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Abstract

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra
generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which
cause a low level of complexity and computational cost. We then use it to solve the membership
problem in subalgebras.
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1. Introduction

The concept of SAGBI bases for subalgebras, was introduced by Robbiano and Sweedler [4] and
independently by Kapur and Madlener [1]. Like gröbner basis for an ideal, SAGBI basis for a subal-
gebra is a convenient basis which can be used to solve the membership problem: Given polynomials
f and f1, . . . , fs in the ring K[x1, . . . , xn], we may ask whether f is an element of the subalgebra
K[f1, . . . , fs] or not. There exist algorithms for solving the subalgebra membership problem without
using of SAGBI bases [2], but its complexity is high because of computing of Gröbner bases. If we
have a SAGBI basis for a subalgebra we can solve this problem easily by using of subduction algo-
rithm [6], But unfortunately, unlike the Gröbner bases, SAGBI bases may be infinite with respect to
a certain term ordering.
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In this paper, by just linear algebra methods, we present a new algorithm that computes a SAGBI
basis up to an arbitrary degree with respect to a certain term ordering for a subalgebra, even if the
subalgebra does not have a finite SAGBI basis with respect to this term ordering. Then we use this
algorithm to solve the subalgebra membership problem and give a representation of a member of the
subalgebra as a polynomial in the generators of the subalgebra.

The paper is organized as follows. In Section 2, we give some preliminaries of SAGBI bases, in
Section 3, we present our algorithm and prove the correctness of this algorithm, finally in Section 4,
we use this algorithm to solve the subalgebra membership problem and provide an example to show
how the algorithm works.

2. SAGBI bases

In this section, we recall definitions and notations related to the SAGBI bases of subalgebras.
Throughout this paper, K is a field, x1, . . . , xn and y1, . . . , ys are algebraic independent variables
over K, R = K[x1, . . . , xn] denotes the polynomial ring over K and ≺ is a admissible term order-
ing on R. We denote by 〈f1, . . . , fm〉 the ideal generated by the polynomials f1, . . . , fm ∈ R. Let
f = Σαaαx

α ∈ R where aα ∈ K, then we denote by T (f) the set {xα | aα 6= 0}, while LT (f)
is the max(T (f)) respect to ≺. We denote by LC(f), the coefficient of LT (f) in f , and also
LM(f) = LC(f)LT (f). For F ⊂ R, we denote by LT (F) the set {LT (f) | f ∈ F}, by T (F ) the
union of T (f) where f ∈ F and T = T (R). The notation |F | is cardinality of F . The total degree
deg(t) of t = xα1

1 . . . xαnn ∈ T is given by Σn
i=1αi. A polynomial f is called homogeneous if all of

members of T (f) have a same degree.
Let I be an ideal, a subset G of I is called a Gröbner basis for the ideal I if 〈LT (G)〉 = 〈LT (I)〉.

By Buchberger theorem [2] for each ideal in R there exists a finite Gröbner basis and we have
an algorithm to compute it. Each Gröbner basis is also a generator for the ideal. By the usual
polynomial multiplication, the ring R can be considered as a K–algebra. The most familiar example
of the subalgebras of R is the subalgebra generated by finite numbers of polynomials f1, . . . , fs. We
denote this subalgebra by K[f1, . . . , fs], i.e.

K[f1, . . . , fs] = {p(f1, . . . , fr) | p ∈ K[y1, . . . , ys]}.

The subalgebra K[f1, . . . , fs] is called homogeneous if all of f1, . . . , fr are homogeneous.
Now we define the SAGBI basis of a K–subalgebra of R which is equivalent of the Gröbner basis

of an ideal of R.

Definition 2.1. Let A be a K–subalgebra of R. Then a set F ⊂ A is called a SAGBI basis for A,
if LT (F ) generates the K–subalgebra K[LT (A)], i.e. K[LT (F )] = K[LT (A)].

Note that the subalgebra A is a SAGBI basis for itself, thus each subalgebra always has a SAGBI
basis. A SAGBI basis for the K–subalgebra A is a generator set for it. Moreover, if A has a finite
SAGBI basis, an explicit representation of an element f of A as a polynomial in members of SAGBI
basis, can be found quickly and efficiently by using the subduction algorithm as follows.

Subduction Algorithm
Input: A SAGBI basis F for A ⊂ R, and A polynomial f ∈ R.
Output: An expression of f as a polynomial in elements of F, provided f ∈ R.

While f is not a constant in K do
1. Find f1, . . . , fr ∈ F, exponents i1, . . . , ir ∈ N and c ∈ K∗, s.th

LT (f) = c.LT (f1)i1 . . . LT (fr)ir , (2.1)
2. If no representation (2.1) exists, then output ”f dose not lie in A”.STOP

3. Otherwise p := c.yi11 . . . yirr and replace f := f − p(f1, . . . , fr).
Output the polynomial Σp(y1, . . . , yr) + f .
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For subalgebras that have finite SAGBI basis with respect a term ordering.
Fix a term ordering ≺ and a set of polynomials {f1, . . . , fs} in K[x1, . . . , xn] where for each i, 1 ≤ i ≤
s, LT (fi) = xai and set A = {a1, . . . , as} ⊂ Nn. Let A = K[f1, . . . , fs] be the subalgebra generated
by them. Consider the homomorphism from K[y1, . . . , ys] onto A defined by yi 7→ fi, the kernel of
this map is the toric ideal IA. There is a criterion for deciding whether the set F ⊂ A is a SAGBI
basis for A with respect to the term ordering ≺, see [6].

Theorem 2.2. Let {p1, . . . , pm} be generators of the toric ideal IA. Then F = {f1, . . . , fs} is a
SAGBI basis if and only if the subduction algorithm reduces pi(f1, . . . , fs) via F to a constant for all
i ∈ {1, . . . , s}.

So, we have an algorithm for computing SAGBI basis, [3]:

Input: {f1, . . . , fn}
Output: A SAGBI basis F for R = K[f1, . . . , fs]
F := {f1, . . . , fs}, oldF = ∅
while F <> oldF do

comput the generating set P for IA
redP := { subduction(P (F ) via F }\{0} ;
oldF := F ;
F := F ∪ oldF ;

end do
RETURN F .

This algorithm is similar to Buchberger’s Algorithm to compute Gröbner bases of ideals for
computing SAGBI bases provided SAGBI bases are finite. However there are some conditions for
having a finite SAGBI basis [5, 7] but in genral, the question of finding necessary and sufficient
conditions for the subalgebra A ⊂ R to have a finite SAGBI basis is an important open proeblem
[6].

Definition 2.3. Let A be a subalgebra of the ring R. Let ≺ be a term ordering on R and d be a
positive integer. A SAGBI basis up to the degree d with respect to ≺ for A is the set of all members
of a SAGBI basis with respect to ≺ for A which their degrees are equal or less than d.

By this definition, we can present below theorem similar to previous theorem:

Theorem 2.4. By above notations, let {p1, . . . , pm} be generators of the toric ideal IA. Then F =
{f1, . . . , fk} where deg(fj) = dj is a SAGBI basis up to the degree d for A if and only if for each
1 ≤ j ≤ k, we have dj ≤ d and for each 1 ≤ i ≤ m such that deg(pi(f1, . . . , fk)) ≤ d the subduction
algorithm reduces pi(f1, . . . , fk) via F to a constant.

Proof . By the definition of SAGBI basis up to the degree d and the previous theorem the proof is
straightforward. �

3. SAGBI basis up to an arbitrary degree

Let F = {f1, . . . , fs} be a finite subset of homogeneous polynomials in R, t be a positive integer and
≺ be a admissible term ordering. Our aim, in this section, is to give a new practical algorithm to
compute SAGBI basis up to the degree t with respect to ≺ for homogeneous subalgebra K[f1, . . . , fs]
by just linear algebra methods. The SAGBI basis up to the degree t help us to solve the subalgebras
membership problem and present an expression of f as a polynomial in generators {f1, . . . , fs}, even
if K[f1, . . . , fs] does not have a finite SAGBI basis with respect to ≺.
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We first review some of the standard facts on matrices and Gröbner bases. Let M be a s×m matrix,
and (εi)i=1,...,m be the canonical basis of Km. If T ′ = {t1, . . . , tm} is a set of m terms, then we denote
by VT ′ the k-submodule of R generated by T ′. We define the linear map ϕT ′ : VT ′ −→ Km by
ϕT ′(ti) = εi. Let (α1, · · · , αm) be an element of Km. Then

∑m
i=1 αiti is an element in R. Therefore,

by applying the reciprocal function of ϕT ′ , denoted it by ψT ′ , we can consider vectors in Km as
polynomials in R. If row(M, i), i.e. i–th row of M , is considered as an element of Km, then we put

Rows(M,T ′) := {ψT ′(row(M, i)) | i = 1, · · · , s}\{0}.

Let F be a finite ordered subset of R and T≺(F ) be the ordered set T (F ) with respect to an admissible
ordering ≺. Then we can construct an s×m matrix M (F,T (F )), where s and m are the |F | and |T≺(F )|,
respectively, and the j–th element of the i–th row is the coefficient of the j–th element of T≺(F ) in
the i–th element in F .

Definition 3.1. Let F be a finite subset of R and≺ be a admissible ordering. We define T≺(F) to be
the ordered set of T (F) with respect to ≺, M := M (F,T (F)) and M̃ = Gaussian Elimination[K](M).
That Gaussian Elimination makes a copy of the Matrix M and reduces it to row echelon form (upper
triangular form).

Definition 3.2. Let F = {f1, . . . , fs}, where degree(fi) = di. We define

M(F ) = {fα1
1 fα2

2 . . . fαss | (α1, . . . , αs) ∈ Ns}

to be the monomials in F. If α1.d1 + · · ·+ αs.ds = d, we say M(F) has degree d, and demonstrate it
by M(F)d.

Now we can present our main theorem:

Theorem 3.3. Let F = {f1, . . . , fs} be the set of homogeneous polynomials where deg(fi) = di ,d be
a positive integer and ≺ be an admissible term ordering. Consider the set F ′ be a SAGBI basis up to
degree d for the subalgebra K[f1, . . . , fs], D = M(F ′)d+1, the set mon be the monomials with degree
d + 1 in K[x1, . . . , xn] and the matrix M as M (D,mon≺), then the union of F ′ with the members of
Rows(M̃,mon≺) which has obtained by row reduction operations will be a SAGBI basis up to degree
d+ 1 for the subalgebra K[f1, . . . , fs].

Proof . Set A = {a1, . . . , as}, by theorem 2.4, we need to show for each member p of the gener-
ating set of the toric ideal IA which deg(p(f1, . . . , fs)) ≤ d + 1 the polynomial p(f1, . . . , fs) will be
subduced via F to a constant. Since F ′ is a SAGBI basis up to the degree d and F contains F ′, if
deg(p(f1, , fs)) ≤ d then p(f1, . . . , fs) will be subduced via F to a constant. So the proof is completed
by showing that for each p satisfied in deg(p(f1, . . . , fs)) = d + 1, the polynomial p(f1, . . . , fs) will
be subduced to a constant.
As above notations, the rows of the matrix M are indexed by the ordered set mon≺ (all monomials
in {x1, . . . , xn} with degree d + 1) and it’s columns are indexed by all monomials with degree d + 1
constructed by the members of F ′. Since the matrix M̃ is the reduced form of M as row echelon
form (upper triangular form), so the rows of M̃ obtained by row addition operation, are all reduced
polynomials p(f1, . . . , fs) with degree d + 1 that ps are the algebraic relations between the leading
terms of the members of F ′. In fact ps are members of the generating set of the toric ideal IA which
deq(p(f1, . . . , fs)) = d+ 1 and the proof will be completed. �

This theorem can be used to construct an algorithm for computing SAGBI bases of homogeneous
subalgebras.
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SAGBI Algorithm
Input: A = K[f1, . . . , fs], a homogeneous subalgebra in R ,t, a positive integer and ≺, a term order
Output: F ′, a SAGBI basis up to degree t for A with respect to ≺
F := [fi | degree(fi) ≤ t]
d := 1
F ′ := F;

While d ≤ t do
D := M(F ′)d ;
mon := [xα1

1 ...xαn
n | (α1, . . . , αn) ∈ Nn, α1 + · · ·+ αn = d], the monomials

with degree d in K[x1, . . . , xn].

M := M(D,mon≺);

rows :=
{

the numbers of Rows(M̃,mon≺)that obtained by row addition operations
}

F ′ := F ′ ∪ rows;
d := d+ 1;

Return F ′

In this algorithm, in each step there may be some zero rows in the matrix M̃ that are ineffective,
for reducing the number of this rows we present below proposition and improve presented algorithm.

Proposition 3.4. Under the assumption of the presented theorem, if in d–th step of the algorithm
the new polynomial f = Σk

1cjFj, where Fj ∈ M(F ′)d, is added to the SAGBI basis F ′ and for some
1 ≤ m ≤ k, Fm belongs to F = {f1, . . . , fs}, then for each d′ ≥ d the set of non zero rows of M̃
constructed by M(F ′)d

′
is equal with the set of non zero rows of M̃ constructed by M(F ′ \ {Fm})d

′
.

Proof . Since M̃ is upper triangular form, so it is easily seen that the leading terms of Fm and
f − cmFm = Σj 6=mcjFj are equal. And if for some d′ and q ∈ R we have qFm belongs to M(F ′)d

′

then qf and qF1, . . . , qFk also belong to it (because the degrees of f and F1, . . . , Fk are equal). These
follow that the leading terms of qFm and qΣj 6=mcjFj are equal and the row indexed by qf will be
equal with the row qcmFm + qΣj 6=mcjFj constructed by row reduction operations hence we have a
zero row in the matrix M̃ . �

4. Subalgebra membership problem and example

In later section, an algorithm was presented that computes a SAGBI basis up to an chosen degree
for the given subalgebra, in this section by an example we show how this algorithm works and use
this algorithm for solving the subalgebra membership problem.

Lemma 4.1. (Robbiano and Sweedler, [5]): Let G = {g1(X), . . . , gt(X)} be a SAGBI basis up tp
degree d with respect to ≺. Then for each f ∈ A of degree ≤ d, the subduction algorithm comput a
polynomial F ∈ K[y1, . . . , yt] such that f(X) = F (g1(X), . . . , gt(X)).

By this lemma, we are sure that by computing SAGBI basis up to degree d for subalgebra A, we can
answer this guestion whether a polynomial f with degree d is in R or not.

Example 4.2. Consider the subalgebra

R = K[x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, (x1 − x2)(x1 − x3)(x2 − x3)].

R is the subalgebra of polynomials which are invariant under the cyclic permutation x1 7−→ x2, x2 7−→
x3, x3 7−→ x1. Let ≺ be the lexicographic term order with x1 � x2 � x3. R has not finite SAGBI
basis with respect to ≺, see [6].
Consider the homogenous polynomial f = x2

1x3 + x2
2x3 + x2

3x1 + x2
3x2 + x2

1x2 + x3
2x1, we know this
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belongs to subalgebra R, since it is invariant under the given permutation. We want to demonstrate
it by our algorithm.
Degree(f) = 3, so the input of SAGBI algorithm are the generators of R an the number 3, output
of algorithm will be SAGBI basis up to degree 3 for the subalgebra R.
F = {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, (x1 − x2)(x1 − x3)(x2 − x3)}.
d = 1
F ′ = {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, (x1 − x2)(x1 − x3)(x2 − x3)}
d = 1 ≤ 3 so D = M(F )1 = [f1]
mon = [x1, x2, x3]

M =
(x1 x2 x3

f1 1 1 1
)

rows = {}
F ′ = {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, (x1 − x2)(x1 − x3)(x2 − x3)}
d = 2 ≤ 3 so D = M(F )2 = [f 2

1 , f2]
mon = [x2

1, x1x2, x
2
2, x1x3, x2x3, x

2
3]

M =

(x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

f 2
1 1 2 1 2 2 1
f2 0 1 0 1 1 0

)
rows = {}
F ′ = {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, (x1 − x2)(x1 − x3)(x2 − x3)}
d = 3 ≤ 3 so D = M(F )3 = [f4, f3, f1f2, f

3
1 ]

mon = [x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x2x3, x

2
2x3, x1x

2
3, x2x

2
3, x

3
3]

M =


x3

1 x2
1x2 x1x

2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

f 3
1 1 3 3 1 3 6 3 3 3 1
f1f2 0 1 1 0 1 3 1 1 1 0
f4 − f1f2 0 0 −2 0 −2 −3 0 0 −2 0
−2f3 0 0 10 0 0 −2 0 10 0 0


rows = {f4 − f1f2}
F ′ = {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, (x1 − x2)(x1 − x3)(x2 − x3),−2x1x

2
2

− 2x2
1x3 − 3x1x2x3 − 2x2x

2
3}

d = 4 > 3 so algorithm returns F ′ as a SAGBI basis up to degree 3 for R.
The rows of latest matrix are all products of members of SAGBI basis with degree 3, so we can

subduce the polynomial f by these. By this subduction we have f = f1f2 − 3f3.

Now it remains when the polynomial f is not homogeneous, for checking this case consider the
following definition:

Definition 4.3. Given a polynomial f ∈ K[x1, . . . , xn] of degree s, let fk be the sum of all terms
of f of degree k. Then each fk is homogeneous and f =

∑
1≤k≤s fk. We call fk the kth homogeneous

component of f .
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If the polynomial f of degree s was not homogeneous, we consider f as a sum of its homogeneous
components and set d = [d1, . . . , dt] = [degree(fk), 1 ≤ k ≤ s]. Then by SAGBI algorithm, we
compute SAGBI basis up to degree s, and for each i where 1 ≤ i ≤ t in i–th step of algorithm
subduce the homogeneous component of degree di as explained example. Finally the sum of these
subductions will be subduction of polynomial f .
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