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Abstract

We extend the notion of approximately multiplicative to approximately n–multiplicative maps be-
tween locally multiplicatively convex algebras and study some properties of these maps. We prove
that every approximately n–multiplicative linear functional on a functionally continuous locally mul-
tiplicatively convex algebra is continuous. We also study the relationship between approximately
multiplicative linear functionals and approximately n–multiplicative linear functionals.
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1. Introduction

A locally multiplicatively convex (LMC) algebra is a topological algebra whose topology is defined
by a separating family P = (pα) of submultiplicative seminorms. A complete metrizable LMC
algebra is a Fréchet algebra. The automatic continuity of homomorphisms between different topo-
logical algebras, including Fréchet algebras and Banach algebras, have been studied by many math-
ematicians. It is well–known that every homomorphism ϕ : A −→ B is automatically continuous,
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when A and B are Banach algebras and B is commutative and semisimple. Let A and B be two
complex algebras and n ≥ 2 be an integer. A map ϕ : A → B is called an n-multiplicative if
ϕ(a1a2 . . . an) = ϕ(a1)ϕ(a2) . . . ϕ(an) for all elements a1, a2, . . . , an ∈ A. Moreover, if ϕ is a linear
mapping, then it is called an n–homomorphism. Clearly, every 2–homomorphism is just a homomor-
phism, in the usual sense. We recall that a topological algebra A is called functionally continuous
if every homomorphism on A is continuous. For the automatic continuity of homomorphisms and
n–homomorphisms between Banach algebras and topological algebras one may refer to [2], [3], [4],
[5], [6], [7], [8], [12] and [15].

In [10], K. Jarosz introduced the notion of approximately multiplicative function between normed
algebras and showed that every approximately multiplicative linear functional on a Banach algebra
is bounded.
Let A and B be normed algebras and let ϕ : A −→ B be a linear map. Then ϕ is approximately
multiplicative linear function if

‖ϕ(xy)− ϕ(x)ϕ(y)‖ 6 ε‖x‖‖y‖ (x, y ∈ A)

for some ε > 0. Many mathematicians have extensively investigated the properties of such maps.
See, for example, [1], [9], [11], [13], [14].

In this paper, we define approximately n–multiplicative functions between LMC algebras and
investigate some properties of these functions. Let ε > 0 and n ≥ 2 be an integer. Suppose that
(A, (Pα)α∈I) and (B, (qα)α∈J) are LMC algebras and let ϕ : A −→ B be a map. We say that ϕ is
(ε, n)–multiplicative with respect to (Pα)α∈I and (qα)α∈J , if for each α ∈ J there exists β ∈ I such
that

qα(ϕ(x1 . . . xn)− ϕ(x1) . . . ϕ(xn)) 6 εpβ(x1) . . . pβ(xn) (x1, . . . , xn ∈ A)

and we say ϕ is approximately n–multiplicative if ϕ is (ε, n)–multiplicative for some ε > 0. Clearly,
every (ε, 2)–multiplicative is just an ε–multiplicative, in the usual sense. In the case where B = C,
a map ϕ on an LMC algebra (A, (Pα)α∈I) is (ε, n)–multiplicative with respect to (Pα)α∈I , if there
exists α ∈ I such that

|ϕ(x1 . . . xn)− ϕ(x1) . . . ϕ(xn)| 6 εpα(x1) . . . pα(xn) (x1, . . . , xn ∈ A).

2. The main results

First we give a theorem to show that there exists a relationship between approximately multiplicative
linear functionals and approximately n–multiplicative linear functionals.

Theorem 2.1. Let (A, (pα)α∈I) be an LMC algebra and let φ be an approximately n–multiplicative
linear functional. If φ(a) = 1 for some a ∈ A, then the linear functional ψ : x 7−→ φ(ax) is an
approximately multiplicative linear functional.

Proof . By the hypothesis, there exist ε > 0 and β ∈ I such that

|φ(x1 . . . xn)− φ(x1) . . . φ(xn)| 6 εpβ(x1) . . . pβ(xn) (x1, . . . , xn ∈ A).

For each x, y ∈ A, we have

|ψ(xy)− ψ(x)ψ(y)| =|φ(axy)− φ(ax)φ(ay)|
=|φ(axy)± φ(an−1xya)± φ(ax)φ(ya)± φ(axayan−2)− φ(ax)φ(ay)|
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≤|φ(axy)− φ(an−1xya)|+ |φ(an−1xya)− φ(ax)φ(ya)|
+ |φ(ax)φ(ya)− φ(axayan−2)|+ |φ(axayan−2)− φ(ax)φ(ay)|
≤|φ(a)n−2φ(axy)φ(a)− φ(an−1xya)|+ |φ(an−1xya)− φ(a)n−2φ(ax)φ(ya)|

+ |φ(ax)φ(a)φ(ya)φ(a)n−3 − φ(axayan−2)|
+ |φ(axayan−2)− φ(ax)φ(ay)φ(a)n−2|
≤4εpnβ(a)pβ(x)pβ(y).

Then ψ is δ–multiplicative linear functional, where δ = 4εpnβ(a). �

A topological space (X, τ) is completely regular if it is Haussdorf and, given every x ∈ X and every
nonempty closed subset K of X such that x 6∈ K, there exists a continuous function f : X → [0, 1]
such that f(x) = 0 and f(y) = 1 for all y ∈ K.

Example 2.2. Let X be a completely regular topological space. For each non–empty, compact
subset K of X, define pK(f) = supx∈K |f(x)|, f ∈ C(X). Then pK is an algebra seminorm on C(X).
The family {pK} of seminorms defines the compact open topology on C(X), where K varying over
all non–empty, compact subsets of X. C(X) with respect to this topology is an LMC algebra. Fixed
a ∈ X and 0 < λ < 1. We define linear functional ϕ : C(X) → C by ϕ(f) = λf(a). Then for all
f1, . . . , fn ∈ C(X), we have

|ϕ(f1 . . . fn)− ϕ(f1) . . . ϕ(fn)| =|λf1(a) . . . fn(a)− λnf1(a) . . . fn(a)|
=|λ− λn||f1(a) . . . fn(a)|
≤|λ− λn|p{a}(f1) . . . p{a}(fn).

Therefore ϕ is (ε, n)–homomorphism (with ε = |λ− λn|) but it is not n–homomorphism.

Theorem 2.3. Let n ≥ 2 and let (A, (pα)α∈I) and (B, (qα)α∈J) be LMC algebras such that for each
α ∈ J and x1, . . . , xn ∈ A,

qα(x1 . . . xn) = qα(x1) . . . qα(xn).

If ϕ : A −→ B is an approximately n–multiplicative, then at least one of the following results holds:

(i) ϕ is n–multiplicative,

(ii) there exist α ∈ J , β ∈ I and a constant k such that qα(ϕ(x)) 6 kpβ(x) for each x ∈ A.

Proof . Suppose that ϕ is not n–multiplicative. Therefore there exist a1, . . . , an ∈ A such that
ϕ(a1 . . . an)−ϕ(a1) . . . ϕ(an) 6= 0, and so, there exists α ∈ J such that qα(ϕ(a1 . . . an)−ϕ(a1) . . . ϕ(an)) 6=
0. On the other hand by the hypothesis, there exist ε > 0 and β ∈ I such that

qα(ϕ(x1 . . . xn)− ϕ(x1) . . . ϕ(xn)) 6 εpβ(x1) . . . pβ(xn) (x1, . . . , xn ∈ A).

Therefore for each x ∈ A, we have

qα(ϕ(x))n−1qα(ϕ(a1 . . . an)− ϕ(a1) . . . ϕ(an)) = qα(ϕ(x)n−1ϕ(a1 . . . an)− ϕ(x)n−1ϕ(a1) . . . ϕ(an)

± ϕ(xn−1a1 . . . an)± ϕ(xn−1a1)ϕ(a2) . . . ϕ(an))

6qα(ϕ(x)n−1ϕ(a1 . . . an)− ϕ(xn−1a1 . . . an))

+ qα(ϕ(xn−1a1 . . . an)− ϕ(xn−1a1)ϕ(a2) . . . ϕ(an))

+ qα
(
(ϕ(xn−1a1)− ϕ(x)n−1ϕ(a1))ϕ(a2) . . . ϕ(an)

)
≤εpn−1β (x)pβ(a1) [2pβ(a2) . . . pβ(an) + qα(ϕ(a2)) . . . qα(ϕ(an))] .
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Thus if

k =

[
εpβ(a1)[2pβ(a2) . . . pβ(an) + qα(ϕ(a2)) . . . qα(ϕ(an))]

qα(ϕ(a1 . . . an)− ϕ(a1) . . . ϕ(an))

] 1
n−1

,

then we have qα(ϕ(x)) 6 kpβ(x), as desired. �

Corollary 2.4. Let (A, (pα)α∈I) be an LMC algebra and let ϕ : A −→ C be an approximately
n–multiplicative map. Then either ϕ is n–multiplicative or there exist α ∈ I and a constant k such
that |ϕ(x)| 6 kpα(x) for each x ∈ A.

Remark 2.5. (Fragoulopoulou, [4, p. 8]) Let (A, (pα)α∈I) and (B, (qα)α∈J) be LMC algebras and
let ϕ : A −→ B be a linear map. Then ϕ is continuous if and only if for each α ∈ J there exist β ∈ I
and cα > 0 such that

qα(ϕ(x)) ≤ cαpβ(x).

Corollary 2.6. With the same hypotheses of the Corollary 2.4, if ϕ is a linear mapping, then it is
n–multiplicative or continuous linear functional.

We now have the following result.

Corollary 2.7. Let (A, (pα)α∈I) be a functionally continuous LMC algebra and let ϕ be an approx-
imately n–multiplicative linear functional on A. Then ϕ is automatically continuous.

Theorem 2.8. Let r ≥ 0 and (A, (pα)α∈I) be an LMC algebra. Suppose that the map ϕ : A −→ C
satisfies the following conditions:

(1) |ϕ(x+ y)− ϕ(x)− ϕ(y)| 6 ε(prβ(x) + prβ(y)),

(2) |ϕ(x1 . . . xn)− ϕ(x1) . . . ϕ(xn)| 6 εprβ(x1) . . . p
r
β(xn),

for each x, y, x1, . . . , xn ∈ A and some β ∈ I. Then at least one of the following results holds:

(i) ϕ is additive and n-multiplicative,

(ii) there exists a constant k such that |ϕ(x)| 6 kprβ(x) for each x ∈ A.

Proof . Suppose that ϕ is neither n–multiplicative nor additive. If ϕ is not n-multiplicative,
then by Theorem 2.3, the result follows. If ϕ is not additive, then there exist a, b ∈ A such that
ϕ(a+ b)− ϕ(a)− ϕ(b) 6= 0. Hence for each x ∈ A, we have

|ϕ(x)|n−1|ϕ(a+ b)− ϕ(a)− ϕ(b)| =|ϕ(x)n−1ϕ(a+ b)− ϕ(x)n−1ϕ(a)− ϕ(x)n−1ϕ(b)

± ϕ(xn−1(a+ b))± ϕ(xn−1a)± ϕ(xn−1b)|
6|ϕ(x)n−1ϕ(a+ b)− ϕ(xn−1(a+ b))|

+ |ϕ(xn−1a)− ϕ(xn−1(a+ b))− ϕ(xn−1b)|
+ |ϕ(x)n−1ϕ(a)− ϕ(xn−1a)|+ |ϕ(xn−1b)− ϕ(x)n−1ϕ(b)|
6εpr(n−1)β (x)prβ(a+ b) + ε

(
prβ(xn−1a) + prβ(xn−1b)

)
+ εp

r(n−1)
β (x)prβ(a) + εp

r(n−1)
β (x)prβ(b)

6εpr(n−1)β (x)
[
prβ(a+ b) + 2prβ(a) + 2prβ(b)

]
,

which completes the proof. �
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Theorem 2.9. Let (A, (pα)α∈I) be an LMC algebra and ϕ : A −→ C be an approximately n–
multiplicative linear functional. Then either ϕ is n–multiplicative or

|ϕ(x)| 6 (1 + ε)pβ(x) (x ∈ A),

for some β ∈ I.

Proof . Let ϕ be an (ε, n)–multiplicative for some ε > 0. Then there exists β ∈ I such that

|ϕ(x1 · · ·xn)− ϕ(x1) · · ·ϕ(xn)| ≤ εpβ(x1) · · · pβ(xn)

for each x1, . . . , xn ∈ A. If ϕ is not n–multiplicative, then by Theorem 2.3, there exists k > 0 such
that

|ϕ(x)| 6 kpβ(x) (x ∈ A).

Suppose that there exists a ∈ A such that |ϕ(a)| > (1 + ε)pβ(a). Since |ϕ(a)| 6 kpβ(a) and
|ϕ(a)| > (1 + ε)pβ(a), then we have pβ(a) 6= 0. Hence, we can write |ϕ(a)| = (1 + ε + p)pβ(a) for
some p > 0. Now by induction on m ∈ N, we prove that

|ϕ(an
m

)| ≥ (1 + ε+mp)pn
m

β (a). (2.1)

If m = 1, then

|ϕ(an)| ≥|ϕ(a)|n − |ϕ(a)n − ϕ(an)|
≥(1 + ε+ p)npnβ(a)− εpnβ(a)

≥(1 + ε+ p)pnβ(a),

so (2.1) is true for m = 1. Now assume that (2.1) is true for m. Then

|ϕ(an
m+1

)| ≥|ϕ(an
m

)|n − |ϕ(an
m

)n − ϕ(an
m+1

)|
≥(ε+ 1 +mp)npn

m+1

β (a)− εpnβ(an
m

)

≥(ε+ 1 + (m+ 1)p)pn
m+1

β (a),

this gives (2.1). For each x1, . . . , xn ∈ A, we have

|ϕ(xn+1)||ϕ(x1 . . . xn)− ϕ(x1) . . . ϕ(xn)| ≤ kεpβ(xn+1)pβ(x1) . . . pβ(xn). (2.2)

By taking xn+1 = an
m

in (2.2), it follows from (2.1) that

|ϕ(x1 . . . xn)− ϕ(x1) . . . ϕ(xn)| ≤kεpβ(an
m

)pβ(x1) . . . pβ(xn)

|ϕ(anm)|

≤kεpβ(x1) . . . pβ(xn)

1 + ε+mp
.

If pβ(xi) 6= 0, (1 ≤ i ≤ n), by letting m −→ ∞, we obtain that ϕ(x1 . . . xn) = ϕ(x1) . . . ϕ(xn).
Therefore ϕ is n–multiplicative, which is a contradiction. �
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