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1. Introduction 

Fibrous composites are widely used in many en-
gineering structures that are subjected to severe 
thermal environments. The composites have many 
attractive properties, including temperature re-
sistance and a low thermal coefficient of expansion. 
In fibrous composite laminates, the coefficients of 
thermal expansion in the direction of the fibers are 
usually much smaller than those in the transverse di-
rection [1]. Therefore, several plate theories have 
been developed by various researchers to predict the 
correct bending behavior of composite laminates un-
der mechanical/thermal loads. These plate theories 
have been reviewed in various studies [2-6]. Reddy 
[7] presented a thermal analysis of laminated compo-
site plates using Kirchhoff’s classical plate theory 
(CPT), Mindlin’s first-order shear deformation the-
ory (FSDT), and Reddy’s higher-order shear defor-
mation theory (HSDT) [8]. Tauchert [9] investigated 

the stationary two-dimensional temperature, stress, 
and displacement distributions for a simply sup-
ported slab consisting of bonded orthotropic layers. 
Khdeir and Reddy [10] developed refined plate theo-
ries to study the thermal stresses and deformations 
of cross-ply rectangular laminates using the state-
stress approach. Savoia and Reddy [11] solved the 
transient heat conduction equation for a given tem-
perature distribution across the thickness of lami-
nates for a three-dimensional (3D) stress analysis of 
a square laminate subjected to a sudden uniform 
temperature change.  

Rohwer et al. [12] obtained the thermal stresses 
in laminated composite plates using the higher-order 
theories. Carrera and Ciuffreda [13] obtained a 
closed-form solution for the thermal analysis of lam-
inated composite plates using a unified formulation. 
A refined FSDT was presented and used for the ther-
mal analysis of laminated structures without using a 
shear correction factor [14]. Zenkour [15] used the 
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parabolic and trigonometric shear deformation theo-
ries for the thermomechanical analysis of cross-ply 
laminated composite plates. Zenkour et al. [16] ex-
tended the thermomechanical analysis of laminated 
composite plates resting on an elastic foundation. 
Zhen et al. [17] used the global–local higher-order 
theory to carry out a thermal analysis of a four-lay-
ered symmetric cross-ply laminated composite plate 
subjected to the actual temperature field. Gao and 
Zhao [18] developed the refined plate theory, which 
was based on the thermoelasticity theory, for the 
thermoelastic bending analysis of rectangular plates. 
Khdeir [19] obtained an exact solution for the ther-
moelastic bending analysis of cross-ply laminated 
arches with arbitrary boundary conditions. Kant and 
Shiyekar [20] developed an HSDT with a Taylor se-
ries-type expansion in the thickness direction of the 
displacements to analyze composite and sandwich 
plates under thermal loading. Noda et al. [21] pro-
vided various solution methods to solve 3D heat con-
duction problems; the temperature profiles for 1D, 
2D, and 3D linear elastic bodies, such as beams, 
plates, and shells, were obtained by solving the re-
spective Fourier heat conduction equation. However, 
a review of the literature showed that such solution 
techniques are rarely employed for the thermoelastic 
analysis of multilayered plates. 

In recent years, the problems associated with 
thermomechanical deflections, bending, buckling, 
and vibrations of composite and functionally graded 
(FG) sandwich plates have been analyzed and solved 
by some authors using four-variable trigonometric 
shear deformation theories. Tounsi et al. [22] used a 
refined trigonometric shear deformation theory to 
analyze the thermoelastic bending of FG sandwich 
plates. Zidi et al. [23] used a four-variable refined 
plate theory for the bending analysis of functionally 
graded material (FGM) plates under hygro-thermo-
mechanical loading. Beldjelili et al. [24] used a four-
variable trigonometric plate theory to analyze the 
hygro-thermo-mechanical bending behavior of sig-
moid (S)-FGM plates resting on various elastic foun-
dations. Bouderba et al. [25, 26] developed a simple 
shear deformation theory to analyze the thermal sta-
bility of FG sandwich plates. Chikh et al. [27] per-
formed a thermal buckling analysis of cross-ply lam-
inated plates using a simplified HSDT. 

Structures consisting of composite plates stiff-
ened by a set of beams form a class of structural ele-
ments that have practical importance in various en-
gineering applications, such as aircrafts and ships. 
Because aerospace and marine vehicles are subjected 
to thermal and dynamic loads, confident predictions 
of the natural frequencies and amplitudes of the vi-
brations of the structural components are essential 

for preventing excessive vibration levels, which may 
result in fatigue failure [28-30]. 

The addition of stiffeners to composite plates 
complicates the dynamic analysis and, thus, simplify-
ing assumptions have to be made to facilitate a solu-
tion to the problem. Many analytical and numerical 
methods have been proposed to study the vibrations 
of rib-stiffened plates. The proposed approaches in-
clude the orthotropic [31] and grillage [32] models, 
the Lagrange multiplier formalism [33], the Ray-
leigh–Ritz method [34, 35], the finite difference 
method [36], the finite element method [37, 38], the 
differential quadrature method [39], and the mesh-
less method [40]. Hygro-thermo-mechanical bendin 
analysis of S-FGM plates on variable elastic founda-
tion studied by Beldjelili et al [41]. 

According to the literature, the thermomechani-
cal bending analysis of ribbed composite plates has 
never been performed. Thus, the present study is the 
first attempt in using an analytical approach to solve 
the problem of thermal bending of a composite plate 
with a beam-like stiffener. To study the results, an ap-
plied case that occurs frequently in satellite structure 
design problems and has been never solved was con-
sidered. Assumptions of the CPT were considered to 
describe the motion of the composite plate [7], while 
the motion of the stiffener was assumed to follow the 
Euler–Bernoulli beam equation. To determine the re-
lationship between the governing equations of the 
plate and stiffener, a compatibility equation was used 
[29]. In addition, the quasi-static equation of heat 
conduction was used to describe the temperature 
field of the plate. The plate and the beam were simply 
supported along the mechanical boundaries to allow 
a Fourier-type expansion of the Levy solution to be 
applied to trace the deflection of the composite plate 
in terms of the spatial coordinates. The thermal 
boundary condition on one side of the plate was con-
sidered to be in a sinusoidal form, which is common 
in LEO satellite applications. The temperature equa-
tion with the assumption of a small strain rate was 
uncoupled from the equation of motion of the plate 
by omitting the coupling term of displacement from 
the temperature equation. The quasi-static equation 
of heat conduction was solved separately using the 
Laplace transform method. Furthermore, the Laplace 
transform method was utilized to solve the system of 
governing equations of motion of the plate. Finally, 
the method of residues (residue theorem [41]) was 
applied to transform the algebraic results of the com-
plex domain (s-domain) into the time domain. The 
solution method that is used in the present study is 
fully analytical and the results are exact within the 
framework of the CPT. Thus, this paper comprehen-
sively investigates and graphically represents the ef-
fects of various parameters, such as the dimension of 



 

M. Shahravi, S. Fallahzade, M. Mokhtari / Mechanics of Advanced Composite Structures 5 (2018) 173 – 185 175 

 

 

the cross-section area of the stiffener and the orbital 
temperature parameters, on the time history bend-
ing of a composite plate and stiffener. 

2. The Governing Equations of the Prob-
lem 

2.1. Equations of Motion of a Composite Plate with a 
Stiffener 

According to the CPT, the governing equations of 
motion of the composite plate may be written as fol-
lows in the absence of in-plane forces [7]: 
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where 𝑧̂ and 𝑧 are measured from the mid-plane of 
the plate. The stiffener can be modeled as an Euler–
Bernoulli beam parallel to the y-axis as shown in Fig. 
1 assuming that the in-plane displacements 𝑢 and 𝑣 
have no direct effect on the motion of the stiffener; 

the deflections of the plate are small; and the tor-
sional interaction moment between the beam and the 
plate is negligible.  

Therefore, the governing equation of the beam-
like stiffener can be written as follows [34]: 

(7) 4 2
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where 𝑤1 is the deflection of the stiffener and 𝑓1(𝑥, 𝑡) 
is the interaction force between the beam and the 
plate. Considering Equation (7) and neglecting the ef-
fect of the torsional interaction moment, the distrib-
uted transverse load 𝑞(𝑥, 𝑦, 𝑡)  can be expressed as 
[22]: 

(8)    1 1, , ( , )q x y t f x t y y    

Substituting Equations (2), (3), and (8) into Equa-
tion (1) leads to the governing equations of the plate 
in terms of the displacement components: 
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Figure 1 Schematic of a composite with parallel stiff-

eners 
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Note that Equations (7) and (9)–(11) are the gov-
erning equations of motion of a composite plate with 
a beam-like stiffener. These equations must be 
solved in conjunction with the continuity condition at 
the interface between the plate and the beam, which 
can be expressed as follows [22]: 

   1 1, , ,w x y t w x t  (12) 

2.2 Heat Conduction and Temperature Distribution 

In the present study, the quasi-static equation of 
heat conduction will be considered only for the plate. 
It has been assumed that the presence of the beam 
does not affect the heat conduction process. Thus, the 
quasi-static equation of heat conduction for a lami-
nated composite plate can be written as follows [35]: 
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Assuming that the thermal properties of the plate 
are constant in any direction, Equation (13) can be 
expressed as:  
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where 𝛼 is the coefficient of thermal diffusivity and 
𝑧̅ = 𝑧 + ℎ/2. The boundary and initial conditions of 
Equation (14) are as follows: 
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To solve Equation (14) with the prescribed 
boundary conditions of Equation (15), the following 
definition of the finite Fourier transform may be used 
in the 𝑧̅ direction [41]: 
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Employing the integration by parts rule, the fol-
lowing relation is derived based on the definition 
presented in Equation (16): 
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Applying the finite Fourier transform in the direc-
tion of  𝑧 ̅by making use of Equation (18) on Eqs. (14) 
and (15) leads to the following: 

𝜕2𝑇𝑘

𝜕𝑥2
+

𝜕2𝑇𝑘

𝜕𝑦2
−

𝑘2𝜋2

ℎ2
𝑇𝑘 +

𝑘𝜋

ℎ
𝑓(𝑡) =

1

𝛼𝑇

𝜕𝑇𝑘

𝜕𝑡
 (19) 

   

   

0, , , ,

,0, , , 0

k k

k k

T y t T a y t

T x t T x b t



  
 

(20) 

To satisfy the boundary condition, the double si-
nusoidal expansion of 𝑇𝑘  will be used, which can be 
presented as follows: 
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Substituting 𝑇𝑘(𝑥, 𝑦, 𝑡) from Equation (21) into 
Equation (19) results in the following: 
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Applying the Laplace transform to Equation (22) 
gives the Laplace transform version of 𝐴𝑚𝑛𝑘  as fol-
lows: 
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where 𝐴̅𝑚𝑛𝑘(𝑠) = 𝐿(𝐴𝑚𝑛𝑘(𝑡))  and  𝐹̅(𝑠) = 𝐿(𝑓(𝑡)) . 
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 
1 1

, , , ( , )

sin sin

mn

m n

T x y z t T z t

m x n y

a b

 

 

 



   
    

   


  (25) 

where 

 
1

( , ) sinmn mnk

k

k z
T z t A t

h






 
  

 
   (26) 

In the following sections, Equations (4) and (5) in 
the form of 𝑇(𝑥, 𝑦, 𝑧,̅ 𝑡), which has been presented in 
Equation (25), will be used to calculate the thermal 
force vector {𝑁𝑇}  and the thermal moment vector 
{𝑀𝑇}. 

3. Analytical Solution of the Governing Equa-
tions 

The simply supported boundary conditions for 
the classical linear plate theory are as follows: 

   

   

   

   

   

   

0 0

0 0

0 0

0 0

0, 0,

0, 0,

,0, 0,    , , 0, 

   0, , 0,    , , 0

,0, 0,    , , 0,  

  0, , 0,    , , 0

,0, 0,    , , 0,  

    0, , 0,     , , 0

x x

y y

u x t u x b t

v y t v a y t

w x t w x b t

w y t w a y t

w x t w x b t

w y t w a y t

 

 

 

 

 

 

 (27) 

   

   

   

   

0, , 0 ,    , , 0, 

   ,0, 0,    , , 0

0, , 0 ,    , , 0,  

  ,0, 0,    , , 0

xx xx

yy yy

xx xx

yy yy

N y t N a y t

N x t N x b t

M y t M a y t

M x t M x b t

 

 

 

 

 (28) 

The boundary conditions in Equation (27) may be 
satisfied using the following Navier-type solutions: 

     

     

     

0

1 1

0

1 1

0

1 1

, , cos sin( )

, , sin cos( )

, , sin sin( )

mn

n m

mn

n m

mn

n m

u x y t U t x y

v x y t V t x y

w x y t W t x y

 

 

 

 

 

 

 

 

 













  (29) 

where 𝛼 = 𝑚𝜋/𝑎 and 𝛽 = 𝑛𝜋/𝑏. 𝑞(𝑥, 𝑦, 𝑡) may also 
be expressed in the following double Fourier series: 

   
1 1

, , sin sinmn

m n

m x n y
q x y t Q t

a b

 
 

 

   
    

   
  

(30) 

where 

   
0 0

4
, ,

sin sin  

a b

mnQ t q x y t
ab

m x n y
dxdy

a b

 



   
    

   


  (31) 

Substituting 𝑞(𝑥, 𝑦, 𝑡) from Equation (8) into 
Equation (31) leads to the following: 

  1 14
sinmn m

n y
Q t F

ab b

 
   

 
  (32) 

where 

 1
1

0

, sin

a

m

m x
F f x t dx

a

 
  

    (33) 

After the displacements of Equation (29) are first 
inserted into Equations (2) and (3), and then inserted 
into Equation (28), the result reveals that the Navier 
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solution of Equation (29) exists only if 𝐴16 =  𝐴26 =
𝐵16 = 𝐵26 = 𝐷16 = 𝐷26 = 𝐴45 = 0, 𝐼1 = 0. 

It follows that the Navier solution for simply sup-
ported boundary conditions applies to plates with 
the following characteristics: a single generally or-
thotropic layer; symmetrically laminated plates with 
multiple orthotropic layers; and antisymmetric 
cross-ply laminated plates, which include the former 
cases as special cases. Substituting the Navier solu-
tion of Equation (29) into the governing Equations 
(9–11) leads to the following equation in terms of the 
unknown coefficients of the Navier solution 
𝑈𝑚𝑛 , 𝑉𝑚𝑛 , 𝑊𝑚𝑛: 

(34) 

 
 

 

 

2 2
11 66

12 66

3 2
121 1 11

0 1

1
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 
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 

 

 




 
 
 
 
 

 
   
  








 

(35) 
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 

 
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11 66
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2
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B B W
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f

x y
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 

  


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 

 

  
 
  
 
  
 
   



  
   
  
 



 

(36) 
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 
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T
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U
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 
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 

 

  
 
 
 
 
 
   
 
  
 
   
 



  
   
    

  


 

where 𝐵̃12 = 𝐵12 + 2𝐵66 and  𝐷̃12 = 𝐷12 + 2𝐷66. 
Expanding the thermal force vectors 𝑁𝑖𝑗

𝑇  and the 
thermal moment vectors  𝑀𝑖𝑗

𝑇  in terms of the double 
Fourier sries leads to: 

   

1

2

1 1 6

sin sin

T
xx mn

T
yy mn

m nT
mnxy

N N

N N x y

NN

 
 

 

   
      

   
   

     

  
(38) 

   

1

2

1 1 6

sin sin

T
xx mn

T
yy mn

m nT
mnxy

M M

M M x y

MM

 
 

 

   
      

   
   

     

  (39) 

where 

   
1

1

( )
2

16

,

k

k

mn zN
k

mn mn

k z
mn

N

N Q T z t dz

N







 
  

    
 
  

   (40) 

   
1

1

( )
2

16

,

k

k

mn zN
k

mn mn

k z
mn

M

M Q T z t zdz

M







 
  

    
 
  

   (41) 

Note that 𝑇𝑚𝑛(𝑧, 𝑡) has been defined by Equation 
(26). The temperature-related terms in the govern-
ing Equations (9)–(11) can then be written as fol-
lows: 

(42) 
   

   

1

1

1 1

6
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xyT xx
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n m
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f
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  

  
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 


 

 




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(43) 
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   
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1
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n m
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N N
f

x y

N x y
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  

  

 

 

 
 

 





  

(44)      

   

2 22

3 2 2

2 1 2 2

1 1

6

[ sin sin

2 cos cos ] 

T TT
xy xyT xx

mn mn

n m
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M MM
f

x yx y

M M x y
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   

  

 

 

 
  

  

  



  

The particular form of the solution of the prob-
lem, which is based on the double Fourier series, re-
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quires that 𝑀𝑚𝑛
6  and 𝑁𝑚𝑛

6  be defined to achieve an an-
alytical solution. Thus, the configuration of the com-
posite plate must be as follows: 

   
1

1

( )
2

1

,   

0

k

k

mnzN
k

mn mn

k z

N

Q T z t dz N





 
  

     
 
  

   (45) 

   
1

1

( )
2

1

,

0

k

k

mnzN
k

mn mn

k z

M

Q T z t zdz M





 
  

     
 
  

   (46) 

The conditions in Equations (45) and (46) are au-
tomatically satisfied for the following conditions: sin-
gle-layer plates with a generally orthotropic layer; 
symmetrically laminated plates with multiple ortho-
tropic layers; and antisymmetric cross-ply laminated 
plates. In order to include 𝑁𝑚𝑛

6  and 𝑀𝑚𝑛
6 , the temper-

ature distribution should be expanded in a double co-
sine series. Then 𝑁𝑚𝑛

1 , 𝑁𝑚𝑛
2 , 𝑀𝑚𝑛

1 , and 𝑀𝑚𝑛
2  must be 

equal to zero [7]. Substituting 𝑓1
𝑇 , 𝑓2

𝑇 , and 𝑓3
𝑇 from 

Equations (42)–(44) into Equations (34)–(36) re-
sults in the following governing equations of motion 
of the plate: 
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  

   
     

 
  
    

     
   

    
 

  

(47) 

in which 
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c
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 

 

  

 

  
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 

  

  
(48) 

Equations (7) and (48) are the governing equa-
tions of the system shown in Fig. (1), and must be 
solved simultaneously. The lateral deflection of the 
beam may be presented as follows: 

𝑤1(𝑥, 𝑡) = ∑ 𝑊𝑚
1(𝑡) sin (

𝑚𝜋𝑥

𝑎
)

∞

𝑚=1

 (49) 

Substituting 𝑤1(𝑥, 𝑡) from Equation (49) into 
Equation (7) results in the following equation for the 
motion of the stiffener: 

𝐸𝐼 (
𝑚𝜋

𝑎
)

4

𝑊𝑚
1(𝑡) + 𝜌𝐴𝑊̈𝑚

1(𝑡) =
2

𝑎
𝐹𝑚

1  (50) 

where 

 1
1

0

, sin

a

m

m x
F f x t dx

a

 
  

    (51) 

Equations (47) and (50) are the coupled equta-
tions governing the motion of the system of a compo-
site plate with a beam-like stiffener, which must be 
solved in conjunction with the continuity condition 
that has been expressed in Equation (7). In order to 
solve Equations (47) and (50), the Laplace transform 
may be employed. Assuming that all of the initial con-
ditions are zero, after the Laplace transform is ap-
plied, the form of the governing equations will be as 
follows: 
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(52) 

1 12
mmmW F

a
   (53) 

where 
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m

m
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a


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 
  

 
  (54) 

Substituting 𝐹̅𝑚
1  from Equation (53) into Equation 

(52) leads to 
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(55) 

The Laplace transform version of Equation (12) is 

   
1

1,m mW s W y s  (56) 

Based on the Fourier series expansions, the fol-
lowing relations are valid: 
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From Equations (55) and (56) we have 
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(59) 

where 

(60) 
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The third row of Equation (59) can be written as 

(61)  1 2
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Substituting Equation (61) into Equation (58) re-
sults in the following: 

(64) 

 

  1 2
1

1

,

, sin

m

mmn mn

n

W y s

n y
W y s

b


 





 
    

 


 

Replacing  𝑦 with 𝑦1 on both sides of Equation 
(64) leads to the following expression for 𝑊̅𝑚(𝑦1, 𝑠):  
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where 
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Substituting 𝑊̅𝑚(𝑦, 𝑠) from Equation (65) into 
Equation (59), and then substituting the results into 
the Laplace transform version of Equation (29) leads 
to the Laplace transform version of the displacement 
components 𝑈0(𝑥, 𝑦, 𝑠), 𝑉̅0(𝑥, 𝑦, 𝑠), and 𝑊̅0(𝑥, 𝑦, 𝑠). By 
making use of the inverse Laplace transform, the Na-
vier solution (29) for 𝑢0(𝑥, 𝑦, 𝑡), 𝑣0(𝑥, 𝑦, 𝑡), and 
𝑤0(𝑥, 𝑦, 𝑡) may be obtained in the time domain. The 
inverse Laplace transform of 𝑈0(𝑥, 𝑦, 𝑠), 𝑉̅0(𝑥, 𝑦, 𝑠), 
and 𝑊̅0(𝑥, 𝑦, 𝑠) is determined using Maple software 
and the residue theorem. In order to successfully ac-
complish the process of applying the inverse Laplace 
transform to any rational function using the residue 
theorem [37], the roots of the denominator must be 
found. In the case of Equation (30), the most chal-
lenging part of the denominator is 1 + 𝛹𝑚

1 (𝑦1, 𝑠). 
However, the series of 𝛹𝑚

1 (𝑦1, 𝑠) converges rapidly 
by the growth in the number of terms. Thus, the roots 
of 1 + 𝛹𝑚

1 (𝑦1, 𝑠) can be found for any desired degree 
of accuracy and can be used in the implementation of 
the residue theorem. 
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4. Results and Discussions 

In this the section, different aspects of the current 
problem and the effects of various parameters, in-
cluding the periodic thermal load and the stiffener, 
on the results will be discussed in detail using some 
numerical examples. In this regard, consider a sym-
metrically laminated [0/90/90/0] composite plate 
with the following specifications: 

1 2

12 12

3

144.8  GPa,     9.65  GPa,   

  4.136  GPa,     0.25,  

  1389.297  Kg/m

E E

G 



 

 

  

The thickness of each layer is 1 mm and the di-
mensions of this plate are 0.4 m × 0.4 m; the mass of 
the plate would be 0.889 kg. Thus, according to Equa-
tion 6, the non-zero coefficients of this plate are: 
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 

 

 

 

The plate has a stiffener with a cross-section area 
of 𝑏1 × ℎ1 (Fig. 1), which is attached to the plate in 
𝑦1 = 𝑏/2. It has the following mechanical and ther-
mal properties: 
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m

  1.165 10  (for carbon/epoxy composites); 
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where 𝛼 is the thermal diffusivity coefficient of the 

composite plate with the assumption of homogeneity 

and 𝛼𝑖𝑗  is the thermal expansion coefficient of the 

composite plate. 

Furthermore, suppose that a sinusoidal tempera-
ture 𝑓(𝑡) = 𝐵 sin(𝜔𝑡) has been applied to the upper 
surface of the plate; in this case, the sinusoidal tem-
perature is applied to the stiffened composite plates 
of the outer surface of the structure of a LEO satellite. 
In the equation, 𝐵 is the amplitude of the tempera-
ture and 𝜔 is the frequency of the temperature func-
tion. In the case of an LEO satellite, it takes about 90 
minutes (an orbital period) to complete a revolution 
in its orbit around Earth. The effects of 𝐵 and 𝜔 on 
the temperature of the midpoint of the stiffened plate 
are shown in Fig. 2, which result from Equations (24) 
and (25). Tracing the temperature variation through 
the thickness suggests that using a linear approxima-
tion of temperature for many applied purposes 
would result in an acceptable precision. However, in 
this study, the exact solution of the thermal conduc-
tion equation has been used to achieve higher levels 
of accuracy. 
 

 

Figure 2. Effects of the orbital temperature parameters of 𝐵 and 𝜔 on the temperature at the midpoint of the composite plate (𝒙 =
𝒂

𝟐
, 𝒚 =

𝒃

𝟐
) 

with a stiffener (𝑏1 = 0.01 m, ℎ1 = 0.02 m)
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Fig. 3 shows the effect of the height of the stiff-
ener, which is an important parameter, on the time 
history deflection of the midpoint of the plate. As can 
be deduced from Fig. 3, using a stiffener with a rela-
tively small height will not diminish the amplitude of 
the deflection of the plate to a considerable extent. 
Therefore, to decrease the amplitude considerably, 
the height of the stiffener (beam) must be compara-
ble with the plate’s thickness (i.e., more than 2 times 
larger). Fig. 4 shows the effect of the stiffener’s height 
on the maximum deflection of the plate. This illustra-
tion also shows that a stiffener with a relatively small 
height does not significantly affect the maximum am-
plitude of the plate and that the sensitivity of the am-
plitude to the height of the stiffener increases as the 
height of the stiffener increases. However, the case 

for the width (𝒃𝟏) of the cross-section area of the 
plate is quite different. For example, Fig. 4 shows the 
effect of the stiffener’s width on the maximum deflec-
tion of the plate. As can be seen in the figure, the de-
crease in the maximum deflection of the plate with 
respect to 𝒃𝟏 has almost a linear pattern. This is be-
cause of the moment of inertia of the cross-section 
area of the beam with respect to its neutral axis (𝑰 =
𝟏/𝟏𝟐𝒃𝟏𝒉𝟏

𝟑), which is a linear function of 𝒃𝟏 and a cu-
bic function of 𝒉𝟏. This means that for a constant 
cross-section area, the beam should have a high 𝒉𝟏 
and a low 𝒃𝟏 to reduce the maximum deflection of the 
beam. Of course we have to keep in mind that a beam 
with very low 𝒃𝟏 may cause high degrees of stress 
concentration, which must be avoided for design pur-
poses (see Fig. 5).

 
Figure 3. Effect of the height of the stiffener (ℎ1) on the time-history deflection of the midpoint of the plate for 𝑏1 = 0.02 m 

 
Figure 4. Effect of ℎ1 of the stiffener on the maximum amplitude of the deflection of the midpoint of the plate for b1=0.01 m
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In Fig. 6, the effect of 𝐵 and 𝜔 on the deflection of 
the midpoint of the composite plate (𝑥 = 𝑎/2, 𝑦 =
𝑏/2) with 𝑏1 = 0.01, ℎ1 = 0.02 is shown. Note that all 
the figures have been produced under the assump-
tion that the inner space of the satellite is at a con-
stant temperature. However, this is an optimistic as-
sumption for the electronic devices that are inside 
the satellite and a pessimistic assumption for the 
plate deflection because it results in greater deflec-
tions. In real-life situations, such an assumption can-
not be fulfilled because the inner temperature of the 
satellite will probably change with the environment 
as the satellite moves in front of the sun in its orbit. 
Thus, the actual deflections will be less than the de-
flections presented in this paper. 

5. Conclusion 

In the present paper, an analysis of the thermal 
deflections of a simply supported ribbed composite 
plate with application in LEO satellite structures is 
accomplished for the first time. By employing the 
CPT description to explain the behavior of the com-
posite laminated plate, exact results are extracted for 
the time histories and an analysis of the effects of var-
ious parameters is presented and illustrated graph-
ically. 

In addition to the novelties presented in the mod-
eling and solution stages, some of the practical con-
clusions that have been drawn may be summarized 
as follows: 

 
Figure 5. Effect of 𝑏1 of the stiffener on the maximum amplitude of deflection of the midpoint of the plate for ℎ1 = 0.02 m 

 
Figure 6. Effects of the orbital temperature parameters of 𝐵 and 𝜔 on the deflection of the midpoint of the composite plate (𝑥 =

𝑎

2
, 𝑦 =

𝑏

2
) with 

a stiffener (𝑏1 = 0.01 m, ℎ1 = 0.02 m). 
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 The presented method is analytical and, 
thus, it is computationally fast and the results are ex-
act. These properties make the method useful in re-
cursive optimization algorithms, which can be used 
to provide a basis for the design of composite satel-
lite structures with stiffeners for use in the harsh LEO 
environment. 

 The effects of the width and height of a stiff-
ener with a rectangular cross-section area on the 
time history of thermoelastic bending of the compo-
site plate have been comprehensively investigated 
and it has been deduced that a stiffener with a larger 
height is more effective than a smaller stiffener. 

 Finally, the effects of the orbital temperature 
parameters of 𝐵 and 𝜔 on the deflection of the mid-
point of the composite plate have been illustrated. 
The results showed that there is a linear relation be-
tween the maximum temperature of the environ-
ment and the maximum deflection of the plate. 
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