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Abstract

In this paper, we describe some topological properties of dualistic partial metric spaces and establish
some fixed point theorems for weak contraction mappings of rational type defined on dualistic partial
metric spaces. These results are generalizations of some existing results in the literature. Moreover,
we present examples to illustrate our result.
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1. Introduction

Let M be a metric space. A map T : M → M is a contraction if for each x, y ∈ M , there exists a
constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y).

A map T : M →M is a ϕ-weak contraction if for each x, y ∈M , there exists a function ϕ : [0,∞)→
[0,∞) such that ϕ is positive on (0,∞) and ϕ(0) = 0, and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)).

The concept of the weak contraction was defined by Alber and Guerre–Delabriere [3] in 1997. Actually
in [3], the authors defined such mappings for single–valued maps on Hilbert spaces and proved the
existence of fixed points. Rhoades [12], in 2001 showed that most results of [3] are still true for any
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Banach space. Also Rhoades [12] proved the following very interesting fixed point theorem which is
one of generalizations of the Banach contraction principle because it contains contractions as special
cases (ϕ(t) = (1− k)t).

Theorem 1.1. (Rhoades, [12, Theorem 2]) Let (E, d) be a complete metric space and A be a ϕ–weak
contraction on E. If ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function with ϕ(t) > 0
for all t ∈ (0,∞) and ϕ(0) = 0, then A has a unique fixed point.

Karapinar et al. [6] in 2013, proved the following result.

Theorem 1.2. Let (X, p) be a complete metric space and T : X → X be a mapping satisfying

ϕ(p(T (x), T (y))) ≤ ϕ(M(x, y))− ψ(M(x, y)) for all x, y ∈ X,

where

M(x, y) = max

{
p(x, y),

p(y, T (y))(1 + p(x, T (x))

1 + p(x, y)

}
,

ϕ : [0,∞)→ [0,∞) is a continuous and monotone non–decreasing function with ϕ(t) = 0 if and only
if t = 0 and ψ : [0,∞) → [0,∞) is a lower semi–continuous function with ψ(t) = 0 if and only if
t = 0. Then T has a unique fixed point.

In this paper, we shall establish aforementioned theorem in the context of dualistic partial metric
spaces. We shall show, with the help of examples, that the new result allows us to find fixed points
of the self–mappings in some cases in which the results in partial metric spaces cannot be applied.

2. Dualistic Partial Metric

Throughout this paper the letters R+
0 , R and N will represent the set of nonnegative real numbers,

set of real numbers and set of natural numbers, respectively.

Definition 2.1. (Consistent Semilattice) Let (X,�) be a poset such that

(1) for all x, y ∈ X x ∧ y ∈ X,

(2) if {x, y} ⊆ X is consistent, then x ∨ y ∈ X,

then (X,�) with (1) and (2) is called consistent semilattice.

Definition 2.2. (Valuation Space) A valuation space is a consistent semilattice (X,�) and a func-
tion µ : X → R, called valuation, such that

(1) if x � y and x 6= y, µ(x) < µ(y) and

(2) if {x, y} ⊆ X is consistent, then

µ(x) + µ(y) = µ(x ∧ y) + µ(x ∨ y).

Matthews generalized the notion of metric, as follows:

Definition 2.3. (Matthews, [7]) Let X be a non-empty set. If the function p : X × X → R+
0

satisfies following properties, for all x, y, z ∈ X
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(p1) x = y ⇔ p (x, x) = p (x, y) = p (y, y) ;
(p2) p (x, x) ≤ p (x, y) ;
(p3) p (x, y) = p (y, x) ;
(p4) p (x, z) + p (y, y) ≤ p (x, y) + p (y, z) .

Then p is a partial metric.

Definition 2.4. (O’Neill, [9]) Let X be a non-empty set. The function p∗ : X ×X → R complying
with following conditions

(p∗1) x = y ⇔ p∗ (x, x) = p∗ (x, y) = p∗ (y, y) ;
(p∗2) p∗ (x, x) ≤ p∗ (x, y) ;
(p∗3) p∗ (x, y) = p∗ (y, x) ;
(p∗4) p∗ (x, z) + p∗ (y, y) ≤ p∗ (x, y) + p∗ (y, z);

is called dualistic partial metric on X and the pair (X, p∗) is known as dualistic partial metric space.

Example 2.5. Let p be a partial metric defined on a non empty set X. The function p∗ : X×X → R
defined by

p∗(x, y) = p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X.
It is easy to see that p∗ satisfies conditions (p∗1)− (p∗4) and hence defines a dualistic partial metric on
X. We note that p∗(x, y) may have negative value.

Remark 2.6. We observe that, unlike partial metric case, if p∗ is a dualistic partial metric then
p∗(x, y) = 0 does not imply x = y. The self distance p∗(x, x) referred to as the size or weight of x, is
a feature used to describe the amount of information contained in x. The smaller p∗(x, x) the more
defined x is, x being totally defined if p∗(x, x) = 0. The restriction of p∗ to R+

0 , is a partial metric.

Example 2.7. Suppose that (R,�, µ) is a valuation space, then p∗(x, y) = µ(x∨y) defines a dualistic
partial metric on R.

Proof . Axioms (p∗2) and (p∗3) are immediate. For (p∗1) we proceed as

if p∗ (x, x) = p∗ (x, y) = p∗ (y, y) , then µ(x ∨ y) = µ(x) = µ(y) implies x = y.

Converse is obvious. We prove (p∗4) in detail

p∗(x, z) + p∗(y, y) = µ(x ∨ z) + µ(y)

≤ µ(x ∨ y ∨ z) + µ[(x ∨ y) ∧ (y ∨ z)]

= µ(x ∨ y ∨ z) + µ(x ∨ y) + µ(y ∨ z)− µ(x ∨ y ∨ z)

= µ(x ∨ y) + µ(y ∨ z) = p∗(x, y) + p∗(y, z).

�

For a dualistic partial metric space (X, p∗), we immediately have a natural definition (although
slightly different from the one given in [7]) for the open balls:

B∗ε (x; p∗) = {y ∈ X|p∗(x, y) < p∗(x, x) + ε} for all x ∈ X, ε > 0.

Unlike their metric counterpart, some dualistic partial metric open balls may be empty. For example
if p∗(x, x) 6= 0, then

B∗p∗(x,x)(x; p∗) = {y ∈ X|p∗(x, y) < 2p∗(x, x)}
= {y ∈ X|p(x, y)− p(x, x)− p(y, y) < −2p(x, x)}
= {y ∈ X|p(x, y) + p(x, x) < p(y, y)} = Φ.
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Proposition 2.8. The set {B∗ε (x; p∗); for all x ∈ X, ε > 0} of open balls forms the basis for dual-
istic partial metric topology denoted by T [p∗].

Proof . It is obvious that
X = ∪x∈XB∗ε (x; p∗)

and for any two open balls B∗ε (x; p∗), B∗δ (y; p∗) we note that

B∗ε (x; p∗) ∩B∗δ (y; p∗) = ∪{B∗κ(c; p∗)| c ∈ B∗ε (x; p∗) ∩B∗δ (y; p∗)}

where
κ = p∗(c, c) + min {ε− p∗(x, c), δ − p∗(y, c)} .

�

Proposition 2.9. Each dualistic partial metric topology is T0 topology.

Proof . Suppose p∗ : X × X → R is a dualistic partial metric and x 6= y. Then with out loss of
generality, we have p∗ (x, x) < p∗ (x, y) for all x, y ∈ X. Choose ε = p∗ (x, y)− p∗ (x, x), since

p∗ (x, x) < p∗ (x, x) + ε = p∗ (x, y) ,

so x ∈ B∗ε (x; p∗) and y /∈ B∗ε (x; p∗) because otherwise we obtain an absurdity (p∗ (x, y) < p∗ (x, y)).
�

Proposition 2.10. Every open ball in a dualistic partial metric space is an open set.

Proof . Let (X, p∗) be a dualistic partial metric space and B∗ε (v; p∗) be an open ball, centered at v,
of radius ε > 0. We show that for x 6= v,

x ∈ B∗δ (x; p∗) ⊆ B∗ε (v; p∗).

Suppose that x ∈ B∗ε (v; p∗) then using (p∗1) and (p∗2), we have

p∗(x, x) < p∗(x, v) < p∗(v, v) + ε. (2.1)

Take δ = ε + p∗(v, v) − p∗(x, x), (2.1) implies p∗(x, x) < p∗(x, x) + δ. Thus, x ∈ B∗δ (x; p∗). Next we
show that

B∗δ (x; p∗) ⊆ B∗ε (v; p∗).

Suppose that y ∈ B∗δ (x; p∗), then

p∗(x, y) < p∗(x, x) + δ;

p∗(x, y) < p∗(x, x) + ε+ p∗(v, v)− p∗(x, x) = ε+ p∗(v, v),

which implies that y ∈ B∗ε (v; p∗). �

If (X, p∗) is a dualistic partial metric space, then the function dp∗ : X ×X → R+
0 defined by

dp∗(x, y) = p∗(x, y)− p∗(x, x),

is a quasi metric on X such that T [p∗] = T [dp∗ ] where Bε(x; dp∗) = {y ∈ X|dp∗(x, y) < ε}. In this
case, dsp∗(x, y) = max{dp∗(x, y), dp∗(y, x)} defines a metric on X, known as induced metric.

The following definition and Lemma describe the convergence criteria established by Oltra and
Valero in [8].
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Definition 2.11. (Oltra and Valero, [8]) Let (X, p∗) be a dualistic partial metric space.

(1) A sequence {xn}n∈N in (X, p∗) is called a Cauchy sequence if
limn,m→∞ p

∗(xn, xm) exists and is finite.

(2) A dualistic partial metric space (X, p∗) is said to be complete if every Cauchy sequence {xn}n∈N
in X converges, with respect to T [p∗], to a point υ ∈ X such that

p∗(x, x) = lim
n,m→∞

p∗(xn, xm).

Lemma 2.12. (Oltra and Valero, [8])

(1) Every Cauchy sequence in (X, dsp∗) is also a Cauchy sequence in (X, p∗).

(2) A dualistic partial metric (X, p∗) is complete if and only if the metric space (X, dsp∗) is complete.

(3) A sequence {xn}n∈N in X converges to a point υ ∈ X with respect to T [(dsp∗)] if and only if

lim
n→∞

p∗(υ, xn) = p∗(υ, υ) = lim
n→∞

p∗(xn, xm).

3. Fixed Point Theorem

Let

M(x, y) = max

{
|p∗(x, y)|,

∣∣∣∣p∗(y, T (y))(1 + p∗(x, T (x))

1 + p∗(x, y)

∣∣∣∣} .
Theorem 3.1. Let (X, p∗) be a complete dualistic partial metric space and T : X → X be a self–
mapping satisfying

ϕ(|p∗(T (x), T (y))|) ≤ ϕ(M(x, y))− ψ(M(x, y)) for all x, y ∈ X. (3.1)

If ϕ : [0,∞) → [0,∞) is a continuous and monotone non–decreasing function with ϕ(t) = 0 if and
only if t = 0 and ψ : [0,∞)→ [0,∞) is a lower semi–continuous function with ψ(t) = 0 if and only
if t = 0. Then T has a unique fixed point.

Proof . Let x0 be an initial point of X and let us define Picard iterative sequence {xn} by

xn = T (xn−1) for all n ∈ N.

If there exists a positive integer i such that xi = xi+1, then xi = xi+1 = T (xi), so xi is a fixed point of
T . In this case proof is complete. On the other hand if xn 6= xn+1 for all n ∈ N, then by contractive
condition (3.1), we have for xn, xn+1 ∈ X

ϕ(|p∗(xn, xn+1)|) ≤ ϕ(M(xn−1, xn))− ψ(M(xn−1, xn)), (3.2)

where

M(xn−1, xn) = max

{
|p∗(xn−1, xn)|,

∣∣∣∣p∗(xn, xn+1)(1 + p∗(xn−1, xn)

1 + p∗(xn−1, xn)

∣∣∣∣}
= max{|p∗(xn−1, xn)|, |p∗(xn, xn+1)|}.
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If M(xn−1, xn) = |p∗(xn, xn+1)| then inequality (3.2) implies,

ϕ(|p∗(xn, xn+1)|) ≤ ϕ(|p∗(xn, xn+1)|)− ψ(|p∗(xn, xn+1)|)
< ϕ(|p∗(xn, xn+1)|),

which is a contradiction to |p∗(xn, xn+1)| > 0. Hence M(xn−1, xn) = |p∗(xn−1, xn)|. Thus,

ϕ(|p∗(xn, xn+1)|) < ϕ(|p∗(xn−1, xn)|) entails |p∗(xn, xn+1)| ≤ |p∗(xn−1, xn)|.

This shows that {|p∗(xn, xn+1)|}n∈N is a non increasing sequence of positive real numbers. There
exists a number L ≥ 0 such that limn→∞ |p∗(xn, xn+1)| = L. We claim that L = 0. On contrary
suppose that L > 0 and taking the upper limit of

ϕ(|p∗(xn, xn+1)|) ≤ ϕ(|p∗(xn−1, xn)|)− ψ(|p∗(xn−1, xn)|),

we get

ϕ(L) ≤ ϕ(L)− lim
n→∞

inf ψ(|p∗(xn−1, xn)|);

ϕ(L) ≤ ϕ(L)− ψ(L) < ϕ(L),

which is a contradiction, so L = 0. Hence

lim
n→∞

|p∗(xn, xn+1)| = 0 and then lim
n→∞

p∗(xn, xn+1) = 0. (3.3)

We use (3.1) to find the self distance p∗(xn, xn), as follows:

ϕ(|p∗(xn, xn)|) ≤ ϕ(M(xn−1, xn−1))− ψ(M(xn−1, xn−1)), (3.4)

where

M(xn−1, xn−1)) = max

{
|p∗(xn−1, xn−1)|,

∣∣∣∣p∗(xn, xn−1)(1 + p∗(xn−1, xn)

1 + p∗(xn−1, xn−1)

∣∣∣∣} .
If

M(xn−1, xn−1) =

∣∣∣∣p∗(xn, xn−1)(1 + p∗(xn−1, xn)

1 + p∗(xn−1, xn−1)

∣∣∣∣ ,
then taking the upper limit limn→∞ on (3.4) and using (3.3), we obtain

lim
n→∞

ϕ(|p∗(xn, xn)|) ≤ 0⇒ lim
n→∞

ϕ(|p∗(xn, xn)|) = 0.

The continuity of ϕ implies limn→∞ |p∗(xn, xn)| = 0. Similarly if M(xn−1, xn−1) = |p∗(xn−1, xn−1)|
then

ϕ(|p∗(xn, xn)|) ≤ ϕ(|p∗(xn−1, xn−1)|)− ψ(|p∗(xn−1, xn−1)|);

ϕ(|p∗(xn, xn)|) < ϕ(|p∗(xn−1, xn−1)|) implies |p∗(xn, xn)| ≤ |p∗(xn−1, xn−1)|.

Thus, {|p∗(xn, xn)|}n∈N is a non increasing sequence of positive real numbers and continuing as in
case of (3.3) we get,

lim
n→∞

p∗(xn, xn) = 0. (3.5)
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Since dp∗(xn, xn+1) = p∗(xn, xn+1)− p∗(xn, xn), so using (3.5) we get

lim
n→∞

dp∗(xn, xn+1) = 0. (3.6)

Now we show that {xn} is a Cauchy sequence in (X, dsp∗). For this we have to show that

lim
n,m→∞

dsp∗(xn, xm) = 0.

That is
lim

n,m→∞
dp∗(xn, xm) = 0 = lim

n,m→∞
dp∗(xm, xn).

Suppose on contrary that
lim

n,m→∞
dp∗(xn, xm) 6= 0.

Then there exists ε > 0 for which we can find two sub sequences {xnk
}, {xmk

} of {xn} such that nk
is smallest index for which

for all nk > mk dp∗(xnk
, xmk

) ≥ ε. (3.7)

It follows directly that
dp∗(xnk−1, xmk

) < ε. (3.8)

By (3.7) and (3.8) we have

ε ≤ dp∗(xnk
, xmk

) ≤ dp∗(xnk
, xnk−1) + dp∗(xnk−1, xmk

)

< dp∗(xnk
, xnk−1) + ε.

Taking limk→∞ on both sides in above inequality and from (3.6), we obtain

lim
k→∞

dp∗(xnk
, xmk

) = ε. (3.9)

The triangular inequality gives

dp∗(xnk−1, xmk−1) ≤ dp∗(xnk−1, xnk
) + dp∗(xnk

, xmk−1)

≤ dp∗(xnk−1, xnk
) + dp∗(xnk

, xmk
) + dp∗(xmk

, xmk−1).

Taking limk→∞ on both sides in above inequality and from (3.6), (3.9), we obtain

lim
k→∞

dp∗(xnk−1, xmk−1) = ε. (3.10)

By (3.1) for xnk
6= xmk

,

ϕ(|p∗(xnk
, xmk

)|) ≤ ϕ(M(xnk−1, xmk−1))− ψ(M(xnk−1, xmk−1)), (3.11)

where

M(xnk−1, xmk−1) = max

{
|p∗(xnk−1, xmk−1)|,

∣∣∣∣p∗(xmk−1, xmk
)(1 + p∗(xnk−1, xnk

))

1 + p∗(xnk−1, xnk−1)

∣∣∣∣} .
By (3.5), (3.9) and (3.10) we have

lim
k→∞
M(xnk−1, xmk−1) = ε. (3.12)
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Now applying limk→∞ in (3.11) along with properties of ϕ, ψ and (3.12) we get

ϕ(ε) ≤ ϕ(ε)− lim
k→∞

inf ψ(M(xnk−1, xmk−1)).

That is ϕ(ε) < ϕ(ε), a contradiction. Therefore limn,m→∞ dp∗(xn, xm) = 0. Similarly we can prove
that limn,m→∞ dp∗(xm, xn) = 0. Hence limn,m→∞ d

s
p∗(xn, xm) = 0 which ensures that {xn} is a Cauchy

sequence in (X, dsp∗). Since (X, dsp∗) is a complete metric space, therefore, {xn} converges to a point
(say) υ with respect to τ(dsp∗) in X. By Lemma 2.12 we have

lim
n→∞

dsp∗(xn, υ) = 0 ⇐⇒ lim
n→∞

p∗(υ, xn) = p∗(υ, υ) = lim
n,m→∞

p∗(xn, xm). (3.13)

Since,
lim

n,m→∞
dp∗(xn, xm) = 0 implies lim

n,m→∞
p∗(xn, xm) = 0,

by (3.13)
p∗(υ, υ) = 0 = lim

n→∞
p∗(υ, xn).

Now we prove that υ is fixed point of T . On contrary suppose that υ 6= T (υ), then using (3.1) and
Lemma 2.12 we have

ϕ(|p∗(xn, T (υ)|) ≤ ϕ(M(xn−1, υ))− ψ(M(xn−1, υ)).

Letting n→∞ and using properties of ϕ, ψ we get ϕ(p∗(υ, T (υ))) < ϕ(p∗(υ, T (υ))), a contradiction
as p∗(υ, T (υ)) ≥ 0. Hence υ = T (υ) which shows υ is a fixed point of T . Finally, we shall prove the
uniqueness. Suppose that ω is another fixed point of T such that υ 6= ω then from (3.1),

ϕ(|p∗(υ, ω)|) ≤ ϕ(M(υ, ω))− ψ(M(υ, ω))

implies that
ϕ(|p∗(υ, ω)|) < ϕ(|p∗(υ, ω)|),

a contradiction, hence υ = ω which completes the proof. �

To explain our result, in the following example, we show that if the given mapping has no fixed
point then contractive condition (3.1) does not hold.

Example 3.2. Let X = R and define the mapping p∗∨ : X × X → X by p∗∨(x, y) = max {x, y}. It
is easy to check that (X, p∗∨) is a complete dualistic partial metric space. Define the self–mapping
T0 : R→ R by

T0(x) =

{
0 if x 6= 0;
−1 if x = 0.

The mapping T0 has no fixed point. It is easy to check that T0 does not satisfy the contractive
condition in the statement of Theorem 3.1. Indeed,

1 = ϕ(|p∗∨(−1,−1)|) = ϕ(|p∗∨(T0(0), T0(0))|) > ϕ(M(0, 0))− ψ(M(0, 0)),

where

M(0, 0) = max

{
|p∗∨(0, 0)|,

∣∣∣∣p∗∨(0, T0(0))(1 + p∗∨(0, T0(0)))

1 + p∗∨(0, 0)

∣∣∣∣} = 0,

ϕ(t) = t and ψ(t) = t
1+t

for all t ≥ 0.
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Corollary 3.3. Let (X, p∗) be a complete dualistic partial metric space and T : X → X be a mapping
satisfying

|p∗(T (x), T (y))| ≤ hM(x, y) for all x, y ∈ X.

Then T has a unique fixed point.

Proof . Proof follows if we set ϕ(t) = t and ψ(t) = (1 − h)t in theorem 3.1, where h ∈ [0, 1[ and
t ≥ 0. �

Example 3.4. Let (R, p∗∨) be a complete dualistic partial metric space, as defined in Example 3.2
and define the self–mapping T1 : R→ R by

T1(x) =

{
0 if x = 0;
−1 if x ≥ 2.

The mapping T1 has a unique fixed point x = 0. It is easy to check that T1 satisfies the contractive
condition in the statement of Corollary 3.3. Indeed, ∀ x ≥ y ≥ 2 and 1

2
< h < 1

|p∗∨(T1(x), T1(y))| ≤ hmax

{
|p∗∨(x, y)|,

∣∣∣∣p∗∨(y, T1(y))(1 + p∗∨(x, T1(x))

1 + p∗(x, y)

}∣∣∣∣ ;
1 = |p∗∨(−1,−1)| ≤ hx,

holds. Also note that for x = 0 = y the contractive condition in the statement of Corollary 3.3
trivially holds.

Following example emphasis the use of absolute value function in contractive condition in the state-
ment of Corollary 3.3.

Example 3.5. Let X = (−1, 0] and p∗∨ : X×X → R be defined by p∗∨(x, y) = x∨y, for all x, y ∈ X.
Note that (X, p∗∨) is a complete dualistic partial metric space. Let T2 : X → X be given by

T2(x) =
x

2
for all x ∈ X.

Since |x| ≤
∣∣∣y(x+2)
4(x+1)

∣∣∣ holds for all x, y ∈ X with x ≥ y, thus

|p∗∨(x, y)| ≤
∣∣∣∣p∗∨(y, T2(y))(1 + p∗∨(x, T2(x))

1 + p∗(x, y)

∣∣∣∣ .
Consequently, for h = 4

5
, the contractive condition

|p∗∨(T2(x), T2(y))| ≤ hmax

{
|p∗∨(x, y)| ,

∣∣∣∣p∗∨(y, T2(y))(1 + p∗∨(x, T2(x))

1 + p∗(x, y)

∣∣∣∣} ,
is satisfied and x = 0 is a unique fixed point of T . However, we note that for y = −3

4
, x = −1

2
, h = 2

5

the contractive condition

p∗∨(T2(x), T2(y)) ≤ hmax

{
p∗∨(x, y),

p∗∨(y, T2(y))(1 + p∗∨(x, T2(x))

1 + p∗∨(x, y)

}
,

does not hold. Hence for ϕ(t) = t and ψ(t) = (1− h)t, Theorem 1.2 is not applicable.
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Theorem 3.6, generalizes Theorem 2 in [12], results presented in [3] and Corollary 2.2 in [10].

Theorem 3.6. Let (X, p∗) be a complete dualistic partial metric space and T : X → X be a mapping
satisfying

|p∗(T (x), T (y))| ≤ |M(x, y)| − ψ(|M(x, y)|) for all x, y ∈ X, (3.14)

where

M(x, y) = max

{
p∗(x, y), p∗(y, T (y)), p∗(x, T (x)),

p∗(x, T (y)) + p∗(y, T (x))

2

}
,

ψ : [0,∞)→ [0,∞) is a lower semi–continuous function with ψ(t) > 0 for t ∈ (0,∞) and ψ(0) = 0.
Then T has a unique fixed point.

Proof . Let x0 be an initial point of X and let us define Picard iterative sequence {xn} by

xn = T (xn−1) for all n ∈ N.

If there exists a positive integer i such that xi = xi+1, then xi = xi+1 = T (xi), so xi is a fixed point
of T . In this case proof is complete. On the other hand if xn 6= xn+1 for all n ∈ N, then from
contractive condition (3.14), we have for xn, xn+1 ∈ X

|p∗(xn, xn+1)| ≤ |M(xn−1, xn)| − ψ(|M(xn−1, xn)|)

≤

∣∣∣∣∣max

{
p∗(xn−1, xn), p∗(xn, xn+1), p

∗(xn−1, xn),
p∗(xn−1, xn+1) + p∗(xn, xn)

2

}∣∣∣∣∣
= |max {p∗(xn−1, xn), p∗(xn, xn+1)}| = |p∗(xn−1, xn)| .

This shows that {|p∗(xn, xn+1)|}n∈N is a non increasing sequence of positive real numbers. There
exists a number ∇ ≥ 0 such that limn→∞ |p∗(xn, xn+1)| = ∇. We claim that ∇ = 0. On contrary
suppose that ∇ > 0 and taking upper limit of

|p∗(xn, xn+1)| ≤ |p∗(xn−1, xn)| − ψ(|p∗(xn−1, xn)|),

we get

∇ ≤ ∇− lim
n→∞

inf ψ(|p∗(xn−1, xn)|),

∇ ≤ ∇− ψ(∇) < ∇,

which is a contradiction, so ∇ = 0 and hence

lim
n→∞

|p∗(xn, xn+1)| = 0 implies lim
n→∞

p∗(xn, xn+1) = 0.

Similarly, limn→∞ p
∗(xn, xn) = 0. Continuing as in proof of Theorem 3.1, we get the required result.

�

Following corollary appeared in [10].

Corollary 3.7. Let (X, d) be a complete metric space and T : X → X be a mapping satisfying

d(T (x), T (y)) ≤M(x, y)− ψ(M(x, y)) for all x, y ∈ X,

where

M(x, y) = max

{
d(x, y), d(y, T (y)), d(x, T (x)),

d(x, T (y)) + d(y, T (x))

2

}
,

ψ : [0,∞)→ [0,∞) is a lower semi-continuous function with ψ(t) > 0 for t ∈ (0,∞) and ψ(0) = 0.
Then T has a unique fixed point.
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Proof . As the restriction of p∗ to R+
0 , is a partial metric p and partial metric with p(x, x) = 0 is a

metric on X. Hence result follows from Theorem 3.6, if we set p∗(x, y) = p(x, y) for all x, y ∈ R+
0 = X

along with p(x, x) = 0 for all x ∈ X. �

The Corollary 3.8 generalizes [8, Theorem 2.3].

Corollary 3.8. Let (X, p∗) be a complete dualistic partial metric space and T : X → X be a mapping
satisfying

|p∗(T (x), T (y))| ≤ k|M(x, y)| for all x, y ∈ X.

Then T has a unique fixed point.

Proof . Set ψ(t) = (1− k)t in Theorem 3.6. �

The Corollary 3.9 shows that the ψ–weak contraction with a function ψ is of Boyd and Wong
type [4].

Corollary 3.9. Let (X, p∗) be a complete dualistic partial metric space and T : X → X be a mapping
satisfying

|p∗(T (x), T (y))| ≤ ϕ(|M(x, y)|) for all x, y ∈ X.

Then T has a unique fixed point.

Proof . Set ϕ(t) = t − ψ(t) in Theorem 3.6, ϕ(t) ) is an upper semi-continuous function from the
right. �

The Corollary 3.10 generalizes the main Theorem of Reich [11].

Corollary 3.10. Let (X, p∗) be a complete dualistic partial metric space and T : X → X be a
mapping satisfying

|p∗(T (x), T (y))| ≤ θ(|M(x, y)|)|M(x, y)| for all x, y ∈ X.

Then T has a unique fixed point.

Proof . Set θ(t) = 1− ψ(t)

t
in Theorem 3.6, where t > 0 and θ(0) = 0. �

4. Conclusion

In this paper, we describe some topological properties of dualistic partial metric spaces and establish
some fixed point theorems for weak contraction mappings of rational type defined on dual partial
metric spaces. We show, with the help of examples, that the new results allow us to find fixed
points of mappings in some cases in which the results in partial metric spaces cannot be applied.
Our investigations shows that various existing fixed point results can be extended to dualistic partial
metric (for example results in [1, 2, 5, 13]). Moreover, many familiar topological properties and
principles can be proved in certain dualistic partial metric spaces, although some results might need
some advanced assumptions. We are very sure that various properties, including separation axioms,
countability, connectedness and compactness can be established for dualistic partial metric topology.
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