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In this paper, Eringen’s nonlocal elasticity and Timoshenko beam theories are implemented to ana-

lyze the bending vibration for non-uniform nano-beams.  The governing equations and the boundary 

conditions are derived using Hamilton’s principle. A Generalized Differential Quadrature Method 

(GDQM) is utilized for solving the governing equations of non-uniform Timoshenko nano-beam for 

pinned-pinned, clamped–clamped, clamped–pinned, clamped–free, clamped–slide, and pinned-slide 

boundary conditions. The non-dimensional natural frequencies and the normalized mode shapes are 

obtained for short and stubby nano-beams where influences varying cross-section area, small scale, 

shear deformation, rotational moment of inertia, acceleration gravity and the self-weight of the non-

uniform Timoshenko nano-beam are discussed. The present study illustrates that the small scale 

effects are more significant for smaller size of nano-beam, larger nonlocal parameter and higher 

vibration modes. Further, the compression forces due to gravity and the self-weight of the nano-

beam also like the small scale effect are reduced the magnitude of the frequencies of the nano-beam. 
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1. Introduction    

The progress of nanotechnology has enthused 
scientists in their search of producing all sorts of 
micro/nanostructures such as atomic force micro-
scope cantilever tips, nanowires, nanoactuators, 
nanoprobes and nano-beams. Whenever the Euler–
Bernoulli beam theory and the Timoshenko beam 
theory are applied to the analysis of the small beam-
like structures, the researchers are found to be in-
adequate. Being scale free, these classical beam the-
ories could not capture the small scale effect in the 
mechanical properties. For example, Wang and Hu 
[1] showed that the classical beam theories are not 
able to predict the decrease in phase velocities of 
wave propagation in carbon nano-tubes when the 
wave number is so large that the nanostructure has 
a significant influence on the flexural wave disper-
sion. 

In 1972, Eringen [2], Eringen and Edelen [3] and 
later Eringen [4,5] initiated the nonlocal continuum 
mechanics to allow for the small scale effect by spec-
ifying the stress state at a given point to be a func-
tion of the strain states at all points in the body. 
Then the nonlocal theory of elasticity has been used 
to study lattice dispersion of elastic waves, wave 
propagation in composites, dislocation mechanics, 
fracture mechanics, surface tension fluids, etc. [6-
10] , and Wang et al. [11] used the nonlocal elastici-
ty constitutive equations to investigate the vibration 
of carbon nanotubes. Wang et al. [11] neglected the 
nonlocal effect in writing the shear stress–strain 
relation of the Timoshenko beam theory (TBT), and 
therefore the effect of including nonlocal constitu-
tive behavior amounted to using an equivalent shear 
correction factor.  

Reddy [12] used various available beam theories, 
including the Timoshenko beam theory, are refor-
mulated using the nonlocal differential constitutive 
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relations of Eringen. Wang et al. [13] analyzed the 
vibration of nonlocal Timoshenko beams. 

This paper presents a formulation of nonlocal 
elasticity theory for the transverse vibration analy-
sis of non-uniform Timoshenko nano-beams 
(NUTNB). The differential equations of motion are 
employed to derive from the variational procedure 
(Hamilton’s principle) and the solutions numerically 
calculated using GDQM for pinned-pinned, clamped-
clamped, clamped-pinned, clamped-free, clamped-
slide and pinned-slide boundary conditions. This 
study makes the first attempt to study the axially 
distributed forces such as an integration-form vary-
ing compression force due to gravity acceleration on 
NUTNB. In addition the small scale effects, Timo-
shenko parameters and axial loading are investigat-
ed for non-uniform (tapered) nano-beam. The main 
purpose of this article is to investigate the vibra-
tional response of NUTNB with axial loading for ar-
bitrary boundary conditions and for various values 
of the small scale effects. This study is organized as 
follows. Firstly, in Section 2, the nonlocal elasticity 
theory of Eringen is presented using the nonlocal 
constitutive differential equations. Secondly, in Sec-
tion 3, the governing differential equations describ-
ing the transverse vibrations will be derived for 
NUTNB. Also, the present paper is concerned with 
the gravity effect on the vibration behavior of nano-
beams. Then, in Section 4, the solution procedure 
and dimensionless equations will be derived from 
some of the various boundary conditions. In Section 
5 the numerical solution of the problem will be 
solved approximately using GDQM and the matrix 
form will be transformed for equations of motion. 
Also in Section 6, the numerical results obtained 
from the present analysis are discussed in many 
cases of nano-beam. Finally, in Section 7 conclusions 
will be drawn and remarks the results of presenting 
work.  

2. Nonlocal Elasticity Theory of Eringen 

The classical elasticity theory presents the consti-
tutive equation in the form of an algebraic relation-
ship between the stress and strain tensors while 
that of the nonlocal elasticity theory according to 
Eringen [2-5], is that the stress field at a reference 
point x in an elastic continuum depends not only on 
the strain at that point but likewise on the strains at 
all other points in the body. Eringen’s nonlocal elas-
ticity involves spatial integrals which represents 
weighted averages of the contributions of strain 
tensors of all points in the body to the stress tensor 
at the given point. Eringen attributed this fact to the 

atomic theory of lattice dynamics and experimental 
observations on phonon dispersion [12]. The scale 
effects are accounted for in the theory by consider-
ing the internal size as a material parameter [14].  

2.1. The Constitutive Relations 

The basic equations for linear, homogeneous, iso-
tropic, nonlocal elastic solid with zero body force 
are given by [15], 

   ,  
V

K x x t x dx      (1) 

where σ is the nonlocal stress tensor, t(x´) is the 
classical, the macroscopic stress tensor at point x 
and the kernel function K(|x´– x|, τ) are the nonlocal 
moduli, or attenuation function incorporating into 
constitutive equations the nonlocal effects at the 
reference point x are produced by local strain at the 
source x´, τ is the material constant which is defined 
as τ=e0a/l where e0 is a constant appropriate to each 
material, a is an internal characteristics length (e.g., 
lattice parameter, granular distance) and l is an ex-
ternal characteristics length (e.g., crack length, 
wavelength). 

The constitutive Eq. (1) defines the nonlocal con-
stitutive behavior of a Hookean solid and represents 
the weighted average of the contributions of the 
strain field of all points in the body to the stress field 
at a point. Though the integral constitutive relation 
in Eq. (1) makes mathermatical difficulties to obtain 
the solution of nonlocal elasticity problems, Eringen 
[4] represents this integral constitutive equation to 
equivalent differential constitutive equations under 
certain conditions. For an elastic material in the one 
dimensional case, the nonlocal constitutive relations 
may be simplified as [4,13]. 

2.2. Stress Resultant 

The nonlocal constitutive can be approximated to 
a one-dimensional form, in terms of the strains in 
the Timoshenko beam theory (TBT) [16], 

2

2

xx

xx xxE
x


 




    (2) 

2

2

xz

xz xzG
x


 




    (3) 

where E and G are the Young’s and shear moduli, 
respectively, and γ is the shear strain. Hence, the 
nonlocal parameter μ=(e0a)2, a in the theory will be 
led to small-scale effect on the response of struc-
tures of nano-size and when μ is zero, the constitu-
tive relations will be derived of the local theories. 
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3. Nonlocal Equations of NUTNB  

3.1. The Governing Equations of Motion 

The Timoshenko beam theory (TBT), which is 
based on the displacement field at some points, can 
be found in [17,18]. 

All applied loads and geometry are such that the 
displacements (u1,u2,u3) along the coordinates      
(x,y,z) are only functions of the x and z coordinates 
and time t. The displacement u2 is supposed identi-
cally zero. The terms u and w are the axial and 
transverse displacements, respectively, of the point 
(x,0) on the mid-plane (i.e., z = 0) of the beam and 
the ϕ denotes the rotation of the cross-section. The 
nonzero strains according to TBT are expressed as, 

     

   

 
 

1

1 3

, , , ,

, , , ,
2

,
,
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u x z t u x t x t
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x x x

u x z t u x z t

z x

w x t
x t

x

  
  

  

 
  

 


 






 

 

 

(4) 
 The nonlocal bending moment M, and the shear 

force Q, can be written in the following form, 

 , xx

A

M x t zdA   (5) 

 , .xz

A

Q x t dA   (6) 

where σxx is the normal stress and σxz the transverse 
shear stress. A is the cross-sectional area of the 
beam. The following relations are introduced for 
using in the coming sections, 

2  ,     0  ,   
A A A

A dA z dA I z dA      (7) 

 Therefore, the x-axis is taken along the geometric 
centric of the beam, where I is the second moment 
of area of the cross-section. 

In this stage, by multiplying both sides of Eq. (2) 
by z and integrating over the cross-section area of 
the beam, then using Eqs. (4) to (7) , the nonlocal 
Timoshenko constitutive relations yields, 

 
 

 
 2

2

, ,
,

M x t x t
M x t EI x

xx

 
 




  (8) 

 Also, by integrating Eq. (3) over the area, and us-
ing Eqs. (4) to (7), one obtains,  

 
 

 
 

 

2

2

,
,

,
,s

Q x t
Q x t

x

w x t
GK A x x t

x






 



 
 

 

 (9) 

where Ks denotes the shear correction factor of TBT 
in order to compensate for the error in assuming a 
constant shear strain (stress) through the thickness 
of the beam. The shear correction factors depend 
not only on the material and geometric parameters 
but also on the load and boundary conditions. 

The shear correction factor is 9/10 for a circular 
shape cross-section and 5/6 for a rectangular cross-
section [11]. A value of 0.877 was used by Reddy 
and Pang [19] for the analysis of carbon nanotubes 
(CNTs) with the relation Ks = (5+5ν)/(6+5ν) for the 
rectangle and Ks = (6+12ν+6ν2)/(7+12ν+4ν2) for the 
circle in which ν is Poisson’s ratio with value of         
ν = 0.3 [20]. The strain energy U and the kinetic en-
ergy T of the beam are obtained, respectively, by the 
following equations [21], 
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    
     

      

 



 

 (10) 

where ρ is the mass density of the nano-beam mate-
rial.  

By substituting Eqs. (4) to (7), into the above en-
ergy statements, and neglecting axial displacement 
of the neural web u(x,t), the kinetic and strain ener-
gies with respect to the displacement field may be 
expressed as,  

   
 

 
 

 

 
 

 
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 

2 2

0

0
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2

,
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1

,2
, ,

L

L

x t w x t
T t I x A x dx

t t

x t
M x t

x
U t dx

w x t
Q x t x t

x


 





      
     

      

 
 

 
  

      





 
(11) 

In addition, the work done by the external axial 
force is denoted by, 

    
 

2

0

,1

2

L w x t
W t P x dx

x

 
   

 
  (12) 

where P is the distributed axial load along x axis. 
The Hamilton’s principle is the most powerful varia-
tional principle of mechanics, hence the principle of 
virtual displacements for the TBT is given by,  

     
1

0

0

t

t

T t U t W t dt       (13) 

Therefore, by substituting Eqs. (11) and (12) into 
Eq. (13),then, integrating by parts and since δw and 
δϕ are arbitrary in the domain of nano-beam and 
then setting the coefficients of δw and δϕ to zero 
lead to the Euler–Lagrange equations of motion in   
0 < x < L as [22],  
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 
   

 

 
 

 

 
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Q x t w x t
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A x
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

 
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 

  
  
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



 

(14) 
The corresponding boundary conditions involve 

specifying one element of each of the following 
three pairs at the end of x = 0 and x = L,  

   

 

     
 

, 0 , 0

, 0

,
, ,

x t or M x t

w x t or

w x t
V x t Q x t P x

x

  




 



 

(15) 
where V denotes the equivalent shear force. By sub-
stituting Eq. (14) into the implicit Eqs. (8) and (9), 
the explicit expressions of the nonlocal bending 
moment M and shear force Q can be obtained as, 
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  

      

 

(16) 
Then, the Euler–Lagrange equations of motion for 

the nonlocal NUTNB can be derived by inserting Eq. 
(16) into Eq. (14), 
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     

     

  
      

    
   

    

     
    

      

  
        (17) 

3.2. The Gravity Acceleration 

One kind of the axial force is the influence of grav-
ity. Now in the present study, the transverse vibra-
tion characteristics of NUTNB will be analyzed in 
two cases, with or without axial force. In case with 

axial force, there are also two cases, one is a NUTNB 
subjected to the constant axial force and the other is 
of a cantilever NUTNB under axially distributed 
gravity force. 

Due to the gravity and the self-weight of the nano-
beam an integration-form varying compression or 
tensile force is acting on the nano-beam. The force 
of non-uniform cantilever nano-beam (Clamped-
Free) due to acceleration gravity given by, 

    
L

S

x

P x g A x dx    (18) 

   
L

H

x

P x g A x dx    (19) 

where compressive force PS is used for a standing 
beam and tensile force PH is used for a hanging one.  

4. The Solution Procedure and Dimen-
sionless Equations 

A general solution is assumed in the form, 

       , , ,i t i tw x t W x e x t x e    (20) 

where W and Ф are the amplitude of the generalized 
displacements and rotation of beam, respectively, ω 
the vibration frequency of NUTNB and i2=-1. For 
convenience and simplification, the governing equa-
tions can be expressed in the non-dimensional form 
by introducing the following dimensionless parame-
ters [13,14,23], 
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   

1

.g

x

P x A x dx 
 

(21) 
where λ is the non-dimensional natural frequency, ζ 
is the slenderness ratio, α is the scaling effect pa-
rameter of the nano-beam, Ω is the shear defor-

mation parameter, M  is the non-dimensional bend-
ing moment,  ̅ and V are the non-dimensional axial 
and shear forces, respectively, ε is the gravity pa-
rameter,  ̅ and  ̅  are the non-dimensional coeffi-

cient and function of the axial force due to gravity, 
respectively. It should be noted that in the case with 
gravity, the following statements are used,  
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    ,g gp p P x P x   (22) 

By substituting Eqs. (20) and (21), into governing 
equations and corresponding boundary conditions, 
the nonlocal governing equations for NUTNB in di-
mensionless form yields,  
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(23) 
The natural boundary conditions are as, 
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    

 

  
   

  

 

(24) 
The geometry boundary conditions are as, 

    0, 0w x x   (25) 

Note that the nonlocal governing equations given 
in Eqs. (23) to (25), reduce to that of the counter-
part local Timoshenko model when the nonlocal 
parameter or small scale effect is set to zero (α = 0). 
Finally, the corresponding dimensionless boundary 
conditions with nano-beam are listed in Table 1.  

5. Generalized Differential Quadrature 
Method (GDQM)  

Gauss quadrature is a numerical integration 
method. Its basic idea is to approximate a definite 
integral with a weighted sum of integrand values of 
a group of nodes in the form of,  

   
1

b N

j j

ja

f x dx w f x


  (26) 

where xj are nodes and wj are weighting coefficients.  
In the differential quadrature method (DQM) the 

weighting coefficients are determined by solving a 
system of linear equations. Extending Gauss quadra-
ture to find the derivatives of various orders of a 
differentiable function gives a rise to the differential 
quadrature [24,25].  

In other words, the derivatives of a function are 
approximated by weighted sums of the function val-
ues in a group of nodes [26,27].  

The two major disadvantages of DQM are: the first 
limits, the small number of grid points and requires 
solving sets of linear equations, the second limits 
the distribution of the grid points which is critical in 
structural dynamic analysis. In GDQM the weighting 
coefficients for derivative approximations are given 
by a simple algebraic expression and a recurrence 
relationship, together with arbitrary choices of grid 
points [27-30]. Consider the discretization of mth 
order derivative of w(x), the following DQ approxi-
mation is assumed as, 

     
1

,
,

m N
mi

ij jm
j

w x t
C w x t

x 





  (27) 

where Cmij are weighting coefficients for mth deriva-
tive and w(xj) are function values at grid points xj     
(i = 1,2,…,N). Therefore, explicit formulas for these 
coefficients are found to be [26,29], 

  
   

     

1

1

1

i

ij

i j j

M x
C

x x M x



  

   
 1

1
,

, 1,2,..., , , 2,3,..., 1

m

ijm m

ij ii

j i

C
C m C

x x

i j N i j m N




 
  
 
 

   

  

   

1

, 1,2,..., , 1,2,..., 1
N

m m

ii ij

j
j i

C C i N m N



      
(28) 

By choosing the Lagrange interpolated polynomi-
al M(x) as the set of test functions, yields, 

          1

1 1

,
N N

j i i j

j j
j i

M x x x M x x x
 



      
(29) 

Higher order coefficient matrices at each grid 
point can be obtained in GDQM from the first order 
weighting matrix as follows, [31, 32], 

     

           

           

           

1

1

2

2 2 1 1

2
1 1 1

3

3 3 1 2

3
1 1 1

4

4 4 1 3

4
1 1 1

,

,

,

N
i

ij j

j

N N N
i

ij j ij ik kj

j j k

N N N
i

ij j ij ik kj

j j k

N N N
i

ij j ij ik kj

j j k

dw x
C w x

dx

d w x
C w x C C C

dx

d w x
C w x C C C

dx

d w x
C w x C C C

dx



  

  

  



 

 

 



  

  

  

 

(30) 
To choose the distribution of the grid points, 

among non-uniform spacing of nodes which ensure 
the convergence, the Chebyshev nodes defined by 
the following equation are nearly optimal [26, 27].  
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Table 1. The dimensionless boundary conditions of NUTNB 

Type 
Boundary conditions (BCs) 

Geometry Natural 

Pinned (P) 0w   - 0M   - 

Clamped (C) 0w   0  - - 

Free (F) - - 0M   0V   

Slide (S) 0  - 0V   - 
 

 
1

1

1
1 cos ,

2 1

1,2,...,

N

i

x x i
x x

N

i N


    

     
  



 (31) 

By the expansion of Eqs. (23) and (24), and then 
rewriting the resultant equations by generalizing 
differential quadrature (GDQ) model, the governing 
equations were obtained for the nonlocal NUTNB. 

     
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I x

d I x dI x
C

dxdx

I x C



 



  

 
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   
 

 
 

  
    

  
  
  
    
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 




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(32) 
Natural boundary conditions may be rewritten in 

the following statements in the form of GDQM,  
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(33) 
where the displacement vector and the rotation vec-
tor are expressed as,  

   1 2 1 2... , ...
T T

i N i Nw w w w      (34) 

Eqs. (32) to (34) can be easily transformed into 
an eigenvalue problem to obtain the non-
dimensional natural frequency. For NUTNB model,  

11 12 11 122

21 22 21 22

0

0

K K M Mw w

K K M M

        
         

        


 
 (35) 

In simple form, yields 

            2 0 , ,
T

K z M z z w    (36) 

And K, M are the stiffness and mass matrices, re-
spectively. Also the nonlocal boundary conditions 
are expressed as, 

 
     

     

2

2

M Q z R z

V S z T z





 

 
 (37) 

The present problem has been solved for some of 
the Boundary Conditions (BCs.) as: Pinned-Pinned 
(PP), Clamped-Clamped (CC), Clamped-Pinned (CP), 
Clamped-Free (CF), Clamped-Slide (CS) and Pinned-
Slide (PS). The BCs. have been implemented simply 
using GDQM technique in the following matrix form. 
To illustrate the technique, Consider the NUTNB 
pinned at the two ends,  
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0, 0, 0,1.w M at x    (38) 

Eq. (37) is converted to the following form for 
imposition the natural BCs.  

     

     

2

0 0 0

2

1 1 1

0, 0

0, 1

M Q z R z at x

M Q z R z at x

   

   




 (39) 

Therefore, Eq. (36) is transformed to, 

       2 0t tK z M z   (40) 

    0 0

1 1

,t t

K M

K Q M R

Q R

   
   
   
      

 (41) 

Finally, for imposition the geometry BCs., one ob-
tains,  

     2 0t t t tK z M z         (42) 

 2 1 1 2... ...
T

t N Nz w w      (43) 

where the matrices in Eq. (42) have been extracted 
by omitting the first and Nth the row and column, 
respectively. Hence, using this technique Eq. (42) 
can easily be reduced to an eigenvalue problem as,  

   2

t t tZ z z      (44) 

1

t t tZ M K


            (45) 

Eq. (44) can be solved by a standard eigenvalue 
solver, and then the non-dimensional nonlocal natu-
ral frequencies of the NUTNB are obtained. 

6. Numerical Results and Discussions 

6.1. The Technique Verification 

Firstly, the bending vibration of a uniform 
clamped–free Timoshenko beam with the rotary 
inertia parameter r2 = 0.01 and 0.001; and the shear 
deformation parameter s2 = 2.8 and 0.5 [23] is con-
sidered by following statements,   

 2 2 2

2

1
, .r s

r
    (46) 

The first ten non-dimensional natural frequencies 
are shown in Table 2. The result in this Table, yields 
highly agreement with the result of the exact solu-
tion of Hijmissen and Horssen [23]. The difference 
between the two sets of results is very small and is 
well within 0.0036%. Secondly, the natural frequen-
cies of a standing Timoshenko beam with clamped-
free BCs. subjected to the gravity acceleration are 
listed in Table 3. The first ten dimensional frequen-
cies ω (Hz) have been compared with Hijmissen and 
Horssen [23]. The excellent accuracy is detected and 
the differences between the results are very small 
and are within 0.0384%, then the proposed tech-
nique is very close to the exact solutions.  

Table 2. The non-dimensional natural frequency λ2 for uniform 
CF local beam 

Case 
I II 

r2 = 0.01, s2 = 2.8 r2 = 0.001, s2 = 0.5 
Mode num-

ber 
Ref. 
[23] 

Method 
Ref. 
[23] 

Method 

1 3.2471 3.2471 3.5038 3.5038 
2 14.803 14.8026 21.519 21.5191 
3 32.415 32.4153 58.448 58.4478 
4 49.649 49.6488 109.98 109.9815 
5 65.263 65.2632 173.47 173.4722 
6 70.555 70.5548 246.27 246.2743 
7 84.075 84.0753 326.22 326.2190 
8 92.021 92.0212 411.60 411.6015 
9 105.87 105.8678 501.12 501.1166 

10 113.75 113.7541 593.77 593.7673 

 
Table 3. The effect of gravity on the natural frequencies ω (Hz) of 

uniform CF local beam 

Mode 
number 

The exact 
method [23] 

The present 
Method 

The error 
percent 

r2 = 6.30×10-5, s2 = 2.8, ε = 0.314 

1 0.2284 0.2283 0.0384 
2 1.4513 1.4513 0.0028 
3 4.0496 4.0496 0.0011 
4 7.8792 7.8792 0.0002 
5 12.903 12.9026 0.0034 
6 19.055 19.0549 0.0004 
7 26.265 26.2646 0.0017 
8 34.455 34.4547 0.0009 
9 43.549 43.5465 0.0058 

10 53.467 53.4614 0.0104 

 
Thirdly, the first five dimensionless natural fre-

quencies of a Timoshenko beam are displayed for 
PP, CP, CC and CF boundary conditions are present-
ed for various small scale effects α and L/d = 10, in 
Table 4. Where the other parameters of beam ac-
cording to [13] are: diameter d = 0.678 nm, lengths 
L = 10d, and the following assumed mechanical pa-
rameters: Young’s modulus E = 5.5 TPa, Poisson’s 
ratio ν = 0.19, effective tube thickness t = 0.066 nm, 
shear correction factor Ks = 0.563. In Table 4, the 
frequencies have been compared by Wang et al. 
[13]. Note that the results associated with α = 0 cor-
respond to the local TBT frequencies. The excellent 
accuracy and agreement are achieved between the 
results of the present method and the exact method 
[13] for local frequencies and also there is a rate of 
convergence for an adequate number of grid points. 
Although, for nonlocal frequencies, the result of the 
proposed technique is very close to the exact solu-
tion [13], but there is a critical difference between 
the present and exact procedures. Wang et al [13] 
used the constitutive relation to the shear stress and 
strain as the same as in the local beam theory, how-
ever, in the present method according to Ref. [4], the 
constitutive relation for the shear stress and strain 
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are considered as the nonlocal beam theory. Hence 
the present method is more complete and more ac-
curate than Ref. [13]. 

Finally, the first four frequency parameters of the 
present method and those obtained by Farchaly and 
Shebl [33] and Chen [34] are shown in Table 5. The 
rotary inertia parameter r2=I/AL2=0.01 and shear 
deformation parameter s2=Er2/Gk=0.03 are consid-
ered, and also three values of compressive axial load 
parameter PL2/EI, 0, 1 and 10, are considered. As it 
can be observed from the Table, the present results 
yield excellent agreement with those of [33,34]. The 
difference between the two sets of results is small 
and well within 0.0280%. As the compressive axial 
load is increased, natural frequencies of all modes 
are reduced. 

6.2. The Numerical Examples 

In this section, the bending vibration characteris-
tics of the NUTNB will be examined. The effect of the 
varying cross-section area, small scale, shear defor-
mation, rotational moment of inertia, acceleration 
gravity and the self-weight of the nano-beam on the 
non-dimensional natural frequencies and normal-
ized mode shapes is demonstrated. The following 
parameters, material and geometric properties used 
in computing the numerical values are E = 30 MPa 
[12], ρ = 2300 kg/m3, L = 10 nm, h = varied, ν = 0.3, 
Ks = 5/6 and g = 9.81 m/s-2.  

The problem can be solved for each arbitrary 
A(x). In this paper, we assume the A(x) as, 

 
2

2
1

20

x
A x    (47) 

To study the effect of nonlocal parameter, fre-
quency ratio is defined as, 

Frequency using nonlocal theory
Frequency ratio=

Frequency using local theory
 

(48) 

6.2.1. The Convergence of N in GDQM 

Minimum number of grid points is performed by 
the convergence test in GDQM [14] using the follow-
ing equation required to obtain stable and accurate 
results. The error percent vs. number of grid points 
for the fundamental frequency (μ = 0.1) for a 
Pinned-Pinned beam is shown in Fig. 1. It can be 
noted form Fig. 1, that eleven number grid points 
are sufficient in resulting converged solution.  

 100× Present result-Convergedresult
Error percent=

Convergedresult
 

(49) 

 
Figure 1. The convergence of nonlocal results by GDQM 

 

Table 4. First five natural frequencies of uniform beam with L/d = 10 

BCs. 
Mode  

number 

α 
0 0.1 0.3 0.5 0.7 

Present Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] Present Ref. [13] 

Pinned 
Pinned 

1 3.0929 3.0929 3.0210 3.0243 2.6385 2.6538 2.2665 2.2867 1.9899 2.0106 
2 5.9399 5.9399 5.4657 5.5304 4.0663 4.2058 3.2713 3.4037 2.7968 2.9159 
3 8.4444 8.4444 7.2037 7.4699 4.8761 5.2444 3.8474 4.1644 3.2690 3.5453 
4 10.6262 10.626 8.3851 8.9874 5.3806 6.0228 4.2128 4.7436 3.5713 4.0283 

5 12.5413 12.541 9.1905 10.206 5.7140 6.6333 4.4571 5.2009 3.7743 4.4107 

Clamped 
Pinned 

1 3.7845 3.7845 3.6846 3.6939 3.1711 3.2115 2.6966 2.7471 2.3553 2.4059 
2 6.4728 6.4728 5.9353 6.0348 4.3904 4.6013 3.5310 3.7312 3.0198 3.2003 
3 8.8212 8.1212 7.5104 7.8456 5.0816 5.5482 4.0139 4.4185 3.4127 3.7666 
4 10.8800 10.880 8.5826 9.2751 5.5161 6.2641 4.3241 4.9460 3.6677 4.5528 
5 12.7075 12.707 9.3194 10.433 5.8062 6.8277 4.5335 5.3640 3.8408 4.8326 

Clamped 
Clamped 

1 4.4491 4.4491 4.3269 4.3471 3.7032 3.7895 3.1357 3.2420 2.7327 2.8383 
2 6.9524 6.9524 6.3546 6.4952 4.6553 4.9428 3.7269 3.9940 3.1808 3.4192 
3 9.1626 9.1626 7.7884 8.1969 5.2714 5.8460 4.1729 4.6769 3.5522 3.9961 
4 11.1126 11.113 8.7619 9.5447 5.6290 6.4762 4.4105 5.1131 3.7399 4.3455 
5 12.8627 12.863 9.4384 10.649 5.8924 7.0170 4.6077 5.5283 3.9066 4.6986 

Clamped 
Free 

1 1.8610 1.8610 1.8467 1.8650 1.7514 1.8999 1.6223 2.0024 1.4986 - 
2 4.4733 4.4733 4.2956 4.3506 3.4516 3.6594 2.7448 2.8903 2.2849 - 
3 7.1072 7.1072 6.4181 6.6091 4.6091 5.0762 3.6883 - 3.1592 - 
4 9.3813 9.3813 7.8500 8.3151 5.1542 5.7875 3.9894 - 3.3525 - 
5 11.3811 11.381 8.8244 9.6705 5.5939 6.5843 4.3838 - 3.7244 - 
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 6.2.2. Effect of Nonlocal Parameter 

The non-dimensional local and nonlocal frequen-
cies are computed by using the present GDQM for 
the NUTNB with L/h=100 and various values of 
small scale for six boundary conditions and the re-
sults are listed in Table 6. The effect of the nonlocal 
parameter α is to reduce the natural frequencies, as 
it can be seen from the results, which are presented 
in Table 6.  

Hence, as the small scale coefficient increases, the 
frequencies obtained for the nonlocal beam become 
smaller the local counterpart, and so the frequency 
ratio is always smaller than unity. This reduction is 
especially significant for the higher vibration modes. 
Based on the results in Table 6, it is found that for 
constant nonlocal parameter α, among all of the 
boundary conditions, clamped-clamped contain 
largest frequency and pinned-slide contain smallest 
frequency. From Table 6, it is observed that funda-
mental frequency for clamped-free approximately 
remains unchanged with the increase in the non-
local parameters. Table 6 implies that the frequen-
cies for non-uniform (tapered) nano-beam are 
smaller than the same frequencies of uniform nano-
beam. The above result can be demonstrated in Figs. 
2 to 4.   

To demonstrate the effect of higher modes, fre-
quency ratio for various nonlocal parameters is 
plotted in Figs. 3 and 4, for non-uniform and uni-
form cross-section, respectively. From these figures, 
it can be obviously observed that as the nonlocal 
parameter value increases, the frequency ratio de-
creases. In addition, at higher mode numbers, all 
results converge to the local frequency at the higher 
lengths. This phenomenon is because of the increase 
in the interactions between atoms at small wave-
lengths at higher wave numbers [1]. 

 
Table 5. The comparison of first four dimensionless natural fre-

quencies for a clamped–free uniform beam 

Axial 
load 

Method  
r2 = 0.01,  s2 = 0.03 

Mode 
1 

Mode 
2 

Mode 
3 

Mode 
4 

p=0 
Ref. [33] 1.799 3.820 5.642 6.967 
Ref. [34] 1.7964 3.8047 5.6170 6.9305 
Present  1.7985 3.8199 5.6423 6.9671 

p=1 
Ref. [33] 1.579 3.715 5.569 6.904 
Ref. [34] 1.5768 3.6982 5.5425 6.8666 
Present  1.5792 3.7145 5.5692 6.9043 

p=10 
Ref. [33] 2.199 4.720 6.171 - 
Ref. [34] 2.2009 4.7242 6.1811 - 
Present  2.1993 4.7197 6.1707 7.3434 

6.2.3. The Effect of Gravity Acceleration 

In Table 7, the non-dimensional first five frequen-
cy ratioes of a standing cantilever nano-beam are 
listed for uniform & non-uniform cross-section with 
A(x) = 1- 0.05x2 and without & under gravity accel-
eration with gravity parameter ε = 0.9025 and L/h = 
100.  

As Table 7 shows quite clearly, in the case under 
gravity acceleration, the non-dimensional frequen-
cies are less than the counterpart frequencies in the 
case without gravity acceleration. Hence the fre-
quencies decrease due to the self-weighting for a 
standing cantilever beam. Based on the results in 
this Table, the fundamental frequencies at uniform 
cross-section are less than the same frequencies at a 
non-uniform cross-section for both cases under & 
without gravity (see Fig. 5). 

It can be seen from Fig. 6 that the frequency ratio 
for uniform beam decreases more with increasing 
nonlocal parameters with respect to the non-
uniform beam, and also the frequency ratio for uni-
form and non-uniform cross-section trends together 
with the increase of the mode number in standing 
cantilever nano-beam under gravity. 

6.2.4. The Effect of Length 

Figs. 7 and 8 show the variation of non-
dimensional fundamental frequency ratio with the 
length of the beam for pinned-pinned and clamped-
clamped boundary conditions with non-uniform 
cross-section A(x) = 1- 0.05x2.  

From Fig. 7(a), it can be comprehended that the 
space between the curves gradually decreases with 
the increase in the length of nano-beam. Further, for 
all curves, frequency ratio converges to one by in-
creasing the length. It is apparent due to the fact 
that with the increase of length the effect of the non-
local parameter decreases and therefore the fre-
quency ratio tends to unity. As expected, this con-
vergence is more rapid for the small values of non-
local parameters. These results are similarly found 
from Fig. 7(b) for clamped-clamped boundary con-
dition. 

Fig. 8 shows the small-scale effect on the dimen-
sionless fundamental natural frequency of NUTNB 
with lengths of L = 10, 15 and 20 nm [35]. As it is 
shown in Fig. 8, the small-scale effects decrease with 
an increase in the length of a nano-beam.  
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Table 6. First five non-dimensional frequencies of NUTNB with L/h = 100 

BCs. 
Mode 

number 
α 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

Pinned 
Pinned 

1 3.1300 3.1292 3.1267 3.1227 3.1171 3.1097 3.1010 3.0908 3.0793 

2 6.2556 6.2495 6.2312 6.2014 6.1608 6.1105 6.0517 5.9857 5.9138 

3 9.3787 9.3578 9.2970 9.2017 9.0736 8.9197 8.7498 8.5681 8.3800 

4 12.4976 12.4479 12.3071 12.0934 11.8168 11.5001 11.1677 10.8296 10.4956 

5 15.5993 15.5358 15.2626 14.9386 14.4850 13.8580 13.3321 12.8209 12.3355 

Clamped 
Pinned 

1 3.9164 3.9152 3.9117 3.9058 3.8976 3.8872 3.8747 3.8602 3.8438 

2 7.0372 7.0297 7.0074 6.9709 6.9215 6.8603 6.7892 6.7096 6.6233 

3 10.1577 10.1338 10.0659 9.9531 9.8074 9.6346 9.4426 9.2384 9.0278 

4 13.2729 13.2193 13.0652 12.8220 12.5187 12.1761 11.8141 11.4476 11.0871 

5 16.3769 16.2981 16.1023 15.5693 15.0497 14.4919 13.9305 13.3870 12.8727 

Clamped 
Clamped 

1 4.7003 4.6988 4.6943 4.6868 4.6765 4.6633 4.6475 4.6291 4.6083 

2 7.8072 7.7982 7.7717 7.7285 7.6699 7.5976 7.5136 7.4200 7.3186 

3 10.9286 10.9018 10.8232 10.6981 10.5345 10.3411 10.1269 9.8999 9.6668 

4 14.0427 13.9832 13.8119 13.5482 13.2174 12.8452 12.4535 12.0585 11.6714 

5 17.1634 17.0522 16.7389 16.2743 15.7188 15.1248 14.5292 13.9546 13.4127 

Clamped 
Free 

1 1.8883 1.8882 1.8882 1.8882 1.8882 1.8882 1.8882 1.8882 1.8882 

2 4.6907 4.6892 4.6846 4.6770 4.6663 4.6528 4.6365 4.6175 4.5959 

3 7.8269 7.8179 7.7913 7.7479 7.6892 7.6167 7.5325 7.4385 7.3370 

4 10.9434 10.9166 10.8380 10.7128 10.5491 10.3555 10.1411 9.9139 9.6805 

5 14.0593 13.9965 13.8387 13.5618 13.2189 12.8532 12.4620 12.0664 11.6784 

Clamped 
Slide 

1 2.3645 2.3643 2.3635 2.3623 2.3607 2.3586 2.3561 2.3530 2.3501 

2 5.4739 5.4705 5.4605 5.4439 5.4212 5.3926 5.3587 5.3199 5.2768 

3 8.5966 8.5823 8.5405 8.4731 8.3830 8.2739 8.1495 8.0139 7.8706 

4 11.7161 11.6783 11.5708 11.4025 11.1860 10.9350 10.6631 10.3810 10.097 

5 14.8176 14.7396 14.5473 14.2067 13.7950 13.3543 12.8958 12.4416 12.0178 

Pinned 
Slide 

1 1.5599 1.5598 1.5594 1.5586 1.5577 1.5565 1.5550 1.5533 1.5512 

2 4.6904 4.6878 4.6801 4.6674 4.6498 4.6278 4.6015 4.5714 4.5379 

3 7.8161 7.8040 7.7685 7.7111 7.6342 7.5407 7.4337 7.3165 7.1920 

4 10.9382 10.9047 10.8091 10.6588 10.4649 10.2392 9.9934 9.7373 9.4784 

5 14.0388 13.9847 13.7849 13.4851 13.1123 12.6974 12.2717 11.8478 11.4374 

 
Table 7. First five non-dimensional frequency ratio of standing cantilever nano-beam under gravity acceleration with L/h = 100, ε = 0.9025 

α 0 0.02 0.04 0.06 0.08 

Mode Type U NU U NU U NU U NU U NU 

1 
NG 1.8750 1.8883 1.8744 1.8882 1.8727 1.8882 1.8698 1.8882 1.8658 1.8882 

G 1.8188 1.8320 1.8181 1.8318 1.8161 1.8313 1.8128 1.8304 1.8083 1.8291 

2 
NG 4.6928 4.6907 4.6847 4.6846 4.6608 4.6663 4.6219 4.6365 4.5697 4.5959 

G 4.6738 4.6716 4.6655 4.6653 4.6410 4.6464 4.6013 4.6156 4.5478 4.5736 

3 
NG 7.8496 7.8269 7.8108 7.7913 7.6999 7.6892 7.5302 7.5325 7.3194 7.3370 

G 7.8381 7.8153 7.7989 7.7792 7.6870 7.6760 7.5159 7.5175 7.3033 7.3196 

4 
NG 10.9821 10.9434 10.8718 10.8380 10.5703 10.5491 10.1452 10.1411 9.6656 9.6805 

G 10.9737 10.9345 10.8626 10.8287 10.5600 10.5386 10.1330 10.1288 9.6509 9.6656 

5 
NG 14.1096 14.0593 13.8866 13.8387 13.2507 13.2189 12.4743 12.4620 11.6939 11.6784 

G 14.0761 14.0240 13.8791 13.8174 13.2417 13.2198 12.4630 12.4516 11.6795 11.6644 
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(a) 

 
(b) 

 
Figure 2. The variation of non-dimensional fundamental fre-

quency ratio with the nonlocal parameter for various boundary 
conditions for (a) non-uniform nano-beam with                           
A(x) = 1- 0.05(x/l)2 and (b) uniform nano-beam 

 

6.2.5. The Effect of Axial Load 

Fig. 9 presents the influence of the tensional axial 
load on the pinned-pinned non-uniform nano beam 
with a variation of nonlocal parameters. The funda-
mental frequency ratio always decreases with the 
increase in nonlocal parameter; however, this de-
creasing of restraint will increases the tensional 
axial load. Further, when the axial load increases the 
nonlocal and local frequencies tend together, 
meanwhile, significantly increases the frequencies 
of NUTNB.  

6.2.6. The Normalized Mode Shapes 

Unlike for the pinned-pinned beam case where 
the mode shapes are not affected by the small scale 
effect parameter, the mode shapes of the clamped- 
clamped and clamped-pinned beam are significantly 
influenced by the small scale effect. The similar 

phenomenon is also found by Wang et al. [13] for 
linear vibration modes of the nonlocal Timoshenko 
beams and Yang et al. [36] for nonlinear vibration 
modes. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 3. The variation of non-dimensional first five frequency 

ratio with the nonlocal parameter for NUTNB with                      
A(x) = 1-0.05(x/l)2 for (a) pinned-pinned, (b) clamped-clamped 

and (c) clamped-free 
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(a)

 
(b) 

 
(c) 

 
Figure 4. The variation of non-dimensional first five fre-

quency ratio with the nonlocal parameter for uniform nano-beam 
for (a) pinned-pinned, (b) clamped-clamped and (c) clamped-free 

 
Figure 5. The variation of non-dimensional fundamental fre-

quency with the nonlocal parameter for standing cantilever nano-
beam without and under gravity acceleration and uniform and 

non-uniform 

7. Conclusions 

Transverse vibration characteristics have been 
investigated for a non-uniform Timoshenko nano-
beam based on Eringen’s nonlocal elasticity theory 
with axially loaded. A numerical approach (GDQM) 
has been used to study solving governing equations. 
Many typical results calculated by the presented 
method show excellent agreement with the exact 
results by other investigators. The same influence 
has been studied for the scale effect (nonlocal pa-
rameters), varying cross-section area, shear defor-
mation, rotational moment of inertia, size of nano-
beam, axial load, acceleration gravity and the self-
weight of the NUTNB on the dimensionless natural 
frequencies. Based on the results, which have been 
discussed earlier, several conclusions can be ad-
dressed as follows:  

(1) The small number grid points are sufficient in 
resulting converged solution and the presented 
work reflects the power of GDQM in solving non-
uniform problems.  

(2) The effect of the nonlocal parameter is to re-
duce the natural frequencies, hence the nonlocal 
frequencies are smaller than the local counterparts.  

(3) The small scale effects are more significant for 
smaller size of nano-beam, larger nonlocal parame-
ter and higher vibration modes.  

(4) Among all of the boundary conditions (PP, CC, 
CP, CF, CS and PS), clamped-clamped (CC) contain 
largest frequency and pinned-slide (PS) contains 
smallest frequency.  
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(a)  

 
(b) 

 
(c) 

 
Figure 6. The variation of non-dimensional frequency ratio with 
the nonlocal parameter for standing cantilever nano-beam under 

gravity acceleration (a) mode 1, (b) mode 2 and (c) mode 3 
 

 
 

(a) 

 
(b) 

 
Figure 7. The variation of non-dimensional fundamental fre-

quency with length of beam with various values of the nonlocal 
parameter for non-uniform cross-section (a) pinned-pinned and 

(b) clamped-clamped 
 

(5) The frequency for non-uniform (tapered) 
nano-beam is smaller than the same frequencies of 
uniform nano-beam.  

 (6) Due to gravity acceleration and self-weighting 
(or distributed compressive axial force) for a stand-
ing cantilever beam, the non-dimensional frequen-
cies are less than the counterpart frequencies in the 
case without gravity acceleration. While the in-
crease in the tensional axial load always causes an 
increase in the frequencies of NUTNB.  

(7) In general, the frequency ratio for uniform 
beam decreases more by increasing nonlocal pa-
rameters with respect to the non-uniform beam for 
all of the boundary conditions of nano-beam.  

(8) The small scale effect parameter is more sig-
nificant for the mode shapes of the clamped-
clamped and clamped-pinned unlike the mode 
shapes for the pinned-pinned beam case. 
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(a) 

 
(b) 

 
Figure 8. The variation of non-dimensional fundamental fre-

quency with the nonlocal parameter for various values of length 
of beam for non-uniform cross-section, (a) pinned-pinned and (b) 

clamped-clamped 
 

 
Figure 9. The influence of the tensional axial load on pinned-

pinned non-uniform nano-beam with the variation of nonlocal 
parameters 

Nomenclature 

σ nonlocal stress tensor 
t(x´) classical, macroscopic stress tensor  
K kernel function 
τ material constant 
e0 constant appropriate to each material 
a internal characteristics length 
l external characteristics length 
E Young’s modulus 
G shear modulus 
γ shear strain 
μ nonlocal parameter  
M nonlocal bending moment 
Q shear force 
σxx normal stress 
σxz transverse shear stress 
A cross-sectional area of the beam 
Ks shear correction factor of the TBT 
ρ mass density of the nano-beam  
P distributed axial load along x axis 
W amplitude of the generalized displacements 
Ф rotation of beam 
ω vibration frequency of NUTNB 
λ natural frequency 
ζ slenderness ratio 
α scaling effect parameter of the nano-beam 
Ω shear deformation parameter 

M  bending moment 
p  axial forces 

V shear forces 
ε gravity parameter 
 ̅  coefficient of the axial force due to gravity 

 ̅  
function of the axial force due to gravity 

xj nodes coefficients. 
wj weighting coefficients. 
Cmij weighting coefficients for mth derivative 
w(xj) function values at grid points 
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