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Abstract

The recognition and the calculation of all branches of solutions of the nonlinear boundary value
problems is difficult obviously. The complexity of this issue goes back to the being nonlinearity of
the problem. Regarding this matter, this paper considers steady state reactive transport model which
does not have exact closed–form solution and discovers existence of dual or triple solutions in some
cases using a new hybrid method based on pseudo–spectral collocation in the sense of least square
method. Furthermore, the method usages Picard iteration and Newton method to treat nonlinear
term in order to obtain unique and multiple solutions of the problem, respectively.
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1. Preliminaries and problem formulation

Chebyshev polynomials [20] are extremely functional as orthogonal polynomials on the interval
[−1, 1]. These polynomials which appear frequently in several fields of mathematics, physics and
engineering have very good properties in the approximation of functions. Spectral collocation meth-
ods [10, 23] based on Chebyshev polynomials (also is called pseudo-spectral method) in the context
of numerical schemes for differential equations, belong to the family of weighted residual methods
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(WRMs), which are traditionally regarded as the foundation of many numerical methods such as
finite element, spectral, finite volume, boundary element [14]. Spectral collocation methods have
been widely used to solve numerically differential equations by many authors, (see for instance
[8, 12, 16, 18]). This method is accomplished successfully by generating approximations for the
higher–order derivatives through successive differentiation of the approximate solution.

The least square method is a fundamental notion in the theory of approximation [9]. In general,
the study of approximation theory involves two general types of problems. One problem arises when
a function is given explicitly, but we wish to find a simpler type of function, such as polynomial,
that can be used to determine approximated values of the given function. The other problem in
approximation theory is concerned with fitting functions to given data and finding the best function
in a certain class to represent the data.

It is common that numerical methods usually converge to only one solution that is exactly meaning
of convergence. Once the given nonlinear boundary value problem admits multiple solutions, it is
consequential to gain all branches of solutions in engineering and physical sciences [2, 3, 5]. Based on
this important matter the present paper is going to present a procedure based on pseudo–spectral in
the sense of least square using Picard and Newton iteration method to obtain unique, dual and triple
solutions of a kind of generalization of the nonlinear reaction–diffusion model in porous catalysts so
called one dimensional steady state reactive transport model in some cases.

The governing boundary value problem of the one dimensional steady state reactive transport
model can be written in dimensional variables as

DU′′ − VU′ − r(U) = 0, 0 ≤ x ≤ L, U′(0) = 0, U(L) = Us, (1.1)

where D is the diffusivity, V is the advective velocity and r(U) denotes reaction process [7, 11,

13, 15, 24]. Now, by introducing nondimensional quantities U(x) = U(X)
Us

, x = X
L

and R(U) as
nondimensional reaction term and then substituting these nondimensional quantities into equation
(1.1), we get

U ′′ − PU ′ −R(U) = 0, 0 ≤ x ≤ 1, U ′(0) = 0, U(1) = 1, (1.2)

where P = V L
D

is so–called Péclet number. Without advective transport, we have P = 0 and in this
case the model has been used to study porous catalyst pellets as the model of diffusion and reaction
[13, 22]. Furthermore, if we consider R(U) as Michaelis–Menten reaction term then the model is
converted to

U ′′(x)− αU(x)

β + U(x)
= 0, 0 ≤ x ≤ 1, (1.3)

with the boundary condition
U ′(0) = 0, U(1) = 1, (1.4)

where α, characteristic reaction rate, and β is half saturation concentration. The problem (1.2)
without advective transport (P = 0) and with reaction term R(U) = φ2Un (φ is Thiele modulus)
has been studied by Adomian decomposition method [21] and Homotopy analysis method [1, 2].
Subsequently, S. Abbasbandy and E. Shivanian [4] have considered almost the same problem arising
in heat transfer and have successfully obtained the exact analytical solution in the implicit form and
proved the existence of dual solutions on some domain of x.

2. Solution Procedure

By the change of variable

x =
1

2
(η + 1),
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we get Uxx = 4uηη, then the problem (1.3)–(1.4) can be written as the differential equation with
boundary conditions on interval [−1, 1], i.e.

uηη −
α

4β
u = − 1

β
uuηη, β 6= 0 (2.1)

uη(−1) = 0, u(1) = 1. (2.2)

So, as x goes from zero to one in the original problem continuously, η goes from −1 to 1 as well in
the above differential equation, continuously. Now, having boundary conditions at interval [−1, 1],
we apply pseudo–spectral collocation method to handle the above problem as follows:

2.1. Pseudo–spectral collocation method

The method involves using the Chebyshev–Gauss–Lobatto point to discrete interval [−1, 1], namely

ηj = cos

(
πj

N

)
, j = 0, 1, 2, . . . , N.

The unknown function u(η) is approximated as a truncated series of Chebyshev polynomials

u(η) =
N∑
k=0

ũkTk(η),

where Tk(η) is the kth Chebyshev polynomial and ũk are the Chebyshev coefficients which are
determined by the formulations

ũk =
2

Nc̃k

N∑
i=0

1

c̃i
u(ηi) cos

(
πik

N

)
, k = 0, 1, 2, . . . , N,

where

c̃k =


2, k = 0,
1, 1 ≤ k ≤ N,
2, k = N.

As it is well–known in Chebyshev pseudo–spectral method, first and second derivatives of the function
u(η) at the collocation points are presented as

du

dη
(ηj) =

N∑
i=0

Diju(ηj), (2.3)

d2u

dη2
(ηj) =

N∑
i=0

D2
iju(ηj). (2.4)

In the above equations D is the Chebyshev differentiation matrix and N + 1 is the number of
collocation points (nodes). The entries of the differentiation matrix D are

Dij = −1

2

c̃i
c̃j

(−1)i+j

sin
(
π(j+i)
2N

)
sin
(
π(j−i)
2N

) , i 6= j

Dii = −1

2

ηi

sin2
(
πi
2N

) , i 6= 0, N,

D00 = −DNN =
2N2 + 1

6
.
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By employing derivatives formulation (2.3)–(2.4), equations (2.1)–(2.2) are transformed to the fol-
lowing expressions

u(η0) = 1,∑N
j=0D2

iju(ηj)− α
4β
u(ηi) = − 1

β
u(ηi)

∑N
j=0D2

iju(ηj), i = 1, 2, . . . , N − 1,∑N
j=0DNju(ηj) = 0.

(2.5)

Equation (2.5) is actually a system of nonlinear equations with number of N+1 equations and N+1
unknown parameters u(η0), u(η1), u(η2), . . . , u(ηN).

2.2. Multiple solutions of the model

The recognizability and the computation of all branches of solutions of nonlinear boundary value
problems is a major topic in general. This part is devoted to show that the problem (2.1)–(2.2) and
so, the original equations (1.3)–(1.4) admit unique or dual or even more, triple solutions for some
values of the characteristic reaction rate, and half saturation concentration.

2.2.1. Unique solution–Picard iteration method

Consider the system (2.5) in the following matrix form

LU(η) = − 1

β
U′(η) ◦ D′2U(η),

where ”◦” denotes the Hadamard product, U(η) = (u(η0), u(η1), u(η2), . . . , u(ηN))t and

L =



1 0 0 · · · 0 0
D2

10 D2
11 − α

4β
D2

12 · · · D2
1(N−1) D2

1N

D2
20 D2

21 D2
22 − α

4β
· · · D2

2(N−1) D2
2N

...
...

...
. . .

...
...

D2
(N−1)0 D2

(N−1),1 D2
(N−1)2 · · · D2

(N−1)(N−1) −
α
4β
D2

(N−1)N
DN0 DN1 DN2 · · · DN(N−1) DNN


.

Also, D′2 = D2 except that D′200 = −β and D′20j = 0 for all 1 ≤ j ≤ N and

U′(η)j =


1 j = 0,
U(η)j 1 ≤ j ≤ N − 1.

0 j = N.

Now, we provide a detailed description of the proposed nonlinear iterative method. The solution
process known as Picard iterative method is as follows:

step 1. Choose an initial guess, U0(η) to the nonlinear system (2.5).
step 2. Linearize the nonlinear system (2.5) in terms of U(η).
step 3. Solve the linear system by appropriate method.
The above three steps suggests the following process

Un+1(η) =
1

β
L−1

[
U′n(η) ◦ D′2Un(η)

]
. (2.6)
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2.2.2. Multiple solutions–Newton iteration method

It is worth to mention that it is so difficult generally to solve system of nonlinear equations (2.5)
even by Newton’s method [17, 19]. The main difficulty with a such system is that how we can
choose initial guess to handle Newton’s method, in other words how many solutions the system of
nonlinear equations admit. We think the appropriate way to discover proper initial guess (or initial
guesses) is to solve system analytically for very small N (by using symbolic softwares’ programs such
as Mathematica or Maple) and then we can guess proper initial guesses and particularly multiplicity
of solutions of such system, of course, if they converge to different solutions [6]. For example, let us
take N = 3 in system (2.5), then having u(η0) = 1 we stand to solve

u(η1)(−3α− 8(8u(η1)− 4u(η2) + u(η3)− 5)) + 8β(8u(η1)− 4u(η2) + u(η3)− 5) = 0,
u(η2)(8(4u(η1)− 8u(η2) + 5u(η3)− 1)− 3α) + 8β(4u(η1)− 8u(η2) + 5u(η3)− 1) = 0,
−8u(η1) + 24u(η2)− 19u(η3) + 3 = 0.

If we choose α = 0.5 and β = −0.1, then after using η = 2x−1 in Chebyshev polynomial interpolation,
we get two initial guesses as follow (plotted in Figure 1)

U0(x) = 2x

(
(2x− 2)

(
0.2056− 0.0659

(
2x− 1

2

))
+ 0.4772

)
+ 0.0454,

U0(x) = 2x

(
(2x− 2)

(
0.0718− 0.0006

(
2x− 1

2

))
+ 0.1442

)
+ 0.7115,

if α = 0.5 and β = −0.2, then we have two other initial guesses (plotted in Figure 2)

U0(x) = 2x

(
(2x− 2)

(
0.1744− 0.0436

(
2x− 1

2

))
+ 0.3925

)
+ 0.2149,

U0(x) = 2x

(
(2x− 2)

(
0.0865− 0.0024

(
2x− 1

2

))
+ 0.1755

)
+ 0.6488,

and if we get α = 6 and β = 1, then we are led to three initial guesses as follow (plotted in Figure 3)

U0(x) = 2x

(
(2x− 2)

(
0.3698

(
2x− 1

2

)
+ 1.3986

)
+ 2.4274

)
− 3.8549,

U0(x) = 2x

(
(2x− 2)

(
0.7571− 0.4758

(
2x− 1

2

))
+ 1.99

)
− 2.9801,

U0(x) = 2x

(
(2x− 2)

(
0.0409

(
2x− 1

2

)
+ 0.2071

)
+ 0.3733

)
+ 0.2533.

Now, what it remains is to solve the following linear system iteratively:

JF (Un(η))(Un+1(η)−Un(η)) = −F (Un(η)), (2.7)

where

F (Un(η)) = LU(η) +
1

β
U′(η) ◦ D′2U(η)

and JF (Un(η)) is the Jacobian matrix of F (Un(η)) which is in fact JF (Un(η)) = L + 1
β
N(η) with

N(η) =


0 0 · · · 0 0

u(η1)D2
10 u(η1)D2

11 +
∑N

j=0D2
1ju(ηj) · · · u(η1)D2

1(N−1)
u(η1)D2

1N

u(η2)D2
20 u(η2)D2

21 · · · u(η2)D2
2(N−1)

u(η2)D2
2N

..

.
..
.

. . .
...

...

u(ηN−1)D2
(N−1)0

u(ηN−1)D2
(N−1)1

· · · u(ηN−1)D2
(N−1)(N−1)

+
∑N

j=0D2
(N−1)j

u(ηj) u(ηN−1)D2
(N−1)N

0 0 · · · 0 0

.
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Figure 1: Initial guesses for system (2.5) when α = 0.5 and β = −0.1.
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Figure 2: Initial guesses for system (2.5) when α = 0.5 and β = −0.2.

2.3. Least square approximation

After obtaining the solutions of the systems (2.6) or (2.7) to the desired order of accuracy, to get
more smooth function as approximate solution we use discrete L2 norm

‖u‖2,w =

(
N∑
j=0

wj|u(ηj)|2
) 1

2

which involves set of N + 1 distinct Chebyshev–Gauss–Lobatto points η0, η1, . . . , ηN along with pos-
itive weight factors w0, w1, . . . , wN (possibly all equal to 1). Then the smooth approximate function
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Figure 3: Initial guesses for system (2.5) when α = 6 and β = 1.

will be the solution of the least square problem as ϕ(η) from an (N + 1)–dimensional linear space

ΦN+1 =

{
ϕ : ϕ(η) =

N∑
j=0

cjπj(η), cj ∈ R

}

where πj(η) = ηj, j = 0, 1, 2, . . . , N .

3. Numerical experiments

In this section, some results of the implementation of the aforementioned procedure are shown for
some values of the characteristic reaction rate, and half saturation concentration. In all computations
the stopping criteria, once the systems (2.6) and (2.7) are handled iteratively, has been considered

as
∥∥∥Un+1(η)−Un(η)

∥∥∥
∞
≤ 10−10, where

∥∥∥u(η)
∥∥∥
∞

= max0≤j≤N

∣∣∣u(ηj)
∣∣∣. Also, we have gotten wj = 1

for all 0 ≤ j ≤ N in the least square problem. Finally, after getting best approximate solution in
the sense of the least square, we use the change of variable η = 2x − 1 to shift the approximate
solution from the interval [−1, 1] to the [0, 1]. The Figures 4 and 5 show the dimensionless reactant
concentration profiles for different values of parameters α and β. As it is clear from these Figures,
the reactant concentration at zero increases with the increasing of β while it decreases with the
increasing of α. Now, we turn to see some multiple profiles which have been gathered in Figures 6
and 7 for those specified values of α and β in subsection 2.2.2. Figure 6 indicates that the original
problem (1.3)–(1.4) admits dual solutions in the case α = 0.5 and β = −0.2,−0.1. Also, Figure 7
indicates that the original problem (1.3)–(1.4) admits triple solutions in the case that characteristic
reaction rate is six and half saturation concentration is one. Furthermore, the numerical results
corresponding to the Figures 6 and 7 have been given in the Tables 1 and 2, respectively.
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Figure 4: Dimensionless reactant concentration profiles with β = 1.
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Figure 5: Dimensionless reactant concentration profiles with α = 1.

Table 1: The numerical results obtained by stopping criteria
∣∣∣Un+1(xj)− Un(xj)

∣∣∣ ≤ 10−10 in which xj = 1
2
(ηj + 1)

Shifted GL Points First branch, β = −0.2 Second branch, β = −0.2 First branch, α = −0.1 Second branch α = −0.1
x0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
x1 0.992762689539665 0.995815852869048 0.992470497398321 0.996491945595226
x2 0.971369461829524 0.983506753436129 0.970191374981000 0.986178749388718
x3 0.936757383483006 0.963784428115971 0.934074829035453 0.969676390161860
x4 0.890426279604282 0.937775517864263 0.885578078630867 0.947956563380994
x5 0.834351011799216 0.906937100699585 0.826620037615376 0.922269299953068
x6 0.770868575208694 0.872947758188667 0.759466680991504 0.894044230420183
x7 0.702548780922441 0.837582619525251 0.686607916264933 0.864779099336968
x8 0.632058283028987 0.802582121512899 0.610619876404679 0.835925290916968
x9 0.562027706979890 0.769524965969476 0.534040999555540 0.808780479665386
x10 0.494930590273862 0.739715983497967 0.459249308179152 0.784398026726932
x11 0.432980520213731 0.714099279858313 0.388374510663231 0.763521389571351
x12 0.378048960680408 0.693205883786545 0.323218439057115 0.746549612500604
x13 0.331599354417182 0.677142655249737 0.265225526311520 0.733536998191860
x14 0.294620664435374 0.665625063664073 0.215453805179060 0.724226543187005
x15 0.267521624623586 0.658050837817300 0.174605438812733 0.718113053502620
x16 0.249931005059686 0.653605569055702 0.143029835982671 0.714528576356617
x17 0.240435572139193 0.651386769913537 0.120793087881347 0.712740408965591
x18 0.236600385477486 0.650530874755133 0.107642778057771 0.712050804005151
x19 0.235676364871992 0.650328350418943 0.102651459152635 0.711887642043874
x20 0.235613688137102 0.650314669351559 0.102176507060695 0.711876620209264
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Figure 6: Dimensionless dual reactant concentration profiles when α = 0.5.
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Figure 7: Dimensionless triple reactant concentration profiles when α = 6 and β = 1.

4. Conclusions

This article, in general looking, leaves the the calculation of all branches of solutions of nonlinear
boundary value problems by numerical method with high accuracy as a research challenging op-
portunity. The complexity of finding multiple solutions of the nonlinear differential equations has
suggested us to consider steady state reactive transport model so that we have discovered existence
of unique, dual or triple solutions. It has been used a simple technique to get initial guess or guesses
to apply Newton method on the system arisen from applying pseudo–spectral collocation method, to
get approximate solutions. We have also applied discrete least square method to obtain more smooth
polynomial as more accurate solutions.
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Table 2: The numerical results obtained by stopping criteria
∣∣∣Un+1(xj)− Un(xj)

∣∣∣ ≤ 10−10 in which xj = 1
2 (ηj + 1)

Shifted GL Points First branch Second branch Third branch

x0 1.000000000000000 1.000000000000000 1.000000000000000
x1 0.988738357399405 0.983199428562339 0.949537204419829
x2 0.955896743914803 0.933603977446942 0.799349888005267
x3 0.904180186516632 0.854586016610016 0.555667476804374
x4 0.837701331786638 0.750502923405602 0.224980871366515
x5 0.761456096290749 0.627332334556379 -0.182045988889929
x6 0.680716971565579 0.490436156623909 -0.670896050548213
x7 0.600445354233793 0.345523765808495 -1.241559952395031
x8 0.524817173797971 0.195791426529886 -1.736733950971937
x9 0.456927301539902 0.044170450620247 -2.166202035099350
x10 0.398693495113621 -0.110628922066492 -2.540879769993515
x11 0.350933197250186 -0.269164601914809 -2.853548584268253
x12 0.313552721582670 -0.438943105375970 -3.104634149346748
x13 0.285779489772151 -0.623133543934853 -3.294925927675300
x14 0.266383703475706 -0.853078832172846 -3.430651253281671
x15 0.253864783204669 -1.147793462336315 -3.519458262589144
x16 0.246604836634713 -1.306116704988593 -3.571847594583344
x17 0.243005305250908 -1.375635070920413 -3.598144121329155
x18 0.241621100679336 -1.404795944292564 -3.608654020329617
x19 0.241293916871000 -1.412397193011418 -3.611299372274864
x20 0.241271819556713 -1.413871855911548 -3.611632825779648
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