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Abstract

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard’s inequality,
a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function
with the best possible constant factor expressed in terms of the extended Riemann-zeta function is
proved. The more accurate equivalent forms, the operator expressions with the norm, the reverses
and some particular cases are also considered.
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1. Introduction

fp>11+1 =1 f(a).g(y) 2 0.f € L"(Ry),g € L(R,),

I = ([~ fp(x)dx); -0,

and ||g||, > 0, then we have the following Hardy-Hilbert’s integral inequality (cf. [1]):

< i),
| R ey < sl (1)
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where, the constant factor - ( ) is the best possible. Assuming that

A, b > 0,0 = {am}gj:l € lpv b= {bn}rOLO:I S lq? ||a||P - (Z ag@) >0, ||b||q >0,

m=1

we have the following discrete analogue of (1.1) with the same best constant 7= (cf. [1]):

S5 et < Tl 1.2

m=1 n=1
Inequalities (1.1)) and ([1.2)) are important in Mathematical Analysis and its applications (cf. [1], [2],

31, [, [)).-

Suppose that p;,v; >0 (i,j € N={1,2,---}),

Un =Y i, Vo= > v; (m,neN). (1.3)
i=1 j=1

Then we have the following inequality (cf. [I], Theorem 321, replacing pm%a,, and vi/?b, by a,, and

by) :

T = a?, S b 7
ZZU +V sin(%) (;W) <;V31> : (1.4)

For p; = v; = 1 (i,j € N), inequality (1.4) reduces to . We call Hardy-Hilbert-type
inequality.

Note. The authors of [I] did not prove that is valid with the best possible constant factor.

In 1998, by introducing an independent parameter A € (0, 1], Yang [0] obtained an extension of
with the kernel @ for p = ¢ = 2. Refining the method applied in [6], Yang [5] provided
extensions of and as follows:

Assuming that A\, Ay € R, A1 + Xy = A, ky(x, y) is a non-negative homogeneous function of degree
—A, with

k(M) = /Oo Ex(t, 1)t 1dt € Ry,
0
p(x) = 2P y(z) = 2907 f (), g(y) > 0,
f € Lyy(Ry) = {f; o= ol f@Pas)? < oo} ,

where g € Ly (R, [[fllps 19l > 0, we have

| [ Beas@stdsdy < kS bollollos, (15)
o Jo
where, the constant factor k(\;) is the best possible. Moreover, if ky(x,y) keeps finite and

ke (@, y) 2 (ka (@, y)y )

is decreasing with respect to z > 0 (y > 0), then for a,, b, > 0,

S
a € lpy = a;llallpg = (Zcb(n)lanlp) <o,
n=1

=
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b= {ba}iir € lgw, [lallpg: [|bllgp > 0, we have

oo o0

YD kalmyn)amby < kA)|lallpollbllg.. (1.6)

m=1 n=1

where, the constant factor k(\;) is still the best possible.
For 0 < A, Aa < 1, A1 4+ Ay = A, we set

1
k ) i aE——— s € R2 .
A(T,Y) @ty ((x,y) 2)
Then by ({1.6), we have
0o 00 (J,mbn
223 o < BOLAllallallblle, (1.7)
m=1n=1

where, the constant B(A;, A2) is the best possible, and

o 1
Buv)= | ——t"dt (u,v>0
(u,v) /0 T (u,v )

is the beta function. Clearly, for A =1, \; = %, Ao = %, inequality 1) reduces to 1'
In 2015, by adding some conditions, Yang [7] extended (1.7) and (1.4]) as follows:

oo 00 ambn

m=1n=1
1 1
00 U’,];L(l—)\l)—lafn P o] V”Fi](l—kg)—lb% q
< B(A,A) ZT Z—Vq—l : (1.8)
m=1 m n=1 n

where, the constant B(\1, Ag) is still the best possible.
Some other results including multidimensional Hilbert-type inequalities are provided in [8]-[30].
Related to the topic of half-discrete Hilbert-type inequalities with the non-homogeneous kernels,
Hardy et al. provided a few results in Theorem 351 of [I]. But they did not prove that the constant
factors are the best possible. However, Yang [31] established a result with the kernel m by
introducing a variable and proved that the constant factor is the best possible. In 2011 Yang [32]

proved the following half-discrete Hardy-Hilbert’s inequality with the best possible constant factor
B (/\17 AQ)I

/0 P30 | < B O sl (1.9)

where, Ay > 0, 0 < Ay < 1, Ay + Ay = A\. Zhong et al. ([33]-[39]) investigated several half-discrete
Hilbert-type inequalities with particular kernels. Applying the method of weight functions, a half-
discrete Hilbert-type inequality with a general homogeneous kernel of degree —A € R and a best
constant factor k (A1) is obtained as follows:

/0 (@)Y ke, m)andz < k)| fllpollallg (1.10)
n=1
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which is an extension of (cf. [40]). At the same time, a half-discrete Hilbert-type inequality
with a general non-homogeneous kernel and a best constant factor is given by Yang [41]. In 2012-
2014, Yang et al. published three books [42], [43] and [44] extensively presenting the framework of
half-discrete Hilbert-type inequalities.

In this paper, by the method of weight coefficients, techniques of real analysis and Hermite-
Hadamard’s inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the
hyperbolic cosecant function with a best possible constant factor expressed by the extended Riemann-
zeta function is proved, which is an extension of for A = 0 in the following particular kernel:

_asch(p(3)")

ko(x,n) = (D) (p > max{0,—a},0 <~y <1).

Furthermore, the more accurate equivalent forms, the operator expressions with the norm, the re-
verses and some particular cases are also considered.

2. Some Lemmas

In the sequel, we shall assume that v, > 0 (n € N), {v,}72, is decreasing, V, = 37, v;, pu(t) is a
positive continuous function in Ry = (0, 00),

U0):=0; U(x):= /Ox p(t)dt < oo(z € (0,00)),

v(t) :=vp, t € (n—1,n] (n € N),
and

V()= 0; V(y) = / "U@)de(y € (0, 00)),

p#0,1, +o=10e{-1,1},< %, f(z),a, >0 (z € Ry,n €N),

1 {lpips = ( / " 05(a) (@) )’

= 1
lallgw = O Ua(n)bl)a,
n=1

where,
Up(lféo)fl(l.)
Ds(z) : = M”_—l(l’)(x €R,),
(Vn — 5)(1(170)71
Us(n) = (e N).
Vn+1

|, f'(z) is strictly increasing in (a — %, a)

Lemma 2.1. Ifa € R, f(z) is continuous in [a — 3,a + 55

and (a,a + %) respectively, as well as

lm /()= f(a—0) < [(a+0)= lim f()

r—a+

1
2

then f(x) is strictly convex in [a— %

(cf. [3S]): 3

a—+ %], and we have the following Hermite-Hadamard’s inequality

fla) < /a+2 f(z)dz. (2.1)
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Proof . Since f'(a — 0) (< f'(a+ 0)) is finite, we define a function g(z) as follows:
1 1
o(2) == I'la—0)x —a) + f(a).x € fa— 7 at ]
In view of f’(z) being strictly increasing in (a — %, a), then for z € (a — %, a),
(f(z) —g(x))" = f'(x) = f(a—0) <0.
Since f(a) — g(a) = 0, it follows that f(z) — g(z) > 0, z € (a — 3

,a). Similarly, we can obtain
f(@) —g(xz) >0, z € (a,a+ %). Hence, f(x) is strictly convex in [a — 3,a

+ 3], and therefore

/ " e > / ! gy = fla),

1

1
2 2

namely, (2.1]) follows. [J
Example 2.2. For p > max{0, —a},0 <y <o <1,

h(u) = >0
csc h(u) pr— (u )
is called hyperbolic cosecant function (cf. [45]), we set
csch(pt”) 2
h( ) eatw 6(a+p)t7(1 _ 672pt"{) (t E R+)

(i) Setting u = pt?, we find

> csc h(pt?
k(o) = / CSC—(p)t"*ldt
0

eat"f

_ 1 /00 CSCZ<U>U%7ICZU
Vo ert
2 e P tus
= d
w"/”/o e
B 2 0o 6_( +1)uu;—1d
- pro/'y 1 — e 2u u

_ / ~(2k+ &4 lu, 21
w"”

By Lebesgue’s term by term theorem (cf. [45]), setting v = (2k + <+ 1)u, we have

o0 2l
k(o) = / mlﬂ—ldt
0

6at“f
o o~ (k& +1u, 21
—Wi/ du
2 1 /OO _ 371
= Z - ~ e "vr T dv
7 = 2k + %+ 1)717
M) & 1

" T G

2I'(2 o«
_ &C(_ Tr

STl eR 2.2
ey e R 22)
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where

((s,a) = kz_o (k—ia)s (Re(s) > 1,a > 0)

is called the extended Riemann-zeta function (also known as the Hurwitz zeta function)], and

I'(y) := /000 e “v! tdv (y > 0)

is called Gamma function (cf. [46]).
In particular, for o = p, we have

hot? 2I'(2
n(t) = SR k(o) = k(o) = &) ().
CHER
In this case, for 7 = 2, we have
 esch(pto/?) o
h(t) = W and k(O') = 60‘p2'
(ii) We obtain for v > 0 that
1 1 , Qe 2
1 — e—2u >0, (1 _ 67211) - _(1 — e—2u)2 <0,
and
1 4e=2u Se4u
> 0.

Sl [ T EA Ty

(iiil) If g(u) > 0,¢'(u) < 0,¢"(u) > 0, then for 0 < v < 1, we find that g(pt?) > 0, Lg(pt?) =
pyt? =g (pt7) <0, and

2
a2
Then we find that for y € (n — 3,n),

(pt7) = py(v = D2 (pt7) + (pyt"~")2g" (pt™) > 0.

and

for y € (n,n+ 3),

o(V(y) — B) > 0, %ga/(y) —8) = ¢ (V(y) — Bvmer <O,

and
d2

d—ygg(V(y) —B)=9¢"(V(y) = B)vpsy >0 (n € N).

Clearly ((s,1) = ((s), where ((s) is the Riemann-zeta function.
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If g1(u) > 0, g7 (u) <0,¢/(u) > 0,g2(u) > 0,g5(u) <0,g5(u) >0, then we find for u > 0 that

g1(u)g2(u) > 0, (g1(u)ga(w))" = g1(w)g2(u) + g1(w)g5(u) <0,

and
(91(w)g2(w))" = gi(u)g2(u) + 291 (u)g5(u) + g1(u)g5 (u) > 0.
(iv) For p > max{0, —a},0 < v < o < 1, we have

h(t) > 0,Rh'(t) <0, R"(t) >0, with k(o) € R,

and then for ¢ > 0,8 < 5,y > %,nEN, we have

he(V(y) = BNV () = A7 >0, ZIh(V() = M)V ) ~8)'] <0,
and 2 1 1
2 V@) =BV ) = )71 >0 (y € (n=g.m) U (nn+ ).

Setting f(y) = h(c(V(y) — 8))(V(y) — B)77L, it follows that f'(y)(< 0) is strictly increasing in
(n—1%,n) and

Tm fy) = fn—0) = [eh(c(Vy — B) (Vo — B
+(o = Dh(e(Va = 8)) (Ve = B)”*Jvn.
In the same way, for z € (n,n + 1), we find that f'(y)(< 0) is strictly increasing and
dim fy) = fn+0) = [eh(e(Vi = B) (V= B)°"
+(o = D(c(Ve = B) (Ve = B)Jvnsa.
In view of vpsq < vy, it follows that

lim f'(2) = f'(n+0) > f(n—0) = lim f(z).

r—n+ r—n—

Then by (2.1)), for n € N, we have

f(n) < / " fydy = / T (Vi) — B)(V(y) — B dy. (2.3)

1

Lemma 2.3. If g(t)(> 0) is a strictly decreasing continuous function in (3,

convex satisfying

o0), which is strictly

then we have
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Proof . By (2.1) and the decreasing property, we have

/nn+1 g(t)dt < /n"“ g(n)dt = g(n) < /n g(t)dt (n € N),

and for ng € N, it follows that

/1n0+1g(t)dt < ﬁg(n)<i/ntég(t)dt:[ﬂﬁég(t)dt’

n=1 n=1 2 2
[ atma < 3 < [ gt <oc
no+1 n=ng+1 n0+%

Hence, we obtain (2.4)). O
Lemma 2.4. If p > max{0,—a},0 < v < o < 1, define the following weight coefficients:

L osch(pU (@) (Vo = B)) U (2)vnia
W&(O-v I) T Zl eaU‘s’Y(az)(anﬁ)’Y (Vn — 5)1_07 LS R-‘m (25)
_ [ esch(pU (2) (Vi = 8)7) (Vi — B)7 ()
ws(o,n) —/O T ) (Ve ) =) dr, ne€N. (2.6)
Then, we have the following inequalities:
ws(o,x) < k(o) (z€Ry), (2.7)
ws(o,n) < k(o) (ne€N), (2.8)

where, k(o) is indicated by (2.2]).
Proof . Since V,, = V(n), and for t € (n — 3,n),
Vn41 Sy, = V,(t)a

for t € (n,n+ 3),

Unt1 = V/<t)7
by (for ¢ = U%(x)), we have
csc h(pU* (z)(Vo — B)) U (z)
eU% (2)(Viu—B)7 (Vn _ 5)1—0
_esch(pU(z)(V(n) — B)7) U’ (x)
U () (V(n)—B)" (V(n) — p)t=—°
" esch(pUM (@)(V(H) ~ B)) U™ ()
< /nl eaU% (z)(V(t)—B)Y (V(t)— B)t-e dt (n€N),
"2 esc h(pUP () (V(8) = B)7) U (x)dt
W(S(O', .T,') < ZVnJrl/ . caUS (z)(V(H)—B) ( () ) —c
N[ eseh(pU (2)(V (1) — B)7) U () V(1)
: ;/ -3 T AVOT (V) B
L [ o) DRV,
1 eaU%7(@)(V (t)—B)" (V(t)— B)t—

2
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Setting u = U’(x)(V(t) — B), by (2.2), we obtain
UPE@V() cse h(pu?) U (2)U ()
ws(0,2) < . et (U (@)
U (z)(3—h)

o0 Y
< / SO oty — (o).
0

eaiﬂ

Hence, (2.7)) follows.
Setting u = (V,, — B)U°(z) in (2.6)), we find du = §(V,, — B)U°~}(x)u(x)dx and

(Va—B)U (o) y o .
ws(o,n) = 1/V ) cse h(pu?) (Vo = B [(V — ) "ul 1alu
(

0 J(vu-pyus (o) e (V= §ytie
1 seh(r)
_ ! i
0 J (V=g (0) €
If § = 1, then
(Va=B)U(°) g B pu? ~ eschlpu?
if 6 = —1, then
(Va—B)U~1(c0) h(ou” o0 h(pu”
o) = [ Sarhas [T

Hence, by (2.2)), we have (2.8)). O

Remark 2.5. We do not need the condition of ¢ < 1 in obtaining (2.8). If U(oo) = oo, then we
have
ws(o,n) = k(o) (n€N). (2.9)

For example, we set u(t) = T (1> 0,0<a< 1), then for z > 0, we find

e (

T (1+:1:)1 a1
U(I):/i: —F—0<a<1 < 0,
o (L+1t)e In(l+2z),a=1

U(0) =0 and U(oc0) = [;* (11@)& = oo.

Lemma 2.6. If p > max{0, —a},0 <y <o <1,V(c0) = o0, then, (i) for x € Ry, we have

k(o)(1 —0s5(0,2)) < ws(o,x), (2.10)
where,
1 Ul (z)(v1-B) hou”
O5(0o,x) = —/ Mugfldu
k(o) Jo e’

= O((U@):") € (0,1);
(i) for any b > 0, we have

o0

Z v, Vn; 0

n=1

ot bO(1)] . (2.11)

S =
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Proof . By ([2.4)), we find

oo "Hese h(pU (2)(V () — B)Y) U (z)dt
wso,z) > ;Vm /n fwém)(vu)—ﬁw (V(t) = B)~
— [ esch(pU (z)(V () — B)Y) U (2)V'(t)
= Z/ eaUé’Y(a:)(V(t) B)Y (V(t) = B)t= -
_ /°° csc h(pU (x)(V (1) — 8)7) U (x)V'(t) dt
1 caUDT (2)(V (6)—B)" (V(t) =)=

Setting u = U°(z)(V(t) — ), in view of V(00) = oo, by (2.2), we find
o0 v
/ csehlpu) ooy,

vs@y(vy-g €

Ul () (v1—B) v
0

~
eau

ws(o,x) >

= k(o)1 —0s(o,x)).
Since

csc h(pu)

eau’Y

F(u) =

is continuous in (0, 00) satisfying w2tV F(u) = 0 (u — 0%), and w2z F(u) = 0 (u — o), there
exists a constant L > 0, such that u2@+)F (u) < L, namely,

csc h(pu?)

eoaﬂ

< Luz @) (y € (0, 00)).

Hence we find

L (V15
0 < 6O5(0,2) S—/
k
- Bz

2L[U°(z) (1
k(o)(o -

and then (2.10) follows.
For b > 0, we find

> VUn+1 2 V’(l’) "
P I 1+b+z < @ -
_ Vs V() N
- <u1—ﬁ>1+b+/; Vi) -

B Vo N /°° du
(Vl - /B)H_b vi+ive—B u'tt

m\»—-
—

QU

I

(z € Ry),

](07
7)

A
S =
| — |
—~
I
S
| | =
@
S~—

o

+

o
—~
N
-

>
=
e
+
o
| I
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Z VVnJrﬁle - Z/n VnH 1+bd >Z/ —1+b

n=1

B /°° V’( )d:c B 1
L (V) =B b - )Y
Hence we have (2.11)). O

Note. For example, v, = = (n € N;0 < a < 1) satisfies the condition that v, > 0 (n € N), {r,}>2,

na

is decreasing, and V' (o0) = oc.

3. Main results and operator expressions

Theorem 3.1. If p > max{0,—a},0 < v < o < 1, k(o) is indicated by (2.2), then for p > 1,
0 < ||fllp@s,lallqgw, < oo, we have the following equivalent inequalities:

h(pU" (2)(V,, — B)?
I = Z / M ) o (@) < k@)l el (31)

— YW cse h(pUP (@) (Va = B)) . ?
s ;W[/O U (z)(Vn—B)7 f(x)dx]
< K| fllpes -
e [Seenpur@m - |7,
b {/o Ut-a(z) [E_; el (@) (Va=B)" a"] dx}
< ko)llallyw,. -

Proof . By the weighted Holder inequality (cf. [48]), we have

* esch(pU* (@) (V= B)) T
{/0 eaU% (z)(Va—B)7 f(w)da:]

- [ e e -1

ol (@) (Vo —B)"

—60 —oc 1

U @) (V- m i )“r
> i <>
(

Q

X

(Voo — B) 7 i (x)
/°° csc h(pU® () (Vi >>

U (@) (Va—B)?

IN

O ] o
(Vn - B)\ o ()
) {/oo cse h(pU% () (V,, — B)7) (V,, — B)(I_U)(p_l)lu(x)dx] p—1
0 alU% (@) (Va—P)" U= ()
(ws(o,m))P~t
(Vi = B)P7twnpa

> csc h(pU” () (Vy, = B)7) U0 ® D (@), f7(x)
X 0 eaU57(a;)(V B8)Y (Vn _ ﬁ)lfa'upfl(x)

dx. (3.4)
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In view of (2.8)) and the Lebesgue term by term integration theorem (cf. [47]), we find

o1
; csc h(pU (2)(Vyy = B)) U030V (), sy 7
S < (ko)) Z/ eaU%7 () (Vo —PB)Y (Vn_ﬁ)l—a’up—l(x)f (z)da
1 csc h(pU® (x)(V,, — 8)) U0 D (2)v, 17
= (k(U))q / Z eaUM z)(Vi—B)7 (Vn _ 5)1,(7/#),1(:6)]6 (if)dl‘
1 o0 Up(l 50') (aj) P
= kaq/wa,x—fpxdas . 3.5
(())_0 6 )Mpl(x) () (3.5)
Then by (2.7), we derive (3.2)).
By Holder’s inequality (cf. [48]), we have
1
LN | M [T eseh(pU (@) (Ve — B)7)
T 2 (Vo — B)é—v/ Ty 1
1
Vn - B 5_UCLTL
_ ¢ ;) < Jillallqw,- (3.6)
Vni1
Then by (3.2), we obtain (3.1). On the other hand, assuming that (3.1)) is valid, we set
-1
_ ap > esc h(pU” () (Vi — B)7) !
R (A Uo v d@drl neN.

Then we find J} = [|a|[g g, If J1 =0, then (3.2) is trivially valid; if J; = oo, then (3.2) is still not
valid. Suppose that 0 < J; < co. By (3.1)), we have

lallgw, = U =1<k(@)lfllpe;llallgw,,

lalliw, = Ji <kO)lIfllpas

and then @ follows, which is equivalent to (3.1).
Still by the weighted Hélder inequality (cf. [48]), we have

[ &, cse h(pU (2)(V,, — B)7) '
z—:l el (2)(Va—B)7 i
L e 1 q
B Y oL PR Co17 at?
= T57(a e 1o ° - 1
| n=1 eV @V =h) (Vo =5)7 U (@)1
. -1
o[ seh(pUT @)V, — 8)) U0 D (@) |
= ; ool (@) (Va—B)" (Vo — B)—e
-~ q(l o)
y csc h(pU® (2)(V,, — B)Y) (Vi — B) al
alU% (z —B)Y o "
T ]

(ws(.0)) 5 sch(pU (2)(Va = B)) (Vo — 900 ()
U571 (2)pa(z)

ealUd7(z)(Vo—B)Y Ui- 50( ) q—1 a%. (3~7)
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Then by ([2.7) and the Lebesgue term by term integration theorem (cf. [47]), it follows that

‘S\H

[/ Z esc h(pU () (Vs — B)) (Vi — /3)(10)((11)#(1;)%%]2

U7 (z)(Va—B)7 Ulféa(x)y;lll1

1 cse o ( v _ B)1=0)a=1) ,( @
— (k(o))* Z / BpU” (@) (Ve = B)") (Vo = ) i >aid4

eaU% (2)(Va—pB)7 Ul_‘s"(:c)VZﬁ
1
1 > (Vn _ B)q(lfo)fl q
= (k(o))r Zw(g(a, n) qu all . (3.8)
Ln=1 n

Then by (2.8), we derive (3.3)).

By Holder’s inequality (cf. [48]), we have

0 1_5o
.z
r- (4 o )
0 e ('I> n*l
< | fllpas /o (3.9)
Then by (3.3), we obtain (3.1). On the other hand, assuming that (3.3 is valid, we set

6aU‘5“f z)(Vn—B)Y

cheh Uév(x)(vn—ﬁ)v)an] o

Ulfqzsg(x) eaU‘H(I)(Vn—ﬂ)“’

fla) = 1) liCSC’L@U%‘”(V"‘M%F1, ceR.

n=1

impossible. Suppose that 0 < Jy < co. By (3.1]), we have

Then we find J§ = [|f|[} 5,- If Jo = 0, then (3.3)) is trivially valid; if J, = oo, then (3.3) remains
3.1]

||f||pq>5 = Jy =1 <k(o)llflpe;llallgw,,
e, = J2<ko)lallgu,,
and then ({3.3)) follows, which is equivalent to ({3.1).

Therefore, (3.1)), (3.2) and (3.3)) are equivalent. [

Theorem 3.2. With the assumptwns of Theorem 3.1}, if U(oo) = V(o0) = o0, then the constant

factor k(o) in ., . and (3.3) is the best posszble

Proof . For ¢ € (0, 422)), we set 5 = 0 — £, and f=f(), zeRy, a={a,}>,,

2

> Uoeta—l(x)u(x), 0 <2’ <1
flx) = { 0. 2% > 0 , (3.10)
a, = (Vo— ﬁ)g_anH = (Vo — ﬁ)giiill/nﬂ, n € N. (3.11)

Then for § = £1, since U(o0) = oo, we find

/ @) e L. (3.12)
{

2>0;0<z0<1} UL=%(x) €
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By @11), (B:12) and (210, we obtain

1

TR plx)de \»
b, = (/ as)
PR fes00<as<1y U7(2)

1 se

= — P

e

~ csc h(pU%(x)(V,, — B)7) -
h / Z eaUM(z)vn G anf(@)de

_ / csce h(pU‘S'Y(m)(Vn — 5)7) (Vn _ 5)571%“”(‘@)6&
{w>0,0<25<1} el (2)(Va—B)7 U=+ (z)

+ 50(1)} " (3.13)

= ws(o, x & x
B /{$>0;0<x5§1} 6( ’ >U1 66( )d
()

> k&/ 1—0s5(0,2))—————dx
@ {:v>0;0<ac5§1}( o )>U1_§6(5U)

£ _
q

_ 5 o T 6072 T M('I) T
— K@) /{Mmm}u OV @) )

~ d
=@ | [ UL / 0 o) ) g
{z>0;0<z9<1} (37) {z>0;0<z?<1} [1-o(e+—3 )(a:)

1 :
- Ek(a—g)(U‘s (1) —eOi(1)).

If there exists a positive constant K < k(o), such that (3.1)) is valid when replacing k(o) to K,
then in particular, by the Lebesgue term by term integration theorem, we have

el <eK|[f]lp.;allqw,,

namely,

3

k(o — a)(zﬂ€(1> —c0,(1)) < K -U% (1) +20(1)

1
(11 — B)F
It follows that k(o) < K(e — 0%). Hence, K = k(o) is the best possible constant factor of (3.1)).
The constant factor k(o) in (3.2) ((3.3)) is still the best possible. Otherwise, we would reach a
contradiction by (3.6} . . that the constant factor in (3.1)) is not the best possible. [

For p > 1, we obtain

w;‘p(n):# (neN), &; Uz)= Ul#fa)() (z € Ry),

and define the following real normed spaces:
LP@J(R-&-) = {f7 [ = f(l"),iU €Ry, Hf“p@& < OO},

lq,‘I’/j = {a; a = {an}zo:h ||a’||q7\1’ﬁ < 00}7
Lq@;—q(RQ = {h;h=h(z),x € Ry, Hth,@;—q < 00},

Latr = {6e={eadi2n llellgir < 00},
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Assuming that f € L, s, (R;) and setting

o > esc h(p[U°(z) (Vo — B)]")
c={etnly, = /0 T (Vo) f(z)dz, n € N,

we can rewrite (3.2) as

lelly w1 < k(@) flp.e; < o0,
namely, ¢ € lpﬁ,gfp.
Definition 3.3. Define a half-discrete Hardy-Hilbert-type operator 77 : L,e,(Ry) — lp wle as

follows: For any f € L,q,(R4), there exists a unique representation T} f = ¢ € L, i Define the

formal inner product of T\ f and a = {a,};2, € lgw, as follows:

- * csc M (x — B)7
(Tif,a) =Y [/0 MoU (@) (Vo = B)) 41| g, (3.14)

0aU% (@) (Vu—B)7

n=1

Then we can rewrite (3.1]) and (3.2) as follows:

(Tuf,a) < k(@IS lp.esllallg.ws, (3.15)
Tl wtr < KO f]lpa,- (3.16)

Define the norm of operator T; as follows:
131 01
T3] == sup
10y, ®Re) S llpas

Then by (3.16]), it follows that ||71|] < k(o). Since by Theorem the constant factor in (3.16]) is
the best possible, we have

2I'(2) o a+p
Tl = k(o) = i . ) 1
1Tl = (o) = — 20250 (3.17)
Assuming that a = {a,};2; € lgv, and setting
N eseh(pU () (Vi — B)7)
h(z) := E T VB an, * € Ry,

n=1

we can rewrite (3.3) as ||h||q7¢(1;q < k(o)l||allgw, < oo, namely, h € Lq@(l;q(RJr).

Definition 3.4. Define a half-discrete Hardy-Hilbert-type operator T5 : lg vy, — L, éé—q(RJr) as
follows: For any a = {a,};2; € lgw,, there exists a unique representation

TQCL =he Lq@};q (R+)

Define the formal inner product of Tha and f € L, ¢,(R4) as follows:

> | K cse M (x - B)7
(Tha, f) ::/0 [Z MU () (Ve — ) >an f(x)dz. (3.18)

U (2) (Vo —B)7
n=1
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Then we can rewrite (3.1) and (3.3) as follows:

(Taa, ) < K@) fllpwsllallgw,, (3.19)
I T2ally g1 < k(o)llallqw,- (3.20)

Define the norm of operator T, as follows:

| T2al|, p1-a
T = sup —0 0%
a(#0)ely v Ha||q,\1'ﬁ

Then by (3.20)), we find ||T3|| < k(o). Since by Theorem [3.2] the constant factor in (3.20) is the best
possible, we obtain
2r(2)

v(2p)7/

o a+tp

1T = k(o) = (20

) = ]| (3.21)

4. Some Equivalent Reverse Inequalities

In the following, we also set

Up(lféa)fl(x)
pr=H(x)

For 0 < p <1 or p <0, we still use the formal symbols ||f||,.s;, ||f]|

Bs(x) = (1 — bs(0 7)) (r €R.).

o, and [lallqu, et al.

Theorem 4.1. Ifp > max{0, —a},0 <y < o < 1,k(0) is indicated by (2.1)), and U(o0) = V(c0) = o0,
then for p < 0, 0 < ||f|lp.@s, |lallqu, < 00, we have the following equivalent inequalities with the best
possible constant factor k(o):

0 00 h U&y Vn_ v
I = Z /0 csc (epam(x:)c()v(nw O 4 f )z > k(@) llpaslallow,s. (4.1)
=1
o) . oo h U57 p
J = Z v u;l — [/0 csc (;Ucw(g()v - B )f(g:)dx} > k()| f]lp.s (4.2)
= csch(pU @) (Ve —8)) ]\
S = { Ut- qu [Zl eaU5’Y(:E)(Vn—B)’Y an] dl‘}
> k(o)llallqw,- (43)

Proof . By the reverse weighted Holder inequality (cf. [48]), since p < 0, similarly to the way we

obtained (3.4)) and (3.5]), we have
o0 h (10 o 0% p
[t 0 ]
0

6aU‘57 (z)(Vm—B)"

(ws(o,n))P~* /°° csc h(pU? (2)(V,, — B)Y) U= (3)p,,,,
— (Va=B)P i Jo el (2)(Va—B)7 (Vo — B)—opp—1(z)

fP(z)dx.
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Then by (2.9) and the Lebesgue term by term integration theorem, it follows that

=

L h(pU® (z)(V,, — B)7) UL @=D (z)y, v
Ji > (k(o))e Z/ = eaU«Sv i?()‘fn_ﬁ)v h) )(Vn _5)1022)V1(—;1) fP(x)dx
Up(l—&f _1(33) ) P
Wf (x)dx| .

— (o))} [ ston

Then by (2.7), we have (4.2)).
By the reverse Holder inequality (cf. [48]), we have

1

> vy * ese h(pU™ () (Vi — B)7) (Vo = B)7 “an
I = ntl / - — f(z)dx ;
; (Vo — B)# " ealn @9 VP

> Jillallgw,. (4.4)

Then by (4.2), we derive (4.1)). On the other hand, assuming that (4.1)) is valid, we set a, as in
Theorem B.Il Then we obtain
2 =lallty,.

If J1 = oo, then (4.2) is trivially valid. If J; = 0, then (4.2) is still not valid. Suppose that
0 < Ji < oo. By (4.1)), it follows that

lallge, = U =1>k(©@)|fllp.e;llallgw,,
lalliw, = Ji>kO)lIfllpas

and then ( . follows, which is equivalent to (4.1).
Applying again the weighted reverse Holder inequality (cf. [48]), since 0 < ¢ < 1, similarly to
how we obtained (3.7 and (3.8)), we have

=1 csc h(pU? (x)(V,, — B)Y !
§ e U (@) >>an]

0aU% (@) (Va—B)7

n=1

(ws(0, )" =~ ese h(pU () (Vi = B)7) (Vi = B) 2 V()
U (z)p(r) 2 ol (@) (Va=B)" U=so (gl

Then, by (2.7) and the Lebesgue term by term integration theorem, it follows that

1 CSC ‘”x v — B3)A=0)(a=1) (5 @
B> (ko) / Z h(pU™ (@)(Va = B)7) (Vo = ) i %gm]

aU% (z) (Vi —B)7 1—6 g—1
e @) ) U= (z)vp

1

L _ A\g¢(l—0)-1 a
N | e U ] |

VnJrl

Hence, by (2.9)), we have (4.3)).
By the reverse Holder inequality (cf. [48]), we get

- OO( @) f(x)> i (2) f:csch@lf‘”(:v)(%—ﬂmn] dr
0 pa(z)

U%_éa(l‘) n=1 eaU? (@) (Va—B)"
= || fllpas /2 (4.5)
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Thus by (4.3), we obtain (4.1)). On the other hand, assuming that (4.3)) is valid, we set f(x) as in
Theorem .1l Then we derive that

J3 = 111505
If Jo = oo, then (4.3) is trivially valid. If J, = 0, then (4.3) remains impossible. Suppose that
0 < Jy < 0o. By (4.1)), it follows that
e, = J2=1>k(0)||fllpe;llallgw,,
1 |he, = J2>ko)llallgw,,

and then (4.3)) follows, which is equivalent to (4.1]).
Therefore, inequalities (4.1)), (4.2]) and (4.3) are equivalent.

For ¢ € (0, (02 1), we set c=o0—: and f = f(z), v € Ry, a={a.}7,,

= U@+ () u(x),0 < 20 < 1
fo) = { s ,

a, = (Vn _ ﬁ)g_an-H — (Vn _ B)a—g—lynﬂ’ neN.
By (2.11), (B12) and (27), we obtain

1 @

~ - 1 s
| f1lp.0slallqw, = JUe (1) =By +:0(1)]

~ cschU‘”xV
; Z/ (U (@)(Va = 5))

i@ Vg ot f(a)de

~ (@)
_ w5(F, 1) =g
/{x>0;0<x5§1} Ut 6E(x)

< K@) /{ _ue)

z>0;0<z0<1} Ul=%(x)

1 E\ rrée
= gk(a—g)U (1).

If there exists a positive constant K > k(o), such that (4.1)) is valid when replacing k(o) to K,
then in particular, we have

el > eK||fl|pa;lallqus,

namely,
3 de 1
k(o —=)US(1) > K-U» (1) |———
(o= () 0 o
It follows that k(o) > K(e — 01). Hence, K = k(o) is the best possible constant factor of (4.1)).

The constant factor k(o) in (4.2)) ((4.3)) is still the best possible. Otherwise, we would reach a
contradiction by (4.4) ((4.5)) that the constant factor in (4.1]) is not the best possible. O

+e0(1)

Theorem 4.2. With the assumptions of Theorem [4.1], if

0<p <L 0<[|fllpes llallgw, < oo,
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then we have the following equivalent inequalities with the best possible constant factor k(o):

B(pUD (2) (Ve — B)
ey e e o> Kol (46)
v, s h(pUP @) (Ve = 8Y) - T
Sio= ;m{/o 0aU% () (Vi —B)7 f(x)dx] > k(o) f1l,3, (4.7)
. (1 —05(0,2)) " u(z) |~= csch(pU® (x)(V,, — B)7) ! z
> k(o)llallgw,- (4.8)

Proof . By the reverse weighted Holder inequality (cf. [48]), since 0 < p < 1, similarly to as we

obtained (3.4)) and (3.5]), we have

> cse h(pU® (x)(V,, — B)) p
{/0 QU (z)(Vn—B)7 f(x)dx]

, EOm [ ol ) —5y) D D
S W B T Je @ (V= B ()
In view of (2.9) and the Lebesgue term by term integration theorem, we find

fP(z)d.

1

i h U(S»y Vn_ﬂ'y U(lféa)(pfl) . ) P
h 2 o) Z/ e L

Ur=0o)=1(z) D »
i

— (o)} | | wslora)
LJ O
Then by (2.10), we have (4.7)).

By the reverse Holder inequality (cf. [48]), we have

P [ e o
0

(Vn - 5) %7Uan
T @) 1

V7§+1
> illallg, (19)

Then by ., we have On the other hand, assuming that (4.6)) is valid, we set a, as in
Theorem Then we ﬁnd Jp = |lallgy,- If J1 = oo, then (4.7) is trivially valid; if J; = 0, then
. 4.7)) keeps 1mp0881ble Suppose that 0 < J; < oco. By (4.6 ., it follows that

lallgw = JT =1>k(©)IIfl,5,llallgw,,

lalliy = Ji> k) f]],3,
and then (4.7)) follows, which is equivalent to (4.6]).
Similarly, by the reverse weighted Holder inequality (cf. [48]), since ¢ < 0, we have

=1 csc h(pU? (x)(V,, — B)Y
3 (pU* (2)( ))

q

T el
(ws(o,2))"! i esc h(pU” () (Ve = B)7) (Vo = B) =7 Vpa(z) ,
— Uv(x)u(x) ot U (z)(Va—B)7 U= ()18, n
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Therefore, by (2.10) and the Lebesgue term by term integration theorem, it follows that

1 cse N (g — B)) (V,, — B)A=o)a=1) (g 7
J > (ko) / Z h(pU™ (2)(Ve = B)") (Vo = B) i Mgm]

eaw )= B)7 U= (z)vi

Hence, by (2.9)), we have (4.8)).

By the reverse Holder inequality (cf. [48]), we have

- / N [(1 ~b5(0 x))lU"l—U”ﬂx)]

(1 65(0,2)) 7 ps (x) < ese h(pU™ (2) (Vi — B)7)
x [ Z Z’_i(x)ﬂ ; :NUM(I)(VR_W an] dz > ||fll, 5,/ (4.10)

Then by (4.8]), we have (4.6). On the other hand, assuming that (4.6) is valid, we set f(z) as in
Theorem Then we derive that J? = || f Hi o If J = oo, then 1' is trivially valid; if J = 0,

then (4.8]) is still not valid. Suppose that 0 < J < oo. By (4.6)), it follows that

1Al G = 9= 1> k@I, lall,v,
A5 = 7> k(@)llally,.

and then (4.8)) follows, which is equivalent to (4.6]). Therefore, inequalities (4.6]), (4.7) and (4.8)) are

equivalent. L
For ¢ € (0, ’@), weset 0 =0+ %, and f = f(z),z € Ry, a={a,}7,,

~ Uz )u(z),0 < 2® <1
flo) = { ( )()Ngs5)>0 T
an = (Vn - B)a_a_ll/n—H = (Vn - 6)07%—1yn+1’ n € N.

By (£.10), (I1) and (3:12), we obtain

11,5, 1@l
_ _ . $(o—7) p(w)dx S Vn+1 ‘
U{MM@“ oW 2 - ﬁ)HE]

RS S B
- L) - o) [ 400

Qe
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7 o_ Z/ csch(p UV(:C)(Vn—B)V)anﬂm)d‘x

eaU‘SV () (Vn—B)"

il cse hpU” (@) (Ve = B)") (Ve = )l >d4
o1 L {z>0,0<29<1}

. caUS (@) (Va—B)" U= () (V, — B)i+e
R e
- iw(;(a n) A Vn; Tte ni:; v, Vn; Ite
- ék(a + %) [ﬁ + 50(1)} .

If there exists a positive constant K > k(o), such that (4.1)) is valid when replacing k(o) by K,
then in particular, we have _ B
el > eK||fl], 5,llallqw,,

namely,
€ 1
k(o + ]—)) [—(Vl — 5 + 50(1)}
> K (U%(1) - 501(1))% {ﬁ + 50(1)}

It follows that k(o) > K(e — 0%). Hence, K = k(o) is the best possible constant factor of (4.6)).
The constant factor k(o) in (4.7)) ((4.8)) is still the best possible. Otherwise, we would reach a
contradiction by (4.9) ((4.10)) that the constant factor in (4.6) is not the best possible. [

5. Some Corollaries

For 6 = 1 in Theorem [3.2] Theorem and Theorem [£.2] the following inequalities with the non-
homogeneous kernel hold true:

Corollary 5.1. If p > max{0, —a},0 < v < 0 < 1, k(o) is indicated by ({2.2)), and U(o0) = V(o0) = o0,
then
(i) for p > 1, 0 < || fl|p.@,, ||allqw, < 00, we have the following equivalent inequalities:

[e'¢) [e'S) (U Vn . v
Z/o cso (eim(xy)c()v(n_w O, f(w)dx < k(o) |fllpanllallyws. (5.1)
n=1

" < cse h(pU™ (z)(Vi, — B)7) »

; W UO T A T (x)d«”f} < k()| fllp.e:: (5.2)

{/OOUL% [Z T ”an] dx}q <K@l (53

n=1
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(i) for p < 0, 0 < || fl|p,@15 ||a|]qw < 00, we have the following equivalent inequalities:

csc h(pU7 (x)(V,, — 5)7)
EZ/ o = O o, payde > K@)l lally v, 5.0
= Vn+1 * esch(pU7(2)(V, — B)7) P
; (V,, — B)t-po l/o eaU (z)(Vn—B)7 flz)dz| > k’(")”f“p,@u (5.5)
1
o) q a
RAC) csc h(pU™ (x) (Ve = B)7) .
{A Ulw@>h; et dey > k)allas (59)
(iii) for 0 < p < 1, 0 < || fllp.@1,|]allqw < 00, we have the following equivalent inequalities:
csc h(pU (x)(V,, — B
Z/ it ()V(n - ) )anf(:c)dw > k(@) f1l,3,lallgws, (5.7)

Vst csch(pU (@) (Va = BY) .
‘ (V,, — ; 1—po {/0 calU7 () (V—B)7 f(x)dx} > k(O’)Hpr@l, (5.8)

n=

Ul qa( ) — ecU" () (Va—B)7
> k(o)lallqw,- (5.9)

The above inequalities involve the best possible constant factor k(o).
For § = —1 in Theorem Theorem and Theorem [4.2] we have the following inequalities
with the homogeneous kernel of degree 0:

{ 1&oqum>[§meMN@mamw%rm}é

Corollary 5.2. If p > max{0, —a},0 < v < 0 < 1, k(o) is indicated by ({2.2)), and U(o0) = V(o0) = o0,
then
(i) for p > 1, 0 < || f]|p,e_,,|lallqw; < 00, we have the following equivalent inequalities:

> roecsch(p (V B)V)
/ LG 4, f(@)dr < k(o) |l llallya, (5.10)
oo 00 Vn*ﬁ Y p
Vp+1 CsC h(P( U(z) ) )
—_ r)dr| < k(o . 5.11
Zgﬂ%—@“W[A ) @l (511)
esch(p(e=8yy 17 4
(x) .
{ / UHW L iy | oy <K@l (5.12)

(ii) for p < 0, 0 < || f|lp.2_s, l|allq,w,; < 00, we have the following equivalent inequalities:

= o esch(p(F))
>/ i —a, f()dz > k()] |lpolallgs: (5.13)
1o e T@ )

e~ % csc h(p(Ya=Eym) P
Z@%%W;M(mfﬁ?)ﬂm4>MMmmp (5.14)
n=1 n

Ty )
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o0 x csch(p Ux’B v !
{/0 Ul%gzx)[; Of(( <)i) )an] dx} > k(o)l[allqu,: (5.15)

U(=)

Q=

(iii) for 0 < p < 1, 0 < [[f|[p,e_,>|lal[qw, < oo, we have the following equivalent inequalities:

= esch(p(50)")
> [1= T sayte > Kl Il 5,16
S ~csch(p(52y) 1
> / ) f<x>d:c] > k5 (517
n=1"" e Ul
(L= 010, na) [$= esehlolBei) 1"
U R (R
> k(o)llallgw,- (5.18)

The above inequalities involve the best possible constant factor k(o).

For a = p in Theorem [3.2] Theorem [£.1 and Theorem [4.2] we have

Corollary 5.3. If p > 0,0 <y <o <1, and U(o0) = V(00) = o0, then
(i) for p > 1, 0 < ||f|lp@s, |lallquw, < 0o, we have the following equivalent inequalities with the best
possible constant factor

2I(2)¢(5)
h(pU® (z)(V,, — B)Y
Z/ csc (f;m x)()v(n - — ), F(@)de < k()] Fllpsoslallasss. (5.19)
W csc h(pU™ (2)(V, — 5)7) '
Zw{/ ot T f(:v)dx] < k(o)1 fllpos: (5.20)

> = esch(pUP (@) (Ve — 8)) 1" *
{ / UL)()[Z R >an] dx} <h@lldla,; (521
n=1

(ii) for p < 0,0 < || f|lp.@s, ||allgws < 00, we have the following equivalent inequalities with the best
possible constant factor ki (o):

h(pU® (2)(V,, — B)?
Z/ cse eppUM z)()v(n - B) )anf(:C)d:c > ki(0)|| fllp.asllallgws, (5.22)
- n h U&{ Vn — Y p
; (Vni% [/0 = (eppUév(i:)B()v(n_ﬁ)v 2 )f(x)dx} > k(o) fllpes (5.23)

° x . csc (g — B)7 ! :
{/ UL)u[Z e e o )an] d:c} >hllally: (620
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(iii) for 0 < p < 1,0 < ||f]|p.es- ||al|qw, < 00, we have the following equivalent inequalities with the
best possible constant factor kp(o):

h(pU® (2)(V,, — B)Y
Z/ cse epan z)()v(n - B) )anf(x)d:c > kl(a)Hpr@éHqu,\I/@a (5.25)
S n h(pU®" V., — ()" P
Z V 1% Ell — |:/ CcscC (eppU&y(ii)‘En_ﬁ)’y B> )f(l')dl':| > k1(0)||f||p§5, (526)
n=1
%) 1 — 85 o, I))l q’u< ) ] csc h(pU&Y(ZL’)(Vn i ﬁ),y> q %
{/0 Ut- q50< ) [; epU‘H(x)(Vn—ﬁ)W an] da;}
> ki(o)llallgw,- (5.27)

For v = § in Corollary 5.3, we obtain the following:

Corollary 5.4. If p > 0,0 <o <1, and U(o0) = V(00) = o0, then
(i) for p > 1, 0 < || fllp.@s, ||allqw, < o0, we have the following equivalent inequalities with the best

possible constant factor %
* ese h(pU%/2(x) (Vi — )7 -2
Z pU5U/2(x)(Vn—ﬂ)0/2 anf(l’)dl’ < —60p2\|f\|p7¢5||a||q’%7 (528)
S Vn+1 > csc h(pU%/2(x)(V,, — B)°/?) P2
; V ﬁ 1 —po |:/0 epU60/2(m)(Vn—ﬁ)o/2 f(x)dx < 60_p2Hpr,q>57 (529)
o0 q %
LLC)) csc h(pU*7"?(z) (V, — 5)7/?) i |
{ /0 =T [2 | Aoy < gl (5.30)
(ii) for p < 0,0 < || f|[p.@s, ||allgws < 00, we have the following equivalent inequalities with the best
possible constant factor %
[ csehlpU (@) (Vi — )77 -
Z/O oPUS/2(2) (Vin—B)7 /2 an f(z)dz > 60p2Hpr7q>5Hqu7%, (5.31)
Uit  cse h(pU%/2(z)(V, — B)°/2) o
; Vi = B)tre [/0 ePUS /2 (@) (Vo —B)7 /2 fla)de| > 6Up—2||f||p,¢5, (5.32)
1
RC) csc h(pU/2(a)(V, = 8)7"?) n |
{/0 U-a7(z) Lz::l PUST2(2) (Vo B) /2 n| dro > 60—p2||a||q,%’ (5.33)

(iii) for 0 < p < 1,0 < || f||p.@s, ||allgw; < o0, we have the following equivalent inequalities with the

best possible constant factor %:
> esc h(pU®/? () (Vo — B)7/?) drs T 4
Z pU‘S"/Q(:E)(anﬂ)‘T/Q anf<x) T > 60_p2||f||p7$5||a||%qj,ﬁ7 (53 )
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D

n=1 (Vn - 5)171)0

{/ * (1 = 5(0. ) () [i esc h(pU™ () (V, ﬁ)0/2>a”rdx};

Vn41 > csc h(pU5”/2(;1:) V, — B)7/?) P 2
(Vo =B Ua v @ > sl g, (5:35)

U= () 1 PUS (@) (Va=B)7/
n=

7].2

6077 lellav (5-36)

Remark 5.5. (i) For § =0 in (3.1]), the following inequality holds true:

h(p x)Vp)7
Z PN VD, plade < K@)l (5.37)

Hence, (3.1)) is a more accurate inequality of (5.37)) for 0 < 3 < %

(ii) For p(z) = v, = 1 in (5.37), we have the following inequality with the best possible constant
factor k(o) :

5 [t
< k(o) {/00 xp(l_éa)_lfp(m)da:} ’ [i nq(l_”)_la‘}l] q . (5.38)
0 n=1

In particular, for 6 = 1, we have the following inequality with the non-homogeneous kernel:

Z/ CSCZa o >anf(:r;)d:r;
< k(o) {/Oooxp“ D=1 (g ] [anﬂ o) laq] : (5.39)

for 6 = —1, we have the following inequality with the homogeneous kernel of degree 0:

5 [ M)
< k(o) { /0 T 1 () } [anﬂ ?)- laq] . (5.40)
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