
1. Introduction 

In recent years, many researchers have used 

fractional derivatives in various mathematical 

models due to their applicability in different fields of 

science and engineering [1-4]. It is well known that a 

fractional derivative is a good tool for taking into 

account the memory mechanism, particularly in 

some diffusive processes [5]. Stefan problems 

(moving boundary problems) with fractional 

derivatives [6-10] are typical problems from a 

mathematics point of view because of their nonlinear 

nature and the presence of a moving interface. Some 

exact solutions to Stefan problems can be seen in [8], 

[11], and [12]. Exact solutions to such problems are 

limited. Therefore, several approximate analytical 

methods [13-17] have been used to solve the Stefan 

problems with fractional derivatives. The 

approximate analytical method used in this literature 

is the optimal homotopy asymptotic method 

(OHAM).  

The OHAM was developed by Marinca et al. 

[18], and it has been applied to solve a wide range of 

nonlinear differential equations [19-23].  Ghoreishi 

et. al. [24] presented the comparison between the 

homotopy analysis method and the OHAM for 

nonlinear age-structured population models. In 2013, 

Dinarvand and  Hosseini [25] also used the OHAM 

to investigate the temperature distribution equation 

in a convective straight fin with temperature-

dependent thermal conductivity and the convective–
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radiative cooling of a lumped system with variable 

specific heat.  

This paper presents a mathematical model for a 

Stefan problem [12] with a space–time fractional 

derivative. In this model, the OHAM is used to find 

the expression of the temperature distribution in a 

given domain and location of a moving interface 

with the help of the Taylor series [13]. The obtained 

results are compared with the existing exact solution 

for a standard case and are in good agreement. An 

approachable analysis for a fractional case  is also 

discussed.  

 

2. Mathematical formulation 

In this section, a mathematical model of a one-

dimensional Stefan problem with a variable latent 

heat term [12] is considered. For this problem, we 

present a fractional model that involves space–time 

fractional derivatives, as given in [11]. The 

governing equations are as follow:  

  ,0),(0, 



 ttsxTD

x
TD xt

                (1) 

  ,0,0 2/)1(  n
x bttxTDk                               (2) 

  ,0,0),(  tttsT                                            (3) 

  )())(()),(( tsDtsttsTDk t
n

x
  ,

 
                     (4)  

where ),( txT  is the temperature distribution, )(ts is 

the moving interface, k is thermal conductivity,  is 

the thermal diffusion coefficient, b is a constant (

0b for melting, 0b for freezing), nts ))((  is the 

variable latent heat per unit volume, and n  is an 

non-negative integer. The operators 
tD  and 

xD  are 

the Caputo fractional derivatives [11,13], which are 

defined as  
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where  is the Gamma function. 

In this paper, the following properties of 

fractional derivatives [13-14] are used: 

(a) ,0)( zDt
                                                 (7) 

where z is a constant.      

(b) 



 




 ttDt

)1(

)1(
,                           (8) 

where Nmmmm  ,,10  and  
tD is the 

Caputo fractional derivative of t .              

3. Solution of the problem 

First, Eqs. (1)–(4) are written in operator 

form as follows:                                                            

    ,0),(),(  txTNtxTL                            (9)                      
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where 
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t
N  is a 

nonlinear operator, and B is a boundary operator. 

According to the OHAM [16, 21], we construct 

an optimal RtsptxT  ]1,0[)](,0[:),,( , which 

satisfies 

       ,),,()),,((),,()1( ptxTNptxTLpHptxTLp      (11) 
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where ]1,0[p
 

is an embedding parameter, 

);,( ptxT is an unknown function, and )( pH is a 

nonzero auxiliary function for 0p  and 0)0( H . 

Obviously, if 0p ,  

 
),()0;,( 0 txTtxT  ,                                             (13)

 

and when 1p , then 

),()1;,( txTtxT  .                                                (14) 

Clearly, as p increases from 0 to 1, the unknown 

function ),,( ptxT  varies from ),(0 txT to the 

solution ),( txT . 

Now, we choose the auxiliary function )( pH  in 

the following form: 

 3
3

2
2

1)( cpcpcppH ,                          (15) 

where ........3,2,1 ccc  are constants to be determined 

later.  

The solution to Eq. (11) is considered in the 

following series form:  

  ,,2,1,0,,,),;,(
0

nipctxTcptxT k

k
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   (16)  
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and  

 )()(
0

tspts
n

n
n






,                                              (17) 

where 00 c  and ),()0,,( 00 txTtxT  . 

Now, we expand the nonlinear term

)),;,(( jcptxTN  into the following series form (as 

given in [24]): 

  ,,,,)()),;,((
1

21000 



m

m
mmj pTTTTNTNcptxTN   (18) 

where ,2,1j .  

Now, by substituting Eqs. (16) and (18) into 

Eq. (11) and equating the coefficients of like powers 

of p , the following problems are obtained: 
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and the general equation for ),( txTk  is given as     
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where ,3,2k  . 

Substituting Eqs. (16) and (17) into the boundary 

conditions of (6) and (7) provides the following: 
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where ni ,2,1,0 . 

The comparison of various powers of p  can be 

shown by expending ),( txTi  in Taylor series form 

[13, 14] at a point, ),( 0 ts , as follows:  

,)(
),,(

!

1
),,( 0

0

0

n

n

il
n

n
il sx

x

ctsT

n
ctxT 




 





         (25) 

where 3,2,1,0l  and li ,3,2,1,0  . 

Eqs. (24) and (25) provide the following: 
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The interface condition (4) becomes 
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By considering Eq. (19) and comparing the 

coefficients of the power of 
0p  from Eqs. (23), (26), 

and (27), the following system can be obtained: 
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Taking Eq. (20) and comparing the coefficients of 

power for 
1p  from Eqs. (23), (26), and (27) provides 

the following: 
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 Similarly, other systems can be found by comparing 

various powers of p . 

The solutions of the zeroth-order problem (28) 

are calculated as the following: 
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Substituting 0T and 0s into the first-order problem 

(29) and using the above process obtains the 

following expressions of ),,( 11 ctxT :   
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The expression of )(1 ts  can be calculated as:  

tats 11 )(  ,                                                         (33) 

where 

 
 

 
 

 
















































1

1

1

1
1

)1(

2
1

)1(
01

1

n

m
mabc

a

n

, 

and 2/)1()1(  nn  . 

The approximate solution of the temperature 

distribution can be determined as 

 ),,,(),,(),(),( 212110 cctxTctxTtxTtxT , (34) 

and an approximate solution of )(ts  is given as 

         tstststs 210  .                           (35)          

In order to get the constants involved in Eq. (34) 

for the expression of ),( txT , the least square method 

is used [24]. For this purpose, residual is defined as:    

 
 .),,,,(

),,,,(),,;,(

21

2121

l

ll

ccctxTN

ccctxTLccctxR









 
     (36) 

If 0);,( ictxR , then );,( ictxT will be the exact 

solution. Generally, the OHAM gives an 

approximate solution. Therefore, in such a case,
 

0);,( ictxR , but the function can be minimized as  
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where R is the residual. The constants 

)......,2,1( lici  can be obtained optimally from the 

following conditions: 
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4. Numerical results and discussion  

In this section, numerical results for interface 

position  ts  are obtained with the help of Wolfram 

Research (8.0.0) software by considering only 1c , 

and the results are presented through tables and 

figures.   

 

Table 1. Comparison between exact and approximate              

solution of )(ts at n = 0.  

b t 
Exact value 

of S(t) 

Approximate 

value of S(t) 

by OHAM 

Error 

(%) 

0.1 

0 

5 

10 

15 

20 

25 

0.0 

0.4428497 

0.6262841 

0.7668507 

0.8856994 

0.9902421 

0.0 

0.4449844 

0.6293030 

0.7707735 

0.8899689 

0.9950155 

0.0 

0.4820 

0.4820 

0.5112 

0.4820 

0.4820 

0.25 

0 

1 

2 

3 

4 

5 

0.0 

0.4728215 

0.6686706 

0.8189509 

0.9456430 

1.0030059 

0.0 

0.4847701 

0.6854703 

0.8395262 

0.9694014 

1.0282054 

0.0 

2.5271 

2.5124 

2.5124 

2.5124 

2.5124 

0.5 

0 

0.25 

0.50 

0.75 

1.00 

1.30 

0.0 

0.4193648 

0.5930714 

0.7263611 

0.8387296 

0.9562989 

0.0 

0.4439988 

0.6279091 

0.7690284 

0.8879975 

1.0124729 

0.0 

5.8741 

5.8741 

5.8741 

5.8741 

5.8741 
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Table 2. Comparison between exact and approximate 

solution of )(ts at n = 1.   

b t Exact 

value of 

S(t) 

Approximate 

value of S(t) 

by OHAM 

Error 

(%)  

0.1 0 

1 

2 

3 

4 

5 

0.0 

0.4275253 

0.6046120 

0.7404955 

0.8550505 

0.9559756 

0.0 

0.4332152 

0.6126588 

0.7503507 

0.8664304 

0.9686986 

0.0 

1.3309 

1.3309 

1.3309 

1.3309 

1.3308 

0.25 0 

0.5 

1.0 

1.5 

2.0 

2.5 

0.0 

0.4527556 

0.6402931 

0.7841957 

0.9055112 

1.0123923 

0.0 

0.4719994 

0.6675079 

0.8175269 

0.9439988 

1.0554227 

0.0 

4.2504 

4.2504 

4.2504 

4.2504 

4.2504 

0.5 0.0 

0.25 

0.5 

0.75 

1.0 

1.25 

0.0 

0.4222513 

0.5971534 

0.7313607 

0.8445026 

0.9441826 

0.0 

0.4536318 

0.6415322 

0.7857133 

0.9072635 

1.0143515 

0.0 

7.4317 

7.4317 

7.4317 

7.4317 

7.4317 

 

Tables 1–2 represent comparisons between the 

exact and approximate values of the phase front  ts

’s positions at particular times t  for 0.1 

(standard motion). The tables clearly show that the 

approximate results are sufficiently accurate and in 

agreement with the existing exact solution [12] for 

standard motion. 

 

 

Fig. 1  Plot of )(ts  vs. t  at ,25.0 75.0 and n = 0 

 

Figs. 1 and 2 represent the dependence of phase 

front  ts ’s  movement trajectory on the thermal 

diffusion coefficient  for n = 0 at ,25.0

75.0  and ,5.0 0.1 , respectively.  

 

Fig. 2  Plot of )(ts  vs. t  at ,5.0 0.1 and n = 0.  

 

 

Fig. 3  Plot of )(ts  vs. t  at 25.0 75.0  n = 1. 

 

 

Fig. 4  Plot of )(ts  vs. t  at ,5.0 0.1 and n = 1. 

Figs. 3 and 4 also depict the dependence of phase 

front  ts ’s path on the thermal diffusion coefficient 

 for n = 1 at ,25.0 75.0  and ,5.0 0.1

, respectively. Figs. 1–4 portray that the interface’s 

movement increases with an increase in the value of 
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the thermal diffusion coefficient for fractional cases 

(nonclassical or non-Fickian), which is similar to the 

case of standard motion [12].  

 

 

Fig. 5  Plot of )(ts  vs. t  at ,5.0 0.1 and n = 0. 

 

Fig. 6  Plot of )(ts  vs. t  at 5.0 , 0.1 and n = 0. 

Figs. 5–6 show a variation in  ts ’s path for a 

different value of b for a non-classical or non-

Fickian case. From these figures, it is clear that the 

phase front’s movement increases with an increase in 

the value of the constant b; that is, the melting (or 

freezing) process becomes fast as the value of the 

constant b increases.   

5. Conclusion  

In this work, we considered a mathematical 

model that contains space–time fractional derivatives 

and time-dependent surface-heat flux. An 

approximate solution of the model was obtained by 

the OHAM. It was observed that the interface 

movement increases with an increase in the value of 

the thermal diffusion coefficient v as well as the 

constant b for a nonclassical or non-Fickian case. 

Moreover, it can be seen that the proposed technique 

is sufficiently accurate and efficient for solving 

Stefan problems. It also was observed that it is 

convenient for controlling and adjusting the 

convergence of the series solution through the 

control parameters ic  in the OHAM.  
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