
 

 

A.Etemadi / JHMTR 1 (2016) 1-13 

 

 

1. Introduction 

Fourier’s law is usually used to describe steady 

and transient heat transfer problems to predict the 

temperature field in the objects. The methodology is 

accurate for engineering problems under regular 

conditions  [1-2]. The main assumption in this theory 

is that the heat flux has a linear relation with the 

temperature gradient and the propagation speed of 

the thermal wave is infinite [1]. Consequently, any 

thermal disturbance exerted on a body is 

instantaneously felt through the whole of the body. 

However, during the past few decades, there have 

been some researches concerned with departures 

from the classical Fourier heat conduction law. The 

motivation for these researches was to eliminate the 

paradox of an infinite thermal wave speed. However 

the current trend in nanoscale devices and 

manufacturing processes has sparked and renewed 

the interest in hyperbolic conduction law, in order to 

eliminate this paradox [3]. Moreover, in situations 

which include extremely high temperature gradients, 

extremely large heat fluxes and extremely short 

transient duration or in the case of the near absolute 

zero temperature, the heat propagation speeds are 

finite and the mode of heat conduction  is 
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A B S T R A C T 
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propagative and non-diffusive [4]. There have been 

numerous attempts to present a new heat conduction 

formulation. But it seems that the most frequently 

used model is the hyperbolic heat conduction 

introduced by Cattaneo [5] and Vernotte [6]. These 

two scholars considered a time-lag between the heat 

flux and temperature variation within the medium. 

This time-lag can be very short which occurs in 

metals [7] more than seconds which has been 

observed in biological tissues [8]. The non-Fourier 

effect becomes more and more attractive in practical 

engineering problems such as the non-homogenous-

solid-conduction process [9], the rapid heating 

process [10], the slow-conduction process [7], etc. 

Recently, some new fundamental analyses have been 

done in a  different configuration based on the non-

Fourier heat conduction [11-13]. 

Due to the hyperbolic nature of this model, the 

solution procedure is challenging and more difficult 

compared to the Fourier model [14]. It has been 

stated in the literature that due to its mathematically 

ill-posed character, even the numerical solution is 

hard to obtain [15]. Therefore, every single novel 

attempt in this area is appreciated. Recently much 

more attention has been paid to some approximate 

analytical methods, including variational iteration 

method [16], homotopy perturbation method [17] 

and variational formulation method [18] to the 

solution of parabolic and hyperbolic heat transfer 

equations. When compared to other approximate 

analytical methods, variational methods combine the 

following two advantages [19]: (a) they provide 

physical insight into the nature of the solution of the 

problem; (b) the obtained solutions are the best 

among all the possible trial-functions. Therefore, the 

variational methods have been, and continue to be, 

popular tools for linear and nonlinear analysis. 

Arpaci et al. [20] eliminated the use of the 

penetration depth by considering the variational 

formulation of the Laplace-transform of unsteady 

diffusion problem. One of the advantages of this 

method is the profiles that are convenient for solving 

the transformed problem and generally yield a 

simple transformed solution that does not require the 

use of the inversion integral. 

This study applies three approaches namely 

separation of variables as an exact solution, 

variational method and asymptotic series for taking 

the inverse Laplace as two approximate solutions. 

The employment of the Laplace transformation in 

the hyperbolic heat conduction equation leads to a 

second-order differential equation in the spatial 

variable. The transformed temperature profiles for 

the first fifth- order accuracy are obtained to 

illustrate the ability of the variational method. Also, 

using the asymptotic series in the solution of the 

problem in Laplace domain gives a high precision 

solution for small values of times. The close 

agreements between the exact values and the 

estimated results confirm the validity and the 

accuracy of the two approximate proposed methods. 

 

 

2. Problem Statement 
 

Consider the transition conduction in a sphere of 

radius R. The sphere is initially at a uniform 

temperature T0. The outer surface of the sphere is 

suddenly raised to temperature T
. Assuming 

constant thermophysical properties and no internal 

heat generation the formulation of this problem is as 

follows [3]: 
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Where   is the thermal diffusivity and 
r  is the 

relaxation time. This relaxation time means that there 

is a time difference between the temperature gradient 

within the material and the applied heat flux. The 

more this relaxation time value is, the more would be 

the time difference between these two phenomena. 

For convenience in the subsequent analysis, we 

introduce the following dimensionless quantities: 
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Where  ,  ,   and    are the non-dimensional 

radius, temperature, time and relaxation time, 

respectively. Introducing the dimensionless 

quantities, the normalized equation and boundary-

initial conditions will be expressed as follows [3]: 
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2.1. Exact solution (using separation of variables) 

 

If we want to apply the well-known separation of 

variables method, first we should split up Equation 

(4) with the boundary and the initial conditions (5) 

into a set of simpler problems. Hahn and Özisik [21] 

suggested the following: 
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Where   is taken as the solution of the following 

problem 
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And   is taken as the solution of the following 

problem 
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Solving Eq. (7) we obtain the solution of the 

steady problem as follows: 
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Applying Eqs. (8) yields 0C   and 1K  . Then, 

we have the following: 
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Using the separation of variables method and 

applying    A B    to Eq. (9) we obtain the 

following: 
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Here 2  is suitable for our problem. Finally, the 

problem can be expressed separately in the   and   

coordinates as follows: 
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And the homogeneous boundary and initial 

conditions are expressed as follows: 
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Solving the Eq. (14a) yields the following: 
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Solving the Eq. (14b) yields what follows: 
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Where 
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(18a) 
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 (18b) 

Using Eqs. (15a-c) yields to the following: 
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Therefore, we obtain the solution of the unsteady 

problem as follows: 
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Where 21 4 f     and 
f  are the roots of

cos( ) 0x  . 

Using the Eq. (10c) and the orthogonality 

condition, we find the following: 
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Therefore, the final solution of the problem is 

what follows: 
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In the special case, when 0  , i.e. parabolic 

model of the heat conduction equation, the solution 

is expressed as follows [21]: 
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Where 
m  is the root of cos( ) 0x  . 

It is possible to show that the Eq. (22) can be 

reduced to the above mentioned expression when    

is equal to zero, which is in compliance with the 

Fourier model of heat conduction. 

 

2.2. Laplace transforms solution 

 

Laplace transformation is a strong tool for solving 

ordinary differential equations. This method is 

elaborated within many mathematical textbooks  and 

is essential for engineering problems [22]. By taking 

the Laplace transformation of Eq. (4) to remove the 

 -dependent terms it can be expressed as follows:  
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Using initial conditions (5c-d), the above equation 

is reduced to the following: 
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Also, the boundary conditions (5a-b) are 

transformed to the following: 
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For solving Eq. (25) and B.Cs. (26) we apply two 

methods. Firstly, the variational method is used and 

applying various orders an improvement on the 

accuracy of the non-dimensional temperature 

profiles is achieved. Secondly, by an asymptotic 

expansion for the solution of this problem in the 

large values of s  the manner of non-dimensional 

temperature distribution can be specified in the small 

values of time. 

 

 

2.2.1. Variational formula 

 

As Arpaci [20] used the variational formulation in 

parabolic heat conduction equation, this method can 

be used in the hyperbolic heat conduction equation. 

Using this method for Eq. (25) yields the following: 

 

 
1

2

0

2
dε 0s s     



 
    

 


 
   (27) 

 

This evaluation is carried out bellow for the first 

fifth approximations in order to investigate the 

effects of degree of approximations on the non-

dimensional temperature. 

 

 

First-order approximation 

 

The simplest polynomial profile that satisfies the 

transformed B.Cs. (26a-b) is the following: 

 

  2

0

1
1 1a

s
   

 
     (28)   

 

Using this profile into Eq. (27), the following is 

obtained: 
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Since 
0a  is arbitrary, the quantity inside the 

brackets in Eq. (30) must be zero. Therefore, it yields 

the following:  
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Tacking Laplace inverse transformation, we have 

the following equations: 
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Second-order approximation 

 

A higher degree polynomial profile that satisfies 

the transformed B.Cs (26a-b) is the following: 
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Using this profile into Eq. (27), the following is 

obtained: 
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Since 
0a  and 

1a  are arbitrary, the quantities 

inside the two brackets in Eq. (36) must be zero. 

Therefore, the following equations are obtained: 
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These equations are introduced in Eq. (34) using 

Maple software to take the Laplace inverse the 

second-order approximate solution is found and 

plotted. 

 

 

Higher-order approximations 

 

In order to increase the accuracy of 

approximation, we will use the following general 

form:  
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Which can be used as the nth-order of the 

approximation. Similar calculations for the cases

3n  , 4 and 5 are done and the results are used in 

the subsequent analysis. 

 

 

2.2.2. Using asymptotic expansion 

 

The analytical solution of the transformed 

problem, Eq. (25) is readily solved to yield the 

following explicit formula: 
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        (39) 

 

Using the transformed B.Cs. (26a-b) respectively, 

the following is obtained: 
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     (40b) 

 

Subsequently, the solution of the transformed 

equation together with boundary conditions is the 

following: 
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   (41) 

 

The Eq. (41) is non-linear in s  variable and is too 

complex to take the inverse transformation. If we 

consider the special case of small values of 

dimensionless time   corresponding to large values 

of the parameter s  and use the geometrical series, 

the Eq. (41) for large values of s  will be reduced 

into the following equation: 
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     (42) 

Which converges rapidly [21]. This special case is 

valid only for small values of dimensionless time , 

corresponding to large values of the parameter s . To 

find the inverse Laplace transform of this equation, it 

is found that using asymptotic series to expand the 

argument of the Eq. (42) to few initial terms, then 

summing the initial terms of the same expression, it 

is possible to find the inverse Laplace transform. It 

should be noticed that the accuracy is  sufficient only 

for small values of times. The calculations are 

performed using three terms of the series by Maple 

software and the results are shown in the subsequent 

analysis. 
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3. Results and Discussion 

 

To evaluate the degree of accuracy of variational 

method we compare the non-dimensional 

temperature with the non-dimensional radius for 

different values of non-dimensional relaxation times 

at different values of non-dimensional time, in Figs. 

1-3. To present the results, due to the complexity of 

the formulations with different methods, two 

different softwares namely Maple and Matlab are 

used. An overview of these figures shows that the 

results of the variational method have a good 

agreement with the exact one, except for the case 

that   is small while    and   are large, 

simultaneously. In fact, higher values of    means 

the wavy nature of the heat propagation is stronger 

and therefore where the   is small, i.e. in the points 

that are near 0   which the boundary condition is 

implied on the derivation of the temperature instead 

of its value, considerable errors are occurred (see 

Fig. 3 for 1  ). It is seen that in each relaxation 

time as the order of approximation increases the 

result of the approximate solution becomes closer to 

the exact solution, especially, as the order of the 

approximation increases the location of the sharp 

discontinuity is evaluated with higher precision. 

Moreover, in each fixed    as the value of the time 

increases the result of all approximations has almost 

equal behavior, independent of the degree of the 

orders. As expected from the nature of the 

hyperbolic heat conduction, for all of the relaxation 

times and small values of time there are many points 

that have not touch the thermal wave. Also, in each 

fixed  , the smaller value of relaxation time causes 

the approximate solution for each order has a more 

accurate result. It should be noted that a large value 

of relaxation time corresponds to a small value of 

propagation speed. In addition, as the value of 

relaxation time increases, the time required to reach 

the final temperature value increases. From these 

figures one can see that as the relaxation time 

increases the thermal waves become stronger and the 

accumulation of the energy behind the thermal wave 

increases and consequently the object peak 

temperature elevates. However, it is clear from Fig 3. 

that although for large values of   the results of all 

approximations are close to each other, for small 

values of   as the order of approximation increases 

from 1 to 3 the accuracy of the results increases and 

increasing the order of approximation from 3 to 5 

causes that the accuracy of the solution reduces 

significantly. 

Fig. 4 is plotted for investigating the effect of 

non-dimensional time on each order of approximate 

solution. By paying attention to the increase of the 

time, the nature of the thermal wave propagation, i.e. 

interaction and reflection can be seen, for this kind of 

heat conduction equation. For large values of non-

dimensional time, 10   in this case, the non-

dimensional temperature for all of the approximate 

solutions tends to approximate the final value. The 

thermal wave propagation is more obvious as the 

order of the approximation increases. 

 

 

 

 

 

 
Fig. 1  The non-dimensional temperature for non-

dimensional relaxation time 0.01    and 

various values of non-dimensional time, 

0.01 and 1  . 
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Fig. 2  The non-dimensional temperature for non-

dimensional relaxation time 0.1    and 

various values of non-dimensional time, 

0.01 and 1  . 
 

A comparison of results obtained by several 

optional orders in variational method, asymptotic 

method and the exact solution for non-dimensional 

temperature is shown in Fig. 5. These calculations 

are presented for three non-dimensional radius 

0.1 ,0.5 and 0.9   and non-dimensional relaxation 

time 0.5  . Before any discussion, it must be 

noticed that the result of the asymptotic method is 

valid only for small values of time, i.e. as it can be 

seen from Fig. 5 for 0.1  , and the solution of the 

asymptotic expansion deviates from the correct result 

for the large time, in this case for 0.8  . Although, 

as   increases the solutions that are obtained from 

asymptotic expansion are valid for wider domain of 

 . It is seen that for small and large values of   

which means the closer points to the boundary 

conditions, the precision of the variational method 

decreases. Also, it is clear as the order of 

approximation in the variational method increases 

the maximum value of the thermal wave and the time 

required to reach this phenomena to a special point 

are evaluated with more accuracy. 

 

 

 

 

 
Fig. 3  The non-dimensional temperature for non-dimensional 

relaxation time 0.5   and various values of non-

dimensional time, 0.01 and 1  . 
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    Fig. 4 The non-dimensional temperature for various 

values of non-dimensional time, 1 ,3 ,5 and 10  . 

 

 

 

 

 

 

 
Fig. 5  The Comparison between the obtained results 

for variational method and Laplace inverse approximate 

solution (left-hand figures) and exact solution (right-hand 

figures) 
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4. Conclusion 
 

Applying the separation of variables to a problem 

of hyperbolic heat conduction in a sphere an exact 

solution is derived. Then, using the Laplace 

transformation the problem is expressed in Laplace 

domain. For obtaining inverse Laplace two 

approximate approaches are used which are 

variational method and asymptotic expansion. A 

comparison of the results reveals the restriction and 

benefits of the variational formulation and 

asymptotic expansion for the Laplace inverse 

transformation. It has been shown that, as expected, 

the higher the order of the variational method the 

more similar are the results compared to the exact 

solution. Moreover, the asymptotic method was very 

much similar to the exact solution for the used 

parameters in this study. 
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