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This study deals with the applications of a trigonometric shear deformation theory considering 

the effect of the transverse shear deformation on the static flexural analysis of the soft core 

sandwich beams. The theory gives realistic variation of the transverse shear stress through the 

thickness, and satisfies the transverse shear stress free conditions at the top and bottom surfaces 

of the beam. The theory does not require a problem-dependent shear correction factor. The gov-

erning differential equations and the associated boundary conditions of the present theory are 

obtained using the principle of the virtual work. The closed-form solutions for the beams with 

simply supported boundary conditions are obtained using Navier solution technique. Several 

types of sandwich beams are considered for the detailed numerical study. The axial displacement, 

transverse displacement, normal and transverse shear stresses are presented in a non-

dimensional form and are compared with the previously published results. The transverse shear 

stress continuity is maintained at the layer interface, using the equilibrium equations of elasticity 

theory.  
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1. Introduction    

Sandwich beam is a special form of laminated 
composite beam which has stiff face sheets and light 
weight but thick core. The modulus of the core ma-
terial is significantly lower than that of the face 
sheets. The main benefit of using the sandwich con-
cept in the structural components is its high bending 
stiffness and high strength to weight ratio. In addi-
tion, the sandwich constructions are much preferred 
to conventional materials because of their superior 
mechanical and durability properties. Due to these 
properties the composite sandwich structures have 
been widely used in the automotive, aerospace, ma-
rine and other industrial applications. Therefore, the 
analytical study of the sandwich beams becomes 
increasingly important. 

Since the Classical Beam Theory (CBT) neglects 
the effect of the shear deformation and the First-
order Shear Deformation Theory (FSDT) of Timo-
shenko [1] requires a shear correction factor, these 
theories are not suitable for the analysis of the lam-
inated composite and the sandwich beams. These 
limitations of CBT and FSDT have led to the devel-
opment of the Higher-order Shear Deformation the-
ories (HSDTs) taking into account the effect of the 
transverse shear deformation, obviating the need of 
a shear correction factor. 

The beam theories can be developed by expand-
ing the displacements in power series of the coordi-
nate normal to the neutral axis. In principle, the the-
ories developed by this means can be made as accu-
rate as desired simply by including the sufficient 
number of terms in the series. These higher-order 
theories are cumbersome and computationally more 
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demanding, because with an additional power of the 
thickness coordinate, an additional dependent vari-
able is introduced into the theory. It has been noted 
by Lo et al. [2, 3] that due to the higher-order terms 
included in their theory, it has become inconvenient 
to use. This observation is more or less true for 
many other higher-order theories as well. Thus, 
there is a wide scope to develop a simple to use 
higher-order beam or plate theory.  

Several theories have been proposed by research-
ers in the last two decades. Among many theories, 
some of the well-known theories are the parabolic 
shear deformation theories [4-5], the trigonometric 
shear deformation theory [6], the hyperbolic shear 
deformation theory [7] and the exponential shear 
deformation theory [8]. Recently, these theories are 
accounted into a unified shear deformation theory 
developed by Sayyad [9] and Sayyad et al. [10]. In 
accordance with Reddy’s third-order shear defor-
mation theory, Sayyad [11] has developed the re-
fined theories and applied them for the static and 
vibration analysis of the isotropic beams. 

 Mechab et al. [12] studied the deformations of 
the short composite beams using the refined theo-
ries. Carrera and Giunta [13] developed refined 
beam theories based on a unified formulation. Car-
rera et al. [14, 15] carried out the static and free vi-
bration analysis of laminated beams using polyno-
mial, trigonometric, exponential and zig-zag theo-
ries. Giunta et al. [16] presented a thermo-
mechanical analysis of isotropic and composite 
beams via collocating with radial basis functions. 
Chakrabarti et al. [17] and Chalak et al. [18] carried 
out a finite element analysis for the bending, buck-
ling and free vibration of the soft core sandwich 
beams. Gherlone et al. [19] developed C0 beam ele-
ments based on the refined zig-zag theory for the 
multilayered laminated composite and sandwich 
beams.  

In the class of Trigonometric Shear Deformation 
Theories (TSDTs), the shear deformation is assumed 
to be trigonometric with respect to the thickness 
coordinate. These theories are accounted cosine 
distribution of transverse shear stress. The TSDTs 
are taking into account the kinematics of higher-
order theories more effectively without loss of the 
physics of the problem. Some of the well-known 
articles on trigonometric theories are published by 
Touratier [6], Shimpi and Ghugal [20], Ghugal and 
Shinde [21], Arya et al. [22], Sayyad and Ghugal [23], 
Mantari et al. [24], Ferreira et al. [25], Zenkour [26] 
and Sayyad et al. [27].  Recently, Dahake and Ghugal 
[28, 29] and Ghugal and Dahake [30] have applied 
the trigonometric shear deformation theory for the 
bending analysis of the single-layer isotropic beams 
with various boundary conditions using general so-
lution technique.     

In the current study, a trigonometric shear de-
formation theory is applied for the bending analysis 
of the laminated composite and the soft core sand-
wich beams. The theory involves three unknowns. 
The theory satisfies the transverse shear stress free 
conditions at the top and bottom surfaces of the 
beam and does not require shear correction factor. 
The governing equations are obtained using the 
principle of the virtual work. The closed-form solu-
tions for the beam with simply supported boundary 
conditions are obtained using Navier solution tech-
nique. The displacements and stresses of three dif-
ferent types of lamination scheme are obtained.  

The exact elasticity solution for the three-layered 
(00/900/00) laminated composite developed by Pa-
gano [31] is used as a basis for the comparison of 
the present results. However, the exact elasticity 
solutions for the three-layered (00/core/00) and 
five-layered (00/900/core/900/00) sandwich beams 
are not available in the literature. Authors have gen-
erated the numerical results using FSDT of Timo-
shenko [1], HSDT of Reddy [5] and CBT being not 
available. It is found that the present results are in 
excellent agreement with those of HSDT, FSDT, CBT 
and exact elasticity solution.    

2. Sandwich Beam under Consideration 

Consider a beam of length ‘L’ along x direction, 
width ‘b’ along y direction and thickness ‘h’ along z 
direction. The coordinate system and geometry of 
the beam under consideration are shown in Fig. 1. 
The beam consists of the face sheets at the top and 
bottom surfaces and the middle portion is made up 
of a soft core.  

The beam is bounded in the region 0 ≤ x ≤ L,                
-b/2 ≤ y ≤ b/2, -h/2 ≤ z ≤ h/2 in Cartesian coordinate 
system. u and w are the displacements in x and z 
directions, respectively. 
 

 
Figure 1. The beam geometry and the coordinate system 
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2.1. The Assumptions made in the Theoretical For-
mulation 

In the present equivalent single-layer trigonomet-
ric shear deformation theory, the theoretical formu-
lation is based on the six following assumptions: 

1) The axial displacement u in x direction con-
sists of two parts including (a) a displacement 
component analogous to the displacement in 
the classical beam theory and (b) a displace-
ment component due to the shear defor-
mation which is assumed to be sinusoidal in 
nature with respect to the thickness coordi-
nate. 

2) The transverse displacement w in the z direc-
tion is assumed to be a function of the x coor-
dinate only. 

3) The beam is made up of ‘N’ number of layers 
which are perfectly bonded together. 

4) One dimensional Hooke’s law is used. 
5) The beam is subjected to the lateral load only. 
6) The body forces are ignored. 

2.2. The Kinematics of the Present Theory 

Based on the above mentioned assumptions, the 
displacement field of the present trigonometric 
shear deformation theory is written as: 

        

   

0 0,

0

, / sinxu x z u x z w h z x

w x w x

    

    
        

(1)
 

where u and w are the displacements in x and z di-
rections, respectively and /z z h is the thickness 

coordinate. 0u , 0w  and   
are the unknown func-

tions to be determined. The normal and shear 
strains obtained within the framework of the linear 
theory of elasticity are as follows:
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where 

     / sinf z h z   and    cosg z z            (3) 

‘, x’ represents the derivative with respect to x.       

2.3. The constitutive relations 

The normal and transverse shear stresses are ob-
tained using one-dimensional constitutive relations. 
These relations for the kth layer of the beam are giv-
en by the following equations:    

  

 

11 11 0, 0, ,

55 55

/ sink k k

x x x xx x

k k k

zx zx

Q Q u zw h z
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  

     

   (4) 

where 
11

kQ and 
55

kQ  are the stiffness coefficients of 

the kth layer of the beam and are defined as follows: 

11 11  k kQ E and 
55 13

k kQ G              

where
11

kE is the Young’s modulus and
13

kG is the shear 

modulus of k-th layer of the beam.   

3. Governing Equations and Boundary 
Conditions 

In order to derive the governing equations, the 
principle of the virtual work is used. 

   
/2

0 /2 0
0

L h L

x x zx zx
h

b dz dx q x wdx    


     (5) 

Using the expressions for strains from Eq. (2) and 
stresses from Eq. (4), the Eq. (5) can be written as: 
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(6) 
Integrating Eq. (6) with respect to the z-direction, 

Eq. (6) can be simplified as: 


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where Aij, Bij, etc. are the beam stiffnesses as defined 
below: 
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         (9)  

Integrating Eq. (8) by the parts and setting the co-

efficients of 0u , 0w and equal to zero, we obtain 

the coupled Euler-Lagrange equations which are the 
governing differential equations and associated 
boundary conditions of the beam. The governing 
equations of the beam are as follow: 

11 0, 11 0, 11 , 0xx xxx xxA u B w C                       (10) 

11 0, 11 0, 11 , ( )xxx xxxx xxxB u D w E q x                  (11)  

11 0, 11 0, 11 , 55 0xx xxx xxC u E w F G     
          

(12) 

The associated consistent natural boundary con-
ditions at the ends x = 0 and x = L are as follows:  

0xN 
   

or     0u is prescribed                                   (13)                      
 

0
c

xdM

dx


  
or

  0w    is prescribed                                 (14)  

0c

xM 
 
or

 0,xw
   

is   prescribed                                  (15) 

0s

xM 
 
or

 
      is  prescribed                                     (16) 

where the resultants ,xN ,c

xM s

xM  are defined us-

ing the following equations: 



 

48 A.S. Sayyad, Y.M. Ghugal / Mechanics of Advanced Composite Structures 2 (2015) 45-53 

 

/2

11 0, 11 0, 11 ,
/2

h

x x x xx x
h

N dz A u B w C 



             (17) 

/2

11 0, 11 0, 11 ,
/2

h
c

x x x xx x
h

M z dz B u D w E 



        (18) 

 
/2

11 0, 11 0, 11 ,
/2

h
s

x x x xx x
h

M f z dz C u E w F 



    (19)

 

Thus, the variationally consistent governing dif-
ferential equations and boundary conditions are 
obtained. 

4. A static Flexure of Sandwich Beam 

The Navier solution satisfies the governing differ-
ential equation and boundary conditions when the 
beam is simply supported at the ends. Therefore, a 
static flexural analysis of the simply supported lam-
inated composite and the soft core sandwich beams 
subjected to transverse distributed load has been 
carried out using Navier solution technique. Accord-
ing to this technique, the following solution form for 
unknown functions 

0 0, andu w   is assumed. 

 

 

 

0

1,3,5

0

1,3,5

1,3,5

cos ,

sin ,

cos

m

m

m

m

m

m

u x u x

w x w x

x x





  

























                                             (20)  

where /m L   and , andm m mu w   are the un-

known Fourier coefficients to be determined for 
each m value. A beam of length L and thickness h is 
considered. The transverse load acting on the top 
surface of the beam is expanded in the following 
form:  

  0

1

sin : Sinusoidal Load
m

q x q x



                    

(21) 

  0
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4
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m

q
q x x

m








                         (22)                                                                                                   

where oq  is the maximum intensity of the load. Sub-

stituting the solution form from Eq. (20) and trans-
verse load from Eqs. (21) and (22) into the three 
governing Eqs. (10)-(12), leads to the following set 
of simultaneous equatios. 
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Eq. (23) can be solved to obtain the Fourier coef-
ficients mu , mw and

m . Further, the final expressions 

for displacements and stresses are obtained using 
Eqs. (1)-(4).   

5. Illustrative Examples and Numerical 
Results 

To prove the efficacy of the present theory, it is 
applied to the flexural analysis of the following ex-
amples on the laminated composite and soft core 
sandwich beams. 
Example 1:  

A static flexure of the three-layered (00/900/00) 
laminated composite beams, as shown in Fig. 2 (a). 
Example 2: 

A static flexure of the three-layered (00/core/00) 
soft core sandwich beams, as shown in Fig. 2 (b). 
Example 3: 

A static flexure of the five-layered 
(00/900/core/900/00) soft core sandwich beams, as 
shown in Fig. 2 (c). 
The following material properties are used in the 
above examples: 
Example 1: 
00 layer: Q11= 25×106 psi, Q55= 0.5×106 psi 
900 layer: Q11= 1.0×106 psi, Q55= 0.2×106 psi 
Examples 2 and 3: 
Face sheets (00): Q11= 25×106 psi, Q55= 0.5×106 psi 
Face sheets (900): Q11= 1.0×106 psi, Q55= 0.2×106 psi  
Core: Q11= 0.04×106 psi, Q55= 0.06×106 psi.  

The numerical results obtained for the displace-
ments and stresses at the critical points are pre-
sented in the following non-dimensional form (Take 
E3 = 1). 

 
   
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3
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100
0, / 2 , / 2,0 ,
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u h w L

q h q a

b b
h

q q

 
 

  

  

      (24) 

Example 1:  
In this example, the bending response of the 

simply supported three-layered (0°/90°/0°) lami-
nated composite beam is investigated as shown in 
Fig. 2 (a). The numerical results for the non-
dimensional displacements and

 
stresses are pre-

sented in Tables 1 and 2. For the comparison pur-
pose, the numerical results are specially generated 
using the Higher-order Shear Deformation Theory 
(HSDT) of Reddy [5], the First-order Shear Defor-
mation Theory (FSDT) of Timoshenko [1] and the 
Classical Beam Theory (CBT). The examination of 
Tables 1 and 2 reveals that when the laminated 
composite beam is subjected to the sinusoi-
dal/uniform load, the displacements and normal 
stresses are in excellent agreement with those of 
Higher-order Shear Deformation Theory (HSDT) of 
Reddy [5]. The transverse shear stress is obtained 
using the equilibrium equation of the elasticity the-
ory with the shear stress continuity at the layer in-
terface. 
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Figure 2. The lamination scheme and the thickness coordinate 
for the simply supported beams 

 
 

Table 1: The comparison of the axial displacement ( u ), the 

transverse displacement ( w ), the normal stress (
x ), and the 

transverse shear stress (
zx ), for three-layered (0°/90°/0°) lami-

nated composite beam subjected to the sinusoidal load 

L/h Theory u  w  x  
zx  

100 Present 8037.5 0.5148 6312.6 44.22 
 HSDT [5] 8034.9 0.5146 6310.6 44.27 
 FSDT [1] 8025.7 0.5135 6303.3 44.22 
 CBT 8025.7 0.5109 6303.3 44.22 
 Exact [31] 8040.0 0.5153 6315 44.15 
10 Present 9.019 0.8836 70.853 4.320 
 HSDT [5] 8.939 0.8751 70.212 4.330 
 TSDT [27] 9.016 0.8828 70.836 4.322 
 FSDT [1] 8.025 0.8149 63.033 4.422 
 CBT 8.025 0.5109 63.033 4.420 
 Exact [31] 9.105 0.8800 71.300 4.200 
4 Present 0.892 2.7340 17.540 1.532 
 HSDT [5] 0.865 2.7000 17.006 1.557 
 TSDT [27] 0.891 2.7252 17.500 1.528 
 FSDT [1] 0.514 2.4107 10.085 1.769 
 CBT 0.514 0.5109 10.085 1.769 
 Exact [31] 0.915 2.8870 17.880 1.425 

 
The detailed procedure to obtain this stress using 

equilibrium equation is given by Sayyad et al. [27]. 
The through thickness distributions of axial dis-
placement, normal stress and transverse shear 
stress are shown in Figs. 3-5. 
 
 
 
 

Example 2: 
This example investigates the bending response 

of the three-layered (0°/core/0°) soft core sandwich 
beams as shown in Fig. 2 (b). The beam has thin top 
and bottom face sheets of thickness 0.1h each and 
thick core of thickness 0.8h. The comparison of re-
sults for the beam subjected to the sinusoidal load is 
shown in Table 3.  

 
Table 2: The comparison of the axial displacement ( u ), the 

transverse displacement ( w ), the normal stress (
x ), and the 

transverse shear stress (
zx ), for the three-layered (0°/90°/0°) 

laminated composite beam subjected to the uniform load 

L/h Theory u  w  x  
zx  

100 Present 10386.3 0.6528 7786.5 68.239 
 HSDT [5] 10382.8 0.6527 7784.2 68.243 
 FSDT [1] 10368.6 0.6518 7776.7 68.387 
 CBT 10368.6 0.6480 7776.7 68.387 
10 Present 11.844 1.108 85.68 6.042 
 HSDT [5] 11.733 1.098 85.03 6.090 
 FSDT [1] 10.368 1.023 77.76 6.838 
 CBT 10.368 0.648 77.76 6.838 
4 Present 1.195 3.413 20.30 2.629 
 HSDT [5] 1.161 3.368 19.67 2.795 
 FSDT [1] 0.663 2.991 12.44 2.735 
 CBT 0.663 0.648 12.44 2.735 

 
Table 3: The comparison of the axial displacement ( u ), the 

transverse displacement ( w ), the normal stress (
x ), and the 

transverse shear stress (
zx ), for the three-layered (0°/core/0°) 

soft core sandwich beam subjected to the sinusoidal load 
L/h Theory u  w  x  

zx  

4 Present 1.7678 10.091 34.710 1.3732 
 HSDT [5] 1.7413 10.047 34.189 1.3681 
 FSDT [1] 1.0134 5.2868 19.898 1.4106 
 CBT 1.0134 1.0081 19.898 1.4106 
10 Present 17.758 2.4887 139.47 3.5094 
 HSDT [5] 17.687 2.4805 138.91 3.5091 
 FSDT [1] 15.834 1.6927 124.36 3.5264 
 CBT 15.831 1.0081 124.36 3.5264 
20 Present 130.55 1.3794 512.67 7.0451 
 HSDT [5] 130.39 1.3771 512.05 7.0441 
 FSDT [1] 126.67 1.1792 497.46 7.0528 
 CBT 126.67 1.0081 497.46 7.0528 
50 Present 1989.3 1.0677 3124.8 17.6313 
 HSDT [5] 1988.6 1.0672 3123.7 17.6285 
 FSDT [1] 1979.3 1.0355 3109.1 17.6319 
 CBT 1979.3 1.0081 3109.1 17.6319 
100 Present 15856 1.0231 12453 35.2678 
 HSDT [5] 15853 1.0229 12451 35.2624 
 FSDT [1] 15834 1.0149 12436 35.2639 
 CBT 15834 1.0081 12436 35.2639 
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Figure 3. The through thickness variation of the axial displace-

ment for the three-layered (0°/90°/0°) laminated composite 
beam subjected to the sinusoidal load 
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Figure 4. The through thickness variation of the normal stress 
for the three-layered (0°/90°/0°) laminated composite beam 

subjected to the sinusoidal load 
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Figure 5. The through thickness variation of the transverse shear 

stress for the three-layered (0°/90°/0°) laminated composite 
beam subjected to the sinusoidal load 

 
 
 

It is observed from the results that the present 
theory is in excellent agreement with HSDT to pre-
dict the bending response of soft core sandwich 
beams. The through thickness distributions of dis-
placement and stresses are shown in Figs. 6-8. 

 
Example 3: 

In this example, the bending response of the five-
layered (0°/90°/core/90°/0°) soft core sandwich 
beams is investigated as shown in Fig. 2 (c). The 
beam has two face sheets at the top and bottom and 
transversely flexible core at the center. The thick-
ness of each face sheet is 0.05h each and thickness 
of core is 0.8h. The comparison of displacements 
and stresses for the beam subjected to the sinusoi-
dal load is shown in Table 4 for various aspect ratios 
(L/h). 
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Figure 6. The through thickness variation of the axial displace-

ment for the three-layered (0°/core/0°) soft core sandwich beam 
subjected to the sinusoidal load 
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Figure 7. The through thickness variation of the normal stress 

for the three-layered (0°/core/0°) soft core sandwich beam sub-
jected to the sinusoidal load 
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Figure 8. The through thickness variation of the transverse shear 

stress for the three-layered (0°/core/0°) soft core sandwich 
beam subjected to the sinusoidal load 

 
 

Table 4: The comparison of the axial displacement ( u ), the 

transverse displacement ( w ), the normal stress (
x ), and the 

transverse shear stress (
zx ), for five-layered 

(0°/90°/core/90°/0°) soft core sandwich beam subjected to the 
sinusoidal load 

L/h Theory u  w  x  
zx  

4 Present 2.2146 10.929 43.484 1.3402 
 HSDT [5] 2.2070 10.925 43.334 1.3376 
 FSDT [1] 1.7660 7.1233 34.676 1.3469 
 CBT 1.7660 1.7567 34.676 1.3469 
10 Present 28.718 3.2141 225.55 3.3630 
 HSDT [5] 28.702 3.2315 225.42 3.3623 
 FSDT [1] 27.594 2.6154 216.73 3.3674 
 CBT 27.594 1.7567 216.73 3.3674 
20 Present 223.00 2.1212 875.74 6.7326 
 HSDT [5] 222.97 2.1257 875.62 6.7322 
 FSDT [1] 220.75 1.9714 866.92 6.7322 
 CBT 220.75 1.7567 866.92 6.7347 
50 Present 3454.9 1.8151 5427.0 16.8359 
 HSDT [5] 3454.9 1.8150 5426.9 16.8359 
 FSDT [1] 3449.3 1.7911 5418.2 16.8368 
 CBT 3449.3 1.7567 5418.2 16.8368 
100 Present 27606 1.7713 21681 33.6734 
 HSDT [5] 27606 1.7714 21681 33.6734 
 FSDT [1] 27594 1.7653 21673 33.6735 
 CBT 27594 1.7567 21673 33.6735 

 

The results show that the axial displacement and 
stresses are increased with an increase in the aspect 
ratio, while the transverse displacement is de-
creased. Since an exact solution for this example is 
not available in the literature, the results of the pre-
sent theory are compared with other theories and 
are found to agree well with each other. Table 5 
shows the displacements and stresses for the five-
layered soft core sandwich beams subjected to the 
uniform load. The through thickness distributions of 
the axial displacement, the normal stress and the 
transverse shear stress via equilibrium equation are 
shown in Figs. 9-11. 

-3.0 -1.5 0.0 1.5 3.0

u

-0.50

-0.25

0.00

0.25

0.50

z / h

Present

HSDT [5]

FSDT [1]

CBT

 
Figure 9. The through thickness variation of the axial displace-
ment for the five-layered (0°/90°/core/90°/0°) soft core sand-

wich beam subjected to the sinusoidal load 
 
 

Table 5: The comparison of the axial displacement ( u ), the 

transverse displacement ( w ), the normal stress (
x ), and the 

transverse shear stress (
zx ), for five-layered 

(0°/90°/core/90°/0°) soft core sandwich beam subjected to the 
uniform load 

L/h Theory u  w  x  
zx  

4 Present 2.9647 13.449 51.694 2.2517 
 HSDT [5] 2.9438 13.556 51.532 2.1906 
 FSDT [1] 2.2816 8.8491 42.782 2.0828 
 CBT 2.2816 2.2282 42.782 2.0828 
10 Present 37.382 4.0263 276.38 5.1818 
 HSDT [5] 37.350 4.0479 276.22 5.1653 
 FSDT [1] 35.650 3.2875 267.38 5.2070 
 CBT 35.650 2.2282 267.38 5.2070 
20 Present 288.67 2.6778 1078.58 10.378 
 HSDT [5] 288.60 2.6834 1078.44 10.375 
 FSDT [1] 285.20 2.4930 1069.55 10.414 
 CBT 285.20 2.2282 1069.55 10.414 
50 Present 4464.9 2.3001 6693.68 26.020 
 HSDT [5] 4464.8 2.3010 6693.67 26.019 
 FSDT [1] 4456.2 2.2705 6684.60 26.035 
 CBT 4456.2 2.2282 6684.60 26.035 
100 Present 35667.0 2.2464 26747.8 52.062 
 HSDT [5] 35667.0 2.2464 26747.8 52.062 
 FSDT [1] 35650.0 2.2387 26738.6 52.069 
 CBT 35650.0 2.2282 26738.8 52.070 

6. Conclusions 

In this study, a trigonometric shear deformation 
theory has been presented for the bending analysis 
of the soft core sandwich beams. The theory is a 
displacement-based theory which includes the 
transverse shear deformation effect. The number of 
unknown variables is the same as that of the first-
order shear deformation theory. The theory satisfies 
zero shear stress conditions on the top and bottom 
surfaces of the beam perfectly. Hence, the theory 
obviates the need for the shear correction factor.  
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Figure 10. The through thickness variation of the normal stress 

for the five-layered (0°/90°/core/90°/0°) soft core sandwich 
beam subjected to the sinusoidal load 

 

0.0 0.4 0.8 1.2 1.6

zx

-0.50

-0.25

0.00

0.25

0.50

z / h

Present

HSDT [5]

FSDT [1]

CBT

 
Figure 11. The through thickness variation of the transverse 

shear stress for the five-layered (0°/90°/core/90°/0°) soft core 
sandwich beam subjected to the sinusoidal load 

 

From the numerical study and discussion it is 
concluded that the present theory is in an excellent 
agreement with other theories, while predicting the 
bending response of the laminated composite and 
soft core sandwich beams with transversely flexible 
core.
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