^{-1}$. Note that, if A is m-accretive, then $J_r : E \to E$ is a nonexpansive mapping and $F(J_r) = N(A)$ for all $r \geq 0$.

In 2008 Jung [9] introduced a new composite iterative scheme for a nonexpansive mapping T as follows:

$$\begin{cases} x_1 = x \in C \\ y_n = \alpha_n f(x_n) + (1 - \alpha_n) T x_n, & n \ge 1, \\ x_{n+1} = (1 - \beta_n) y_n + \beta_n T y_n, & n \ge 1, \end{cases}$$
(1.2)

where $f \in \Pi_C$ and $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$. He proved the strong convergence of the sequence $\{x_n\}$ defined by (1.2) under suitable conditions of the control parameters $\{\alpha_n\}$ and $\{\beta_n\}$ and asymptotic regularity on $\{x_n\}$ in a reflexive Banach space with a uniformly Gateaux differentiable norm together with the assumption that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings.

On the other hand, He, Xu and He [8] introduced an iteration scheme for viscosity approximation for a zero of accretive operator and fixed points problems in a reflexive Banach space with weakly continuous duality mapping as follows:

$$\begin{cases} x_1 = x \in C \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T J_{r_n} x_n, & n \ge 1, \end{cases}$$
 (1.3)

where $f \in \Pi_C$, J_{r_n} is the resolvent of A and T is nonexpansive mapping. They proved that $\{x_n\}$ strongly convergence to a zero of accretive operator and fixed points problems under some control conditions on $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$.

In this paper, inspired and motivated by the above iterative schemes, we introduced and studied a new composite iterative scheme as follows:

$$\begin{cases} y_n = \alpha_n f(x_n) + (1 - \alpha_n) T J_{r_n} x_n, \\ x_{n+1} = \beta_n T y_n + (1 - \beta_n) y_n, \end{cases}$$
 (1.4)

where $f \in \Pi_C$, $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$, J_{r_n} is the resolvent of A and T is nonexpansive mapping. The main results improve and complement the corresponding results of [1, 4, 10].

By a gauge function φ we mean a continuous strictly increasing function $\varphi:[0,+\infty)\to[0,+\infty)$ such that $\varphi(0)=0$ and $\varphi(t)\to+\infty$ as $t\to+\infty$. Let E^* be the dual space of E. The duality mapping $J_{\varphi}:E\to 2^{E^*}$ associated to a gauge function φ is defined by

$$J_{\varphi}(x) = \{x^* \in E^* : \langle x^*, x \rangle = ||x|| \varphi(||x||), ||x^*|| = \varphi(||x||)\}, \forall x \in E.$$

In particular, the duality mapping with the gauge function $\varphi(t) = t$, denoted by J, is referred to as the normalized duality mapping. Clearly, there holds the relation $J_{\varphi}(x) = \frac{\varphi(||x||)}{||x||}J(x)$ for all $x \neq 0$. Browder [2] initiated the study of certain classes of nonlinear operators by means of the duality mapping J_{φ} . Following Browder [2], we say that a Banach space E has a weakly continuous duality mapping if there exists a gauge φ for which the duality mapping $J_{\varphi}(x)$ is single-valued and continuous from the weak topology to the weak* topology, that is, for any $\{x_n\}$ with $x_n \to x$, the

sequence $\{J_{\varphi}(x_n)\}$ converges weakly* to $J_{\varphi}(x)$. It is known that l^p has a weakly continuous duality mapping with a gauge function $\varphi(t) = t^{p-1}$ for all 1 . Set

$$\phi(t) = \int_0^t \varphi(\tau) \, d\tau, \quad \forall t \ge 0, \tag{1.5}$$

then

$$J_{\varphi}(x) = \partial \phi(\|x\|), \quad \forall x \in E, \tag{1.6}$$

where ∂ denotes the subdifferential in the sense of convex analysis that for each $x \in X$ such that $f(x) \in \mathbb{R}$, the subdifferential of f at x defined by $\partial f(x) = \{x^* \in X^* \mid f(y) - f(x) \ge \langle x^*, y - x \rangle \forall x \in X^* \mid f(y) = \{x^* \in X^* \mid f(y) = x^* \mid f(y) =$ X. The next lemma is an immediate consequence of the subdifferential inequality.

Lemma 1.1. Assume that E has a weakly continuous duality map J_{φ} with gauge φ . Then, for each $x, y \in E$, one has

$$\phi\left(\|x+y\|\right) \le \phi\left(\|x\|\right) + \langle y, J_{\varphi}(x+y)\rangle. \tag{1.7}$$

Lemma 1.2. [11] Assume that $\{\alpha_n\}$ is a sequence of nonnegative real numbers such that $\alpha_{n+1} \leq \alpha_n$ $(1 - \gamma_n)\alpha_n + \sigma_n\gamma_n$, $n \ge 1$, where $\{\gamma_n\} \subseteq (0, 1)$ and $\{\sigma_n\}$ is a sequence in \mathbb{R} such that $(i) \lim_{n \to \infty} \gamma_n = 0$ and $\sum_{n=1}^{\infty} \gamma_n = \infty$,

(i)
$$\lim_{n \to \infty} \gamma_n = 0$$
 and $\sum_{n=1}^{\infty} \gamma_n = \infty$

(ii)
$$\limsup_{n \to \infty} \sigma_n \le 0$$
 or $\sum_{n=1}^{\infty} |\sigma_n \gamma_n| < \infty$.
Then $\lim_{n \to \infty} \alpha_n = 0$.

Lemma 1.3. [3] For $\lambda > 0$, $\mu > 0$ and $x \in E$,

$$J_{\lambda}x = J_{\mu} \left(\frac{\mu}{\lambda} x + \left(1 - \frac{\mu}{\lambda} \right) J_{\lambda} x \right).$$

Lemma 1.4. [6] Let E be a reflexive Banach space, C a nonempty closed convex subset of E and $T: C \to E$ a nonexpansive mapping. Suppose that E admits a weakly sequentially continuous duality mapping. Then the mapping I-T is demiclosed on C, where I is the identity mapping, i.e., if $x_n \rightharpoonup x$ and $||x_n - Tx_n|| \rightarrow 0$, then x = Tx.

Let D be a subset of C. Then $Q: C \to D$ is called a retraction from C onto D if Q(x) = x for all $x \in D$. A retraction $Q: C \to D$ is said to be sunny if Q(Qx + t(x - Qx)) = Qx for all $x \in C$ and $t \geq 0$ whenever $Qx + t(x - Qx) \in C$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D. In a smooth Banach space E, it is known ([7] p. 48) that $Q: C \to D$ is a sunny nonexpansive retraction if and only if the following condition holds:

$$\langle x - Q(x), J(z - Q(x)) \rangle \le 0 \ x \in C, \ x \in D.$$

Lemma 1.5. [12] Let E be a reflexive Banach space and have a weakly continuous duality map J with gauge φ . Let C be a closed convex subset of E and let $T:C\to C$ be a nonexpansive mapping. Fix $u \in C$ and $t \in (0,1)$. Let $x_t \in C$ be the unique solution in C to equation $x_t = tu + (1-t)Tx_t$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 0^+$, and in this case, $\{x_t\}$ converges as $t \to 0^+$ strongly to a fixed point of T. If we define $Q: C \to F(T)$ by $Q(u) := \lim_{t \to 0} x_t$, $u \in C$, then Q(u) solves the variational inequality

$$\langle u-Q(u),J(Q(u)-p)\rangle \leq 0 \quad u\in C,\ p\in F(T).$$

where Q is the sunny nonexpansive retraction from C onto F(T).

Lemma 1.6. [8] Let E be a reflexive Banach space and have a weakly continuous duality map J with gauge φ . Let C be a closed convex subset of E and let $T: C \to C$ be a nonexpansive mapping, $f \in \Pi_C$. Let $z_t \in C$ be the unique solution in C to equation $z_t = tf(z_t) + (1-t)Tz_t$, $t \in (0,1)$. Then T has a fixed point if and only if $\{z_t\}$ remains bounded as $t \to 0^+$, and in this case, $\{z_t\}$ converges as $t \to 0^+$ strongly to a fixed point of T. If we define $Q: \Pi_C \to F(T)$ by $Q(f) := \lim_{t \to 0} z_t$, $f \in \Pi_C$; then Q(f) is a solution of the variational inequality

$$\langle (I-f)Q(f), J(Q(f)-p)\rangle \leq 0, \quad p \in F(T),$$

where Q is the sunny nonexpansive retraction from C onto F(T).

2. Main Results

In this section, we prove several strong convergence theorems of the iterative scheme (1.4).

Theorem 2.1. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C = \overline{D(A)}$ is convex. let $T: C \to C$ be a nonexpansive mapping with $F = F(T) \cap N(A) \neq \emptyset$ and $f: C \to C$ a fixed contraction mapping with contract constant α . Suppose that $\{\alpha_n\}, \{\beta_n\} \subset (0,1), r_n \in \mathbb{R}^+$ which satisfy the following conditions:

(C1)
$$\lim_{n\to\infty} \alpha_n = 0$$
, $\sum_{n=1}^{\infty} \alpha_n = \infty$,

$$(C2)\lim_{n\to\infty}\frac{\beta_n}{\alpha_n}=0,$$

(C3)
$$\lim_{n \to \infty} r_n = r, r \in \mathbb{R}^+$$
.

Let $x_1 \in C$ be chosen arbitrarily and $\{x_n\}$ be a sequence generated by (1.4) Suppose that $\sum_{n=1}^{\infty} \sup\{\|TJ_{r_{n+1}}z - TJ_{r_n}z\| \; ; \; z \in B\} < \infty \text{ for any bounded subset } B \text{ of } C. \text{ If } \{x_n\} \text{ is asymptotic regular, then } \{x_n\} \text{ converges strongly to } p \in F, \text{ where } p \text{ is the unique solution of the variational inequality}$

$$\langle (I-f)(p), J(p-q) \rangle \le 0, \quad q \in F.$$
 (2.1)

Proof. First, we note that by Lemma 1.6 with the contraction f and $TJ_{r_n}: E \to C$ nonexpansive mapping instead of a mapping T, there exists the unique solution p of a variational inequality

$$\langle (I-f)(p), J(p-q) \rangle \le 0, \quad q \in F.$$

where $p = \lim_{t\to 0} z_t$ and z_t is defined by $z_t = tf(z_t) + (1-t)TJ_r(z_t)$ for each r > 0 and 0 < t < 1. Second, we claim that $\{x_n\}$ is bounded. Indeed, take an arbitrary fixed $p \in F$ so using the definition of $\{x_n\}$, we have

$$||x_{n+1} - p|| = ||(1 - \beta_n)y_n + \beta_n T y_n - p||$$

$$\leq (1 - \beta_n)||y_n - p|| + \beta_n ||Ty_n - p||$$

$$\leq (1 - \beta_n)||y_n - p|| + \beta_n ||y_n - p||$$

$$= ||y_n - p||.$$

and hence by the definition of $\{y_n\}$, we obtain

$$||y_{n} - p|| = ||\alpha_{n}f(x_{n}) + (1 - \alpha_{n})TJ_{r_{n}}x_{n} - p||$$

$$= ||\alpha_{n}(f(x_{n}) - f(p)) + \alpha_{n}(f(p) - p) + (1 - \alpha_{n})(TJ_{r_{n}}x_{n} - p)||$$

$$\leq \alpha_{n}||f(x_{n}) - f(p)|| + \alpha_{n}||f(p) - p|| + (1 - \alpha_{n})||TJ_{r_{n}}x_{n} - p||$$

$$\leq \alpha\alpha_{n}||x_{n} - p|| + \alpha_{n}||f(p) - p|| + (1 - \alpha_{n})||x_{n} - p||$$

$$= (1 - (1 - \alpha)\alpha_{n})||x_{n} - p|| + \alpha_{n}||f(p) - p||$$

$$\leq \max\{||x_{n} - p|| + \frac{1}{1 - \alpha}||f(p) - p||\}.$$

By induction on n, we obtain that $||x_n - p|| \le \max\{\frac{||f(p) - p||}{1 - \alpha}, ||x_1 - p||\}$ for all $n \in \mathbb{N}$ and all $p \in F(T)$. Hence, the sequence $\{x_n\}$ is bounded and so $\{y_n\}$, $\{Tx_n\}$, and $\{f(x_n)\}$ are bounded sequences. From (C2), we can assume, without loss of generality, that $\beta_n \le \alpha_n$ for each $n \ge 1$. By (C1) and the definition of $\{x_n\}$, we have

$$||x_{n+1} - y_n|| = \beta_n ||Ty_n - y_n|| \to 0, \ n \to \infty,$$

and hence asymptotic regularity of $\{x_n\}$ implies that

$$||x_n - y_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - y_n|| \to 0, \ n \to \infty.$$
(2.2)

Then, from (C1) and (2.2) we obtain

$$||y_{n} - TJ_{r_{n}}y_{n}|| = ||\alpha_{n}f(x_{n}) + (1 - \alpha_{n})TJ_{r_{n}}x_{n} - TJ_{r_{n}}y_{n}||$$

$$= ||\alpha_{n}(f(x_{n}) - TJ_{r_{n}}x_{n}) + TJ_{r_{n}}x_{n} - TJ_{r_{n}}y_{n}||$$

$$\leq \alpha_{n} ||f(x_{n}) - TJ_{r_{n}}x_{n}|| + ||x_{n} - y_{n}|| \to 0 , n \to \infty.$$
(2.3)

From Lemma 1.3 and (C3), we get

$$||TJ_{r_n}y_n - TJ_ry_n|| \le ||J_{r_n}y_n - J_ry_n||$$

$$= \left||J_r\left(\frac{r}{r_n}y_n + \left(1 - \frac{r}{r_n}\right)J_{r_n}y_n\right) - J_ry_n\right||$$

$$\le \left|\left(\frac{r}{r_n}y_n + \left(1 - \frac{r}{r_n}\right)J_{r_n}y_n\right) - y_n\right||$$

$$= \left|1 - \frac{r}{r_n}\right|||J_{r_n}y_n - y_n|| \to 0, \quad n \to \infty.$$
(2.4)

Therefore, (2.3) and (2.4) imply that

$$||y_n - TJ_ry_n|| \le ||y_n - TJ_{r_n}y_n|| + ||TJ_{r_n}y_n - TJ_ry_n|| \to 0$$
, $n \to \infty$.

Now, we prove that

$$\lim_{n \to \infty} \sup \langle f(p) - p, J_{\varphi}(y_n - p) \rangle \le 0, \quad p \in F.$$
(2.5)

Take a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ such that

$$\lim \sup_{n \to \infty} \langle f(p) - p, J_{\varphi}(y_n - p) \rangle = \lim_{k \to \infty} \langle f(p) - p, J_{\varphi}(y_{n_k} - p) \rangle.$$

Since E is reflexive, we may further assume that $y_{n_k} \to \overline{y}$. Moreover, since $||y_n - TJ_ry_n|| \to 0$ and demicloseness of $I - TJ_ry_n$ and using Lemma 1.4 we know that $\overline{y} \in F(TJ_r)$. Hence, by Lemma 1.5 we get

$$\lim_{n \to \infty} \sup \langle f(p) - p, J_{\varphi}(y_n - p) \rangle = \langle f(p) - p, J_{\varphi}(\overline{y} - p) \rangle \le 0.$$

Finally, we claim that $\{x_n\}$ strongly convergence to p. Indeed, we have

$$\phi(\|y_{n} - p\|) = \phi(\|\alpha_{n} f(x_{n}) + (1 - \alpha_{n}) T J_{r_{n}} x_{n} - p\|)$$

$$= \phi(\|\alpha_{n} (f(x_{n}) - f(p)) + \alpha_{n} (f(p) - p) + (1 - \alpha_{n}) (T J_{r_{n}} x_{n} - p)\|)$$

$$\leq \phi(\alpha_{n} \|f(x_{n}) - f(p)\| + \alpha_{n} \|f(p) - p\| + (1 - \alpha_{n}) \|T J_{r_{n}} x_{n} - p\|)$$

$$\leq \phi(\alpha \alpha_{n} \|x_{n} - p\| + \alpha_{n} \|f(p) - p\| + (1 - \alpha_{n}) \|T J_{r_{n}} x_{n} - p\|)$$

$$\leq \phi(\alpha \alpha_{n} \|x_{n} - p\| + (1 - \alpha_{n}) \|x_{n} - p\|) + \alpha_{n} \langle f(p) - p, J_{\varphi}(y_{n} - p) \rangle$$

$$= (1 - (1 - \alpha) \alpha_{n}) \phi(\|x_{n} - p\|) + \alpha_{n} \langle f(p) - p, J_{\varphi}(y_{n} - p) \rangle$$

$$(2.6)$$

and also

$$\phi(\|x_{n+1} - p\|) = \phi(\|(1 - \beta_n) y_n + \beta_n T y_n - p\|)$$

$$= \phi(\|\beta_n (T y_n - p) + (1 - \beta_n) (y_n - p)\|)$$

$$= \phi(\|\beta_n (T y_n - T (p)) + \beta_n (T (p) - p) + (1 - \beta_n) (y_n - p)\|)$$

$$\leq \phi(\|\beta_n (T y_n - T (p)) + (1 - \beta_n) (y_n - p)\|) + \beta_n \langle T (p) - p, J_{\varphi} (x_{n+1} - p)\rangle$$

$$\leq \phi(\beta_n \|y_n - p\| + (1 - \beta_n) \|y_n - p\|) + \beta_n \langle T (p) - p, J_{\varphi} (x_{n+1} - p)\rangle$$

$$= \phi(\|y_n - p\|) + \beta_n \langle T (p) - p, J_{\varphi} (x_{n+1} - p)\rangle. \tag{2.7}$$

Substituting (2.6) into (2.7), we obtain

$$\phi(\|x_{n+1} - p\|) \leq (1 - \alpha_n (1 - \alpha)) \phi(\|x_n - p\|) + \alpha_n \langle f(p) - p, J_{\varphi}(y_n - p) \rangle + \beta_n \langle T(p) - p, J_{\varphi}(x_{n+1} - p) \rangle = (1 - \alpha_n (1 - \alpha)) \phi(\|x_n - p\|) + \alpha_n (1 - \alpha) \left[\frac{\langle f(p) - p, J_{\varphi}(y_n - p) \rangle}{1 - \alpha} + \frac{\beta_n}{\alpha_n} \frac{\langle T(p) - p, J_{\varphi}(x_{n+1} - p) \rangle}{1 - \alpha} \right] = (1 - \gamma_n) \phi(\|x_n - p\|) + \sigma_n \gamma_n,$$

where $\gamma_n = \alpha_n (1 - \alpha)$ and $\sigma_n = \left[\frac{\langle f(p) - p, J_{\varphi}(y_n - p) \rangle}{1 - \alpha} + \frac{\beta_n}{\alpha_n} \frac{\langle T(p) - p, J_{\varphi}(x_{n+1} - p) \rangle}{1 - \alpha} \right]$. Then, (C2) and (2.5) imply that

$$\limsup_{n \to \infty} \sigma_{n} \leq \limsup_{n \to \infty} \frac{\left\langle f\left(p\right) - p, J_{\varphi}\left(y_{n} - p\right)\right\rangle}{1 - \alpha} + \limsup_{n \to \infty} \frac{\beta_{n}}{\alpha_{n}} \frac{\left\langle T\left(p\right) - p, J_{\varphi}\left(x_{n+1} - p\right)\right\rangle}{1 - \alpha}$$

$$\leq \limsup_{n \to \infty} \frac{\beta_{n}}{\alpha_{n}} \frac{\|T\left(p\right) - p\| \|x_{n+1} - p\|}{1 - \alpha} = 0,$$

and using Lemma 1.2, $\{x_n\}$ convergence strongly to $p \in F$. \square

Theorem 2.2. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C = \overline{D(A)}$ is convex. Let $T : C \to C$ be a nonexpansive mapping with $F = F(T) \cap N(A) \neq \emptyset$ and $f : C \to C$ a fixed contraction mapping with

contract constant α . Suppose that $\{\alpha_n\}$, $\{\beta_n\} \subset [0,1]$, $r_n \in \mathbb{R}^+$ which satisfy in conditions (C1), (C2), (C3) and

$$(C4)\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty,$$

$$(C5)\sum_{n=1}^{\infty}|\beta_{n+1}-\beta_n|<\infty.$$

Let $x_1 \in C$ be chosen arbitrarily and $\{x_n\}$ be a sequence generated by (1.4). Suppose that $\sum_{n=1}^{\infty} \sup\{\|TJ_{r_{n+1}}z - TJ_{r_n}z\| \; ; \; z \in B\} < \infty$ for any bounded subset B of C, then $\{x_n\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality (2.1).

Proof. From the definition of $\{y_n\}$ for each $n \in \mathbb{N}$ we have

$$||y_{n} - y_{n-1}|| = ||\alpha_{n} f(x_{n}) + (1 - \alpha_{n}) T J_{r_{n}} x_{n} - \alpha_{n-1} f(x_{n-1}) - (1 - \alpha_{n-1}) T J_{r_{n-1}} x_{n-1}||$$

$$\leq \alpha_{n} ||f(x_{n}) - f(x_{n-1})|| + (1 - \alpha_{n}) ||T J_{r_{n}} x_{n} - T J_{r_{n-1}} x_{n-1}||$$

$$+ ||f(x_{n-1}) (\alpha_{n} - \alpha_{n-1}) - (\alpha_{n} - \alpha_{n-1}) T J_{r_{n-1}} x_{n-1}||$$

$$\leq \alpha \alpha_{n} ||x_{n} - x_{n-1}|| + (1 - \alpha_{n}) ||T J_{r_{n}} x_{n} - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

$$+ (1 - \alpha_{n}) ||T J_{r_{n}} x_{n-1} - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

$$+ (1 - \alpha_{n}) ||T J_{r_{n}} x_{n-1} - T J_{r_{n-1}} x_{n-1}||$$

$$+ (1 - \alpha_{n}) ||T J_{r_{n}} x_{n-1} - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

$$\leq (1 - (1 - \alpha) \alpha_{n}) ||x_{n} - x_{n-1}|| + ||T J_{r_{n}} x_{n-1} - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

$$+ |\alpha_{n} - \alpha_{n-1}| ||f(x_{n-1}) - T J_{r_{n-1}} x_{n-1}||$$

and from the definition of $\{x_n\}$ for each $n \in \mathbb{N}$ we have

$$||x_{n+1} - x_n|| = ||((1 - \beta_n) y_n + \beta_n T y_n) - ((1 - \beta_{n-1}) y_{n-1} + \beta_{n-1} T y_{n-1})||$$

$$\leq (1 - \beta_n) ||y_n - y_{n-1}|| + \beta_n ||T y_n - T y_{n-1}||$$

$$+ ||(\beta_{n-1} - \beta_n) y_{n-1} + T y_{n-1} (\beta_n - \beta_{n-1})||$$

$$= (1 - \beta_n) ||y_n - y_{n-1}|| + \beta_n ||T y_n - T y_{n-1}|| + |\beta_n - \beta_{n-1}| ||T y_{n-1} - y_{n-1}||$$

$$\leq (1 - \beta_n) ||y_n - y_{n-1}|| + |\beta_n ||y_n - y_{n-1}|| + |\beta_n - \beta_{n-1}| ||T y_{n-1} - y_{n-1}||$$

$$= ||y_n - y_{n-1}|| + |\beta_n - \beta_{n-1}| ||T y_{n-1} - y_{n-1}||.$$
(2.9)

Substituting (2.8) into (2.9), we obtain

$$||x_{n+1} - x_n|| \le (1 - (1 - \alpha)\alpha_n) ||x_n - x_{n-1}|| + M (|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|) + ||TJ_{r_n}x_{n-1} - TJ_{r_{n-1}}x_{n-1}|| = (1 - \gamma_n) ||x_n - x_{n-1}|| + \mu_n,$$

where

$$M = \max \left\{ \sup_{n} \left\| f(x_{n-1}) - T J_{r_{n-1}} x_{n-1} \right\|, \sup_{n} \left\| T y_{n-1} - y_{n-1} \right\| \right\},\,$$

and

$$\mu_n = M(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|) + ||TJ_{r_n}x_{n-1} - TJ_{r_{n-1}}x_{n-1}||, \quad n \ge 2.$$

Hence

$$\sum_{n=2}^{\infty} \mu_n \le M \sum_{n=2}^{\infty} (|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}|) + \sum_{n=2}^{\infty} \sup \{ \|TJ_{r_n}z - TJ_{r_{n-1}}z\| : z \in \{x_k\} \} < \infty.$$

Therefore Lemma 1.2 implies that $\lim_{n\to\infty} ||x_{n+1}-x_n|| = 0$. Hence $\{x_n\}$ is asymptotic regular, then by Theorem 2.1 the proof is complete. \square

Corollary 2.3. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C = \overline{D(A)}$ is convex. Let $T: C \to C$ be a nonexpansive mapping with $F = F(T) \cap N(A) \neq \emptyset$ and $f: C \to C$ a fixed contraction mapping with contract constant α . Suppose that $\{\alpha_n\} \subset [0,1]$, $r_n \in \mathbb{R}^+$ which satisfy in conditions (C1), (C3) and (C4). Let $x_1 \in C$ be chosen arbitrarily and $\{x_n\}$ be a sequence generated by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T J_{r_n} x_n.$$

Suppose that $\sum_{n=1}^{\infty} \sup\{\|TJ_{r_{n+1}}z - TJ_{r_n}z\| \; ; \; z \in B\} < \infty$ for any bounded subset B of C, then $\{x_n\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality (2.1).

Proof. It is sufficient that assume $\beta_n = 0$ in Theorem 2.2. \square

Corollary 2.4. Let E be a real reflexive Banach space and have a weakly continuous duality map J_{φ} with gauge φ and A a m-accretive maps in E such that $C = \overline{D(A)}$ is convex. Let $N(A) \neq \emptyset$ and $f: C \to C$ a fixed contraction mapping with contract constant α . Suppose that $\{\alpha_n\}, \{\beta_n\} \subset [0,1], r_n \in \mathbb{R}^+$ which satisfy in conditions (C1)-(C5). Let $x_1 \in C$ be chosen arbitrarily and $\{x_n\}$ be a sequence generated by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) J_{r_n} x_n.$$

Suppose that $\sum_{n=1}^{\infty} \sup\{\|J_{r_{n+1}}z - J_{r_n}z\| \; ; \; z \in B\} < \infty$ for any bounded subset B of C, then $\{x_n\}$ converges strongly to $p \in F$, where p is the unique solution of the variational inequality

$$\langle (I-f)(p), J(p-q) \rangle \le 0, \quad q \in N(A).$$

Proof. It is sufficient that assume T = I in Theorem 2.2. \square

3. Acknowledgment

Vahid Dadashi and Sobhan Ghafari are supported by the Islamic Azad University-Sari Branch.

References

- [1] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67(2007), 2350-2360.
- [2] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Mathematische Zeitschrift, 100(1967), 201-225.
- [3] R.E. Bruck and G.B. Passty, Almost convergence of the infinite product of resolvents in Banach spaces, Nonlinear Anal., 3(1979), 279-282.
- [4] R. Chen and Z. Zhu, Viscosity approximation method for accretive operator in Banach spaces, Nonlinear Anal., 69(2008), 1356–1363.
- [5] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications of Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, vol 62.
- [6] K. Goebeland W.A. Kirk, *Topics in metric fixed point theory*, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, UK, 1990.
- [7] K. Goebel and S. Reich, *Uniform Convexity, in: Hyperbolic Geometry and Nonexpansive Mappings*, Marcel Dekker, New York, Basel, 1984.
- [8] X.F. He, Y.C. Xu and Z. He, Iterative approximation for a zero of accretive operator and fixed points problems in Banach space, Applied Mathematics and Computation, 217(2011), 4620-4626.
- [9] J.S. Jung. Convergence on composite iterative schemes for nonexpansive mappings in Banach space, Fixed Point Theory and Appl. 14(2008), Article ID 167535.
- 10 A. Moudafi, Viscosity approximation methods for fixed point problems, J. Math. Anal. Appl., 241(2000), 46-55.
- [11] H. K. Xu, Iterative algorithm for nonlinear operators, J. London. Math. Soc., 2(2002), 240–256.
- [12] H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl., 314(2006), 631-643.