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This study presents a new approach to control the nonlinear dynamics of an adaptive absorber us-

ing shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that 

can remember their original shape after deformation. Stress and temperature-induced phase trans-

formations are two typical behaviors of shape memory alloys. Changing the stiffness associated with 

phase transformations causes these properties of SMA. A thermo-mechanical model (based on the 

transformation strain which is a measure of strain indicating the phase transformation) is used to 

constrain the general thermo-mechanical features of the SMA. Here, the one-dimensional SMA mod-

el is adopted to calculate both the pseudo-elastic response and the shape memory effects. The dy-

namic behavior of shape memory alloys is then investigated, and a Newmark method is adopted to 

analyze the nonlinear dynamic equations. Results demonstrate that the vibration of an initial system 

can be tuned using the SMA absorber in a wide range of frequencies. Therefore, SMAs as adaptive 

tuned vibration absorbers provide an excellent performance to control vibrations. 
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1. Introduction    

Shape memory alloys (SMAs) are smart materials 
possessing remarkable properties, e.g. the ability to 
remember their original shape that is restored after 
applying a thermal load. In these kinds of alloys, in 
fact, a temperature increase may cause the full re-
covery of residual strains following loading-
unloading mechanical processes. This property 
emerges as a result of a phase shift by which the 
crystal structure is reorganized. This atomic rear-
rangement can also occur when a stress field is im-
posed: thermal and mechanical fields show a recip-
rocal influence, i.e. the action of one of the two fields 
amends the characteristic values of the other. An-
other main characteristic of these materials is their 
thermo-mechanical behavior. This particular behav-
ior of SMAs is due to their natural capability to go 
through the stress-temperature-dependent and re-
versible phase transformations. Pseudo-elasticity 
and shape memory effects are the two main macro-

mechanical properties of SMAs that result in the 
reversible martensitic phase transformation. Shape 
recovery can occur in two distinct ways, (1) when 
the material is deformed at low temperature, its 
original shape can be recovered by heating it above 
a characteristic temperature, the so-called shape 
memory effect (SME), and (2) when the material is 
deformed at high temperature, its original shape can 
be recovered by simply removing the applied load, 
the so-called super-elasticity or the pseudo-
elasticity effect (SE).  

Vibration control is an essential task in different 
engineering applications. Active and passive proce-
dures are two well-known methods in order to re-
duce the vibration of systems. The tuned vibration 
absorber (TVA) is a well-fixed passive vibration-
controlling device that can be employed to achieve a 
reduction in the vibration of a primary structure 
under a particular external excitation [1, 6]. Gener-
ally, a TVA composed of a secondary system is at-
tached to the primary device to absorb the vibration 
energy from the primary device. Such a device has 
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different forms; however it normally acts like a 
spring-mass system [3]. To reduce the vibration 
amplitude of the primary device using a TVA, the 
natural frequency of TVA is equated with the fre-
quency of the external forcing. Note that the TVA is 
not useful for systems where the frequency of the 
external forces varies or may not be known a priori 
[5]. To remove this limitation, the contribution of an 
adaptive tuned vibration absorber (ATVA) is used. 
The ATVA device is similar to that of TVA; however, 
it has adaptive elements that are employed for a 
tuned condition [2]. The tuned condition is main-
tained using a variable stiffness element to adjust 
the natural frequency of the absorber during the 
entire operation time [4]. Shape memory alloys are 
favorable materials for this goal (stiffness variation) 
due to their thermo-mechanical coupling character-
istics. The SMA devices are used in many engineer-
ing applications. SMAs are used to investigate adap-
tive dissipation due to the mechanical property and 
hysteresis loop [9, 10]. Sitnikova et al. [11] and San-
tos et al. [12] demonstrated that SMAs could be used 
for vibration reduction as it was shown that the high 
dissipation capacity of SMAs changed the system 
response. Saadat et al. [13] and Lagoudas [14] used 
SMAs in a number of approaches to passively con-
trol the vibration. Elahini et al. [8] showed that the 
unique SMA characteristics (mentioned above) en-
couraged the theory of an ATVA because of the stiff-
ness variation. In other words, the SMA can lead to 
softening the elastic modulus of the material at low-
er temperature, and to its hardening at higher tem-
perature. Savi et al. [15] conducted a numerical 
study of an adaptive vibration absorber, and 
showed that the SMA could be used for ATVA devic-
es. Wang et al. [16] also investigated the nonlinear 
dynamics of SMAs in tuning structural vibration fre-
quency. 

This study presents the application of SMAs for 
ATVA devices. The key properties of SMAs, the 
pseudo-elasticity and the shape memory by phase 
transformation are taken into account. Here, a 
three-dimensional thermo-mechanical model for 
SMAs proposed by Souza [17] and modified by Au-
ricchio and Petrini [18] is used. The reason behind 
this choice is that, in this model, only one single in-
ternal variable is used. In other words the SMA 
characteristics can be easily modeled by this model. 

The study is outlined as follows; the constitutive 
model applied to explain the thermo-mechanical 
characteristics of the SMA is presented in section 2, 
Numerical examples are provided in section 3, and 
finally, in section 4, some conclusions are drawn. 

 
 
 

2. Thermo-mechanical SMA Model  

This section describes the one-dimensional ther-
mo-mechanical model deduced from a 3D constitu-
tive SMA model which is developed by Souza [17] 
and modified by Auricchio and Petrini [18]. In this 

model, the total strain,  and the absolute tempera-

ture,T are considered as the controlling variables. 

The transformation strain 
T  which is a measure of 

strain showing the phase transformation (conver-
sion from austenite or multiple-variant martensite 
to the single-variant martensite) is assumed to be an 

internal variable. A free energy function   is de-
fined as [17], 
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where, E is the module of elasticity, and   is the 

material parameter related to the slope in the 
stress-temperature relationship in the phase trans-

formation. h symbolizes the hardening of the mate-

rial during the phase transformation, T  is the abso-

lute temperature, and fM  is a temperature below 

which no martensite phase transformation occurs. 


  and   denote the positive part and the Eu-

clidean norm of the argument, respectively. The 

norm of the transformation strain, T  , is defined 

between zero and a maximum value 
L which is a 

material parameter associated with the maximum 
transformation strain achieved at the end of the 

transformation. The indicator function,  L TT  , in 

Eq. (1) is defined as,  
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The state laws can be obtained from the energy 
function, Eq. (1), that lead to [17,18],  
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where X is the thermo-dynamic force associated 
with the transformation strain, 

T  and  is defined 

by, 

(4) {

           ‖  ‖    
               ‖  ‖    
                 ‖  ‖    

 

 



 

S. Faroughi / Mechanics of Advanced Composite Structures 2 (2015) 55-60 57 

 

 

A limit function F, which is in terms of the relative 
stress X, is described to control the evolution of the 
internal variable 

T , 

(5)  ( )  | |    

In Eq. (5), R shows the radius of the elastic do-
main. Here, a one-dimensional rod element is used 
instead of spring element; and thus, the one-
dimensional model is supposed, so that

22 33 12 23 13 0          and also

22 33 12 23 13 0         . These assump-

tions are valid as the SMA devices are only subjected 
to axial loads, and the fact that the highest value of 
the transformation strain occurs in this direction. 
The phase transformation strain matrix for a 1D 
model takes the following form for the case of uni-
axial phase transition in the SMA material, 

1 0 0

0 1/ 2 0

0 0 1/ 2

T

 
 

 
 
  

 
 

(6) 

where   is the only variable used to describe 

whether the phase transition occurs in the material. 
The Euclidean norm of the phase transformation 

tensor is determined 3 / 2T   . Following the 

1D assumptions listed above, the state laws in Eq. 
(3) thus are reduced to,  
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A Mises-type yield function that depends only on 
the first component of the thermodynamic force 

tensor, 11X : 

(8)  ( )  √
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The Kuhn–Tucker applied conditions must be in-
troduced as follows in order to complete the model: 

(9-a)  ̇           ( )          ̇ ( )    

where  ̇ is the so-called plastic multiplier, and cor-
responds to the phase transition parameter by   

 ̇    ̇
  

  
 (9-b)    

The above equations, Eqs (9-a) and (9-b), are 
called the flow rule. Fig. 1 schematically shows the 
idea of employing a SMA oscillator as a vibration 
absorber. The oscillator is composed of a SMA rod, a 
linear viscous damper, c and an attached mass.  

 
 

The oscillator is excited by a harmonic external 

force  0( ) sinf t f t   where
0f  and  denote the 

amplitude and frequency of the external force, re-
spectively. According to Newton’s second law, the 
equation of motion of the system reads  

(10)   ̈    ̇      ( ) 
 

where    is the nonlinear restoring force provided 
by the SMA rod. The value of the nonlinear restoring 

force is calculated by
Rf A , where the value of 

stress,  , is determined using Eq. (7) at each time 
step, and parameter A denotes the cross-section 
area of the SMA rod. To numerically solve Eq. (10), 
the Newmark average acceleration method is used. 
Note that    is a function of displacement. The dis-
cretization of Eq. (10) at time step n+1 gives  

(11) 
  ̈      ̇          ( )      ( )

      
 

where      denotes the equivalent dynamic out-of-
balance forces. If all necessary information from the 
time step n is known, Eq. (10) can be solved using a 
predictor-corrector method.  

The equivalent SMA nonlinear force vector at time 

step n+1,  , 1R nf y
 is described by Eq. (12). 

(12) 
                (       )

             

where, ,
R

t nk
y

f



 denotes the dynamic tangent ma-

trix at nth time step and ,R nf is the equivalent SMA 

nonlinear force at nth time step.  
 

 
Figure1.  The forced oscillation of a dynamical system with two 

linear and nonlinear absorbers 
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At this point, the Newmark average acceleration 
method is applied to update the displacement, ve-
locity, and acceleration as [19], 

(13) 
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where, t  is the time step. Eq. (11) is again recal-

culated using the updated displacement, velocity 
and acceleration, as shown in Eq. (13). If the equiva-
lent dynamic out-of-balance forces are not zero, the 
Newton-Raphson corrector must be applied. After 

some algebraic work, the improvement 
1ny  can be 

obtained as 

(14)                
       

 

where, 1

, 1t nk 


 is the dynamic tangent matrix which is 

identical to that of the predictor step. The iterative 

improvements for 
1ny 
 and 

1ny 
 are defined as, 
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These procedures are repeated until the equiva-
lent dynamic out-of-balance force falls below a given 
value.  

In the following section, numerical examples sup-
porting the idea of implementing SMAs in the ATVA 
devices are explored. 

3. Numerical Examples 

To verify the nonlinear dynamical model of SMAs, 
results of the model presented in section 2 are com-
pared to that of Savi et al. [15]. To this end, a system 
with one degree of freedom is considered as depict-
ed in Fig.1. In the linear analysis, it is assumed that 
       and           where    is the dimen-
sionless natural frequency of the linear system and 
   is the dimensionless frequency of the SMA sys-
tem. The excitation frequency is considered as 
      .  
For the analysis, a Nickel-Titanium alloy with the 
physical specifications of           and 
               is considered. The reference 
temperature         is assumed in the oscillatory 
SMA system. Two conditions are analyzed using 
    and        where   shows damping ratio. 
Other thermo-mechanical characteristics of consid-

ered Ni-Ti alloy are reported in Table 1.  

The linear response of the system for ξ      and 
       are shown respectively in Figs. 2 and 3. 

Figs. 4 and 5 show the response of the SMA sys-

tem with       and       . The obtained results 
are in a good agreement with the work of Savi et al. 
[15], however, the presented model has a higher 
convergence speed. 

The results shown in Figs. 4 and 5 show that the 
response of the SMA system tends to present small-
er vibration amplitudes when compared to those 
obtained by the elastic system. Consequently, it re-
duces vibrations to a higher extent indicating an 
increase in the energy dissipation with respect to 
that of using a linear elastic spring. Figures 4 and 5 
also illustrate that the presented model has a satis-
factory precision with one half required computa-
tional cost to the model of Savi et al. [15].  

To further demonstrate the applicability of SMA 
elements and the robustness of the presented mod-
el, a system using SMA elements with two degrees of 
freedom is considered (see Fig. 6) where the effect 
of dynamic absorber is investigated. 

As shown in Fig. 6, the initial system consists of a 
linear spring    and a damper    which are under 

the external force  ( )       (  ). The Secondary 
system includes a mass    , spring    and damper  
  . The physical quantities of the constitunets of the 
system shown in Fig. 6 are considered as:    
    ,          ,         and the external 

frequency       . 
 

Table 1. The assumed parameters for the shape memory alloy 
    ( )    ( )    ( )   (   ) 

244.05 266.64 221.45 65 

𝜐   (
  

  
)    (

  

   
) 

0.33 79 5.4 

 

 
Figure 2. The linear system response for       
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Figure 3. Linear system response for        

 

 
Figure 4. The SMA system response for       

 

 
Figure 5. The SMA system response for        

 

 
Figure 6. A two-degree of freedom system excited under external 

force 
 

The following equations of motion for two DOF 
systems can be written as follows: 

(16)   
    ̈  (     ) ̇  (     )      ̇ 

          ( ) 
   ̈     ̇          ̇            

In this example, the system is analyzed for     
      under two operating temperatures 
        and         to show the effect of tem-
perature. Fig. 7 illustrates the responses of the sys-
tem to different temperatures. It is observed that 
the response of the initial system (i.e. the vibration 
amplitude) at         is smaller than that of 

computed at        . These results clearly high-
light that changing the temperature can reduce the 
viberation amplitude of the system with respect to 
different frequencies. This behavior is due to the 
super-elasticity property of the SMA. 

4. Conclusion 

This study discusses the use of SMA elements in 
the adaptive tuned vibration absorbers. Initially, a 
system with one degree of freedom oscillator is con-
sidered in which the restitution force is given by the 
SMA element. The results illustrate that the vibra-
tion response of the system has smaller amplitudes 
when the SMA element has higher energy dissipa-
tion rates. A system with two degrees of freedom is 
then investigated where SMA elements make the 
secondary system. Results from these analyses show 
that the SMA system response with dynamic ab-
sorber can be tuned within a specific frequency 
range. This shifts the initial natural frequency of the 
system away from the resonance.  

This attenuation can be changed using the operat-
ing temperature related to the thermo-mechanical 
behavior of SMA elements. It should be noted that 
the presented model in this study has some ad-
vantages with regard to other models, e.g., the rate 
of convergance is increased by two times, and this 
has easily modeled the two typical behaviors of 
shape memory alloys.  
 

 
Figure 7. The SMA system response at the temperatures of 

        and         
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